1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-NetBSD 3 * 4 * Copyright (c) 2004 Christian Limpach. 5 * Copyright (c) 2004-2006,2008 Kip Macy 6 * Copyright (c) 2008 The NetBSD Foundation, Inc. 7 * Copyright (c) 2013 Roger Pau Monné <roger.pau@citrix.com> 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ddb.h" 36 #include "opt_kstack_pages.h" 37 38 #include <sys/param.h> 39 #include <sys/bus.h> 40 #include <sys/kernel.h> 41 #include <sys/reboot.h> 42 #include <sys/systm.h> 43 #include <sys/malloc.h> 44 #include <sys/linker.h> 45 #include <sys/lock.h> 46 #include <sys/rwlock.h> 47 #include <sys/boot.h> 48 #include <sys/ctype.h> 49 #include <sys/mutex.h> 50 #include <sys/smp.h> 51 #include <sys/efi.h> 52 53 #include <vm/vm.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_kern.h> 56 #include <vm/vm_page.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_object.h> 59 #include <vm/vm_pager.h> 60 #include <vm/vm_param.h> 61 62 #include <machine/_inttypes.h> 63 #include <machine/intr_machdep.h> 64 #include <x86/apicvar.h> 65 #include <x86/init.h> 66 #include <machine/pc/bios.h> 67 #include <machine/smp.h> 68 #include <machine/intr_machdep.h> 69 #include <machine/md_var.h> 70 #include <machine/metadata.h> 71 72 #include <xen/xen-os.h> 73 #include <xen/hvm.h> 74 #include <xen/hypervisor.h> 75 #include <xen/xenstore/xenstorevar.h> 76 #include <xen/xen_pv.h> 77 #include <xen/xen_msi.h> 78 79 #include <xen/interface/arch-x86/hvm/start_info.h> 80 #include <xen/interface/vcpu.h> 81 82 #include <dev/xen/timer/timer.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #endif 87 88 /* Native initial function */ 89 extern u_int64_t hammer_time(u_int64_t, u_int64_t); 90 /* Xen initial function */ 91 uint64_t hammer_time_xen_legacy(start_info_t *, uint64_t); 92 uint64_t hammer_time_xen(vm_paddr_t); 93 94 #define MAX_E820_ENTRIES 128 95 96 /*--------------------------- Forward Declarations ---------------------------*/ 97 static caddr_t xen_legacy_pvh_parse_preload_data(uint64_t); 98 static caddr_t xen_pvh_parse_preload_data(uint64_t); 99 static void xen_pvh_parse_memmap(caddr_t, vm_paddr_t *, int *); 100 101 #ifdef SMP 102 static int xen_pv_start_all_aps(void); 103 #endif 104 105 /*---------------------------- Extern Declarations ---------------------------*/ 106 #ifdef SMP 107 /* Variables used by amd64 mp_machdep to start APs */ 108 extern char *doublefault_stack; 109 extern char *mce_stack; 110 extern char *nmi_stack; 111 extern char *dbg_stack; 112 #endif 113 114 /* 115 * Placed by the linker at the end of the bss section, which is the last 116 * section loaded by Xen before loading the symtab and strtab. 117 */ 118 extern uint32_t end; 119 120 /*-------------------------------- Global Data -------------------------------*/ 121 /* Xen init_ops implementation. */ 122 struct init_ops xen_legacy_init_ops = { 123 .parse_preload_data = xen_legacy_pvh_parse_preload_data, 124 .early_clock_source_init = xen_clock_init, 125 .early_delay = xen_delay, 126 .parse_memmap = xen_pvh_parse_memmap, 127 #ifdef SMP 128 .start_all_aps = xen_pv_start_all_aps, 129 #endif 130 .msi_init = xen_msi_init, 131 }; 132 133 struct init_ops xen_pvh_init_ops = { 134 .parse_preload_data = xen_pvh_parse_preload_data, 135 .early_clock_source_init = xen_clock_init, 136 .early_delay = xen_delay, 137 .parse_memmap = xen_pvh_parse_memmap, 138 #ifdef SMP 139 .mp_bootaddress = mp_bootaddress, 140 .start_all_aps = native_start_all_aps, 141 #endif 142 .msi_init = msi_init, 143 }; 144 145 static struct bios_smap xen_smap[MAX_E820_ENTRIES]; 146 147 static start_info_t *legacy_start_info; 148 static struct hvm_start_info *start_info; 149 150 /*----------------------- Legacy PVH start_info accessors --------------------*/ 151 static vm_paddr_t 152 legacy_get_xenstore_mfn(void) 153 { 154 155 return (legacy_start_info->store_mfn); 156 } 157 158 static evtchn_port_t 159 legacy_get_xenstore_evtchn(void) 160 { 161 162 return (legacy_start_info->store_evtchn); 163 } 164 165 static vm_paddr_t 166 legacy_get_console_mfn(void) 167 { 168 169 return (legacy_start_info->console.domU.mfn); 170 } 171 172 static evtchn_port_t 173 legacy_get_console_evtchn(void) 174 { 175 176 return (legacy_start_info->console.domU.evtchn); 177 } 178 179 static uint32_t 180 legacy_get_start_flags(void) 181 { 182 183 return (legacy_start_info->flags); 184 } 185 186 struct hypervisor_info legacy_info = { 187 .get_xenstore_mfn = legacy_get_xenstore_mfn, 188 .get_xenstore_evtchn = legacy_get_xenstore_evtchn, 189 .get_console_mfn = legacy_get_console_mfn, 190 .get_console_evtchn = legacy_get_console_evtchn, 191 .get_start_flags = legacy_get_start_flags, 192 }; 193 194 /*-------------------------------- Xen PV init -------------------------------*/ 195 /* 196 * First function called by the Xen legacy PVH boot sequence. 197 * 198 * Set some Xen global variables and prepare the environment so it is 199 * as similar as possible to what native FreeBSD init function expects. 200 */ 201 uint64_t 202 hammer_time_xen_legacy(start_info_t *si, uint64_t xenstack) 203 { 204 uint64_t physfree; 205 uint64_t *PT4 = (u_int64_t *)xenstack; 206 uint64_t *PT3 = (u_int64_t *)(xenstack + PAGE_SIZE); 207 uint64_t *PT2 = (u_int64_t *)(xenstack + 2 * PAGE_SIZE); 208 int i; 209 char *kenv; 210 211 xen_domain_type = XEN_PV_DOMAIN; 212 vm_guest = VM_GUEST_XEN; 213 214 if ((si == NULL) || (xenstack == 0)) { 215 xc_printf("ERROR: invalid start_info or xen stack, halting\n"); 216 HYPERVISOR_shutdown(SHUTDOWN_crash); 217 } 218 219 xc_printf("FreeBSD PVH running on %s\n", si->magic); 220 221 /* We use 3 pages of xen stack for the boot pagetables */ 222 physfree = xenstack + 3 * PAGE_SIZE - KERNBASE; 223 224 /* Setup Xen global variables */ 225 legacy_start_info = si; 226 HYPERVISOR_shared_info = 227 (shared_info_t *)(si->shared_info + KERNBASE); 228 229 /* 230 * Use the stack Xen gives us to build the page tables 231 * as native FreeBSD expects to find them (created 232 * by the boot trampoline). 233 */ 234 for (i = 0; i < (PAGE_SIZE / sizeof(uint64_t)); i++) { 235 /* 236 * Each slot of the level 4 pages points 237 * to the same level 3 page 238 */ 239 PT4[i] = ((uint64_t)&PT3[0]) - KERNBASE; 240 PT4[i] |= PG_V | PG_RW | PG_U; 241 242 /* 243 * Each slot of the level 3 pages points 244 * to the same level 2 page 245 */ 246 PT3[i] = ((uint64_t)&PT2[0]) - KERNBASE; 247 PT3[i] |= PG_V | PG_RW | PG_U; 248 249 /* 250 * The level 2 page slots are mapped with 251 * 2MB pages for 1GB. 252 */ 253 PT2[i] = i * (2 * 1024 * 1024); 254 PT2[i] |= PG_V | PG_RW | PG_PS | PG_U; 255 } 256 load_cr3(((uint64_t)&PT4[0]) - KERNBASE); 257 258 /* 259 * Init an empty static kenv using a free page. The contents will be 260 * filled from the parse_preload_data hook. 261 */ 262 kenv = (void *)(physfree + KERNBASE); 263 physfree += PAGE_SIZE; 264 bzero_early(kenv, PAGE_SIZE); 265 init_static_kenv(kenv, PAGE_SIZE); 266 267 /* Set the hooks for early functions that diverge from bare metal */ 268 init_ops = xen_legacy_init_ops; 269 apic_ops = xen_apic_ops; 270 hypervisor_info = legacy_info; 271 272 /* Now we can jump into the native init function */ 273 return (hammer_time(0, physfree)); 274 } 275 276 uint64_t 277 hammer_time_xen(vm_paddr_t start_info_paddr) 278 { 279 struct hvm_modlist_entry *mod; 280 struct xen_add_to_physmap xatp; 281 uint64_t physfree; 282 char *kenv; 283 int rc; 284 285 xen_domain_type = XEN_HVM_DOMAIN; 286 vm_guest = VM_GUEST_XEN; 287 288 rc = xen_hvm_init_hypercall_stubs(XEN_HVM_INIT_EARLY); 289 if (rc) { 290 xc_printf("ERROR: failed to initialize hypercall page: %d\n", 291 rc); 292 HYPERVISOR_shutdown(SHUTDOWN_crash); 293 } 294 295 start_info = (struct hvm_start_info *)(start_info_paddr + KERNBASE); 296 if (start_info->magic != XEN_HVM_START_MAGIC_VALUE) { 297 xc_printf("Unknown magic value in start_info struct: %#x\n", 298 start_info->magic); 299 HYPERVISOR_shutdown(SHUTDOWN_crash); 300 } 301 302 /* 303 * The hvm_start_into structure is always appended after loading 304 * the kernel and modules. 305 */ 306 physfree = roundup2(start_info_paddr + PAGE_SIZE, PAGE_SIZE); 307 308 xatp.domid = DOMID_SELF; 309 xatp.idx = 0; 310 xatp.space = XENMAPSPACE_shared_info; 311 xatp.gpfn = atop(physfree); 312 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) { 313 xc_printf("ERROR: failed to setup shared_info page\n"); 314 HYPERVISOR_shutdown(SHUTDOWN_crash); 315 } 316 HYPERVISOR_shared_info = (shared_info_t *)(physfree + KERNBASE); 317 physfree += PAGE_SIZE; 318 319 /* 320 * Init a static kenv using a free page. The contents will be filled 321 * from the parse_preload_data hook. 322 */ 323 kenv = (void *)(physfree + KERNBASE); 324 physfree += PAGE_SIZE; 325 bzero_early(kenv, PAGE_SIZE); 326 init_static_kenv(kenv, PAGE_SIZE); 327 328 if (start_info->modlist_paddr != 0) { 329 if (start_info->modlist_paddr >= physfree) { 330 xc_printf( 331 "ERROR: unexpected module list memory address\n"); 332 HYPERVISOR_shutdown(SHUTDOWN_crash); 333 } 334 if (start_info->nr_modules == 0) { 335 xc_printf( 336 "ERROR: modlist_paddr != 0 but nr_modules == 0\n"); 337 HYPERVISOR_shutdown(SHUTDOWN_crash); 338 } 339 mod = (struct hvm_modlist_entry *) 340 (vm_paddr_t)start_info->modlist_paddr + KERNBASE; 341 if (mod[0].paddr >= physfree) { 342 xc_printf("ERROR: unexpected module memory address\n"); 343 HYPERVISOR_shutdown(SHUTDOWN_crash); 344 } 345 } 346 347 /* Set the hooks for early functions that diverge from bare metal */ 348 init_ops = xen_pvh_init_ops; 349 hvm_start_flags = start_info->flags; 350 351 /* Now we can jump into the native init function */ 352 return (hammer_time(0, physfree)); 353 } 354 355 /*-------------------------------- PV specific -------------------------------*/ 356 #ifdef SMP 357 static bool 358 start_xen_ap(int cpu) 359 { 360 struct vcpu_guest_context *ctxt; 361 int ms, cpus = mp_naps; 362 const size_t stacksize = kstack_pages * PAGE_SIZE; 363 364 /* allocate and set up an idle stack data page */ 365 bootstacks[cpu] = (void *)kmem_malloc(stacksize, M_WAITOK | M_ZERO); 366 doublefault_stack = (char *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO); 367 mce_stack = (char *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO); 368 nmi_stack = (char *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO); 369 dbg_stack = (void *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO); 370 dpcpu = (void *)kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO); 371 372 bootSTK = (char *)bootstacks[cpu] + kstack_pages * PAGE_SIZE - 8; 373 bootAP = cpu; 374 375 ctxt = malloc(sizeof(*ctxt), M_TEMP, M_WAITOK | M_ZERO); 376 377 ctxt->flags = VGCF_IN_KERNEL; 378 ctxt->user_regs.rip = (unsigned long) init_secondary; 379 ctxt->user_regs.rsp = (unsigned long) bootSTK; 380 381 /* Set the AP to use the same page tables */ 382 ctxt->ctrlreg[3] = KPML4phys; 383 384 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt)) 385 panic("unable to initialize AP#%d", cpu); 386 387 free(ctxt, M_TEMP); 388 389 /* Launch the vCPU */ 390 if (HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL)) 391 panic("unable to start AP#%d", cpu); 392 393 /* Wait up to 5 seconds for it to start. */ 394 for (ms = 0; ms < 5000; ms++) { 395 if (mp_naps > cpus) 396 return (true); 397 DELAY(1000); 398 } 399 400 return (false); 401 } 402 403 static int 404 xen_pv_start_all_aps(void) 405 { 406 int cpu; 407 408 mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN); 409 410 for (cpu = 1; cpu < mp_ncpus; cpu++) { 411 /* attempt to start the Application Processor */ 412 if (!start_xen_ap(cpu)) 413 panic("AP #%d failed to start!", cpu); 414 415 CPU_SET(cpu, &all_cpus); /* record AP in CPU map */ 416 } 417 418 return (mp_naps); 419 } 420 #endif /* SMP */ 421 422 /* 423 * When booted as a PVH guest FreeBSD needs to avoid using the RSDP address 424 * hint provided by the loader because it points to the native set of ACPI 425 * tables instead of the ones crafted by Xen. The acpi.rsdp env variable is 426 * removed from kenv if present, and a new acpi.rsdp is added to kenv that 427 * points to the address of the Xen crafted RSDP. 428 */ 429 static bool reject_option(const char *option) 430 { 431 static const char *reject[] = { 432 "acpi.rsdp", 433 }; 434 unsigned int i; 435 436 for (i = 0; i < nitems(reject); i++) 437 if (strncmp(option, reject[i], strlen(reject[i])) == 0) 438 return (true); 439 440 return (false); 441 } 442 443 static void 444 xen_pvh_set_env(char *env, bool (*filter)(const char *)) 445 { 446 char *option; 447 448 if (env == NULL) 449 return; 450 451 option = env; 452 while (*option != 0) { 453 char *value; 454 455 if (filter != NULL && filter(option)) { 456 option += strlen(option) + 1; 457 continue; 458 } 459 460 value = option; 461 option = strsep(&value, "="); 462 if (kern_setenv(option, value) != 0) 463 xc_printf("unable to add kenv %s=%s\n", option, value); 464 option = value + strlen(value) + 1; 465 } 466 } 467 468 #ifdef DDB 469 /* 470 * The way Xen loads the symtab is different from the native boot loader, 471 * because it's tailored for NetBSD. So we have to adapt and use the same 472 * method as NetBSD. Portions of the code below have been picked from NetBSD: 473 * sys/kern/kern_ksyms.c CVS Revision 1.71. 474 */ 475 static void 476 xen_pvh_parse_symtab(void) 477 { 478 Elf_Ehdr *ehdr; 479 Elf_Shdr *shdr; 480 uint32_t size; 481 int i, j; 482 483 size = end; 484 485 ehdr = (Elf_Ehdr *)(&end + 1); 486 if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) || 487 ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 488 ehdr->e_version > 1) { 489 xc_printf("Unable to load ELF symtab: invalid symbol table\n"); 490 return; 491 } 492 493 shdr = (Elf_Shdr *)((uint8_t *)ehdr + ehdr->e_shoff); 494 /* Find the symbol table and the corresponding string table. */ 495 for (i = 1; i < ehdr->e_shnum; i++) { 496 if (shdr[i].sh_type != SHT_SYMTAB) 497 continue; 498 if (shdr[i].sh_offset == 0) 499 continue; 500 ksymtab = (uintptr_t)((uint8_t *)ehdr + shdr[i].sh_offset); 501 ksymtab_size = shdr[i].sh_size; 502 j = shdr[i].sh_link; 503 if (shdr[j].sh_offset == 0) 504 continue; /* Can this happen? */ 505 kstrtab = (uintptr_t)((uint8_t *)ehdr + shdr[j].sh_offset); 506 break; 507 } 508 509 if (ksymtab == 0 || kstrtab == 0) 510 xc_printf( 511 "Unable to load ELF symtab: could not find symtab or strtab\n"); 512 } 513 #endif 514 515 static caddr_t 516 xen_legacy_pvh_parse_preload_data(uint64_t modulep) 517 { 518 caddr_t kmdp; 519 vm_ooffset_t off; 520 vm_paddr_t metadata; 521 char *envp; 522 523 if (legacy_start_info->mod_start != 0) { 524 preload_metadata = (caddr_t)legacy_start_info->mod_start; 525 526 kmdp = preload_search_by_type("elf kernel"); 527 if (kmdp == NULL) 528 kmdp = preload_search_by_type("elf64 kernel"); 529 KASSERT(kmdp != NULL, ("unable to find kernel")); 530 531 /* 532 * Xen has relocated the metadata and the modules, 533 * so we need to recalculate it's position. This is 534 * done by saving the original modulep address and 535 * then calculating the offset with mod_start, 536 * which contains the relocated modulep address. 537 */ 538 metadata = MD_FETCH(kmdp, MODINFOMD_MODULEP, vm_paddr_t); 539 off = legacy_start_info->mod_start - metadata; 540 541 preload_bootstrap_relocate(off); 542 543 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); 544 envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *); 545 if (envp != NULL) 546 envp += off; 547 xen_pvh_set_env(envp, NULL); 548 } else { 549 /* Parse the extra boot information given by Xen */ 550 boot_parse_cmdline_delim(legacy_start_info->cmd_line, ","); 551 kmdp = NULL; 552 } 553 554 boothowto |= boot_env_to_howto(); 555 556 #ifdef DDB 557 xen_pvh_parse_symtab(); 558 #endif 559 return (kmdp); 560 } 561 562 static caddr_t 563 xen_pvh_parse_preload_data(uint64_t modulep) 564 { 565 caddr_t kmdp; 566 vm_ooffset_t off; 567 vm_paddr_t metadata; 568 char *envp; 569 char acpi_rsdp[19]; 570 571 if (start_info->modlist_paddr != 0) { 572 struct hvm_modlist_entry *mod; 573 const char *cmdline; 574 575 mod = (struct hvm_modlist_entry *) 576 (start_info->modlist_paddr + KERNBASE); 577 cmdline = mod[0].cmdline_paddr ? 578 (const char *)(mod[0].cmdline_paddr + KERNBASE) : NULL; 579 580 if (strcmp(cmdline, "header") == 0) { 581 struct xen_header *header; 582 583 header = (struct xen_header *)(mod[0].paddr + KERNBASE); 584 585 if ((header->flags & XENHEADER_HAS_MODULEP_OFFSET) != 586 XENHEADER_HAS_MODULEP_OFFSET) { 587 xc_printf("Unable to load module metadata\n"); 588 HYPERVISOR_shutdown(SHUTDOWN_crash); 589 } 590 591 preload_metadata = (caddr_t)(mod[0].paddr + 592 header->modulep_offset + KERNBASE); 593 594 kmdp = preload_search_by_type("elf kernel"); 595 if (kmdp == NULL) 596 kmdp = preload_search_by_type("elf64 kernel"); 597 if (kmdp == NULL) { 598 xc_printf("Unable to find kernel\n"); 599 HYPERVISOR_shutdown(SHUTDOWN_crash); 600 } 601 602 /* 603 * Xen has relocated the metadata and the modules, so 604 * we need to recalculate it's position. This is done 605 * by saving the original modulep address and then 606 * calculating the offset from the real modulep 607 * position. 608 */ 609 metadata = MD_FETCH(kmdp, MODINFOMD_MODULEP, 610 vm_paddr_t); 611 off = mod[0].paddr + header->modulep_offset - metadata + 612 KERNBASE; 613 } else { 614 preload_metadata = (caddr_t)(mod[0].paddr + KERNBASE); 615 616 kmdp = preload_search_by_type("elf kernel"); 617 if (kmdp == NULL) 618 kmdp = preload_search_by_type("elf64 kernel"); 619 if (kmdp == NULL) { 620 xc_printf("Unable to find kernel\n"); 621 HYPERVISOR_shutdown(SHUTDOWN_crash); 622 } 623 624 metadata = MD_FETCH(kmdp, MODINFOMD_MODULEP, vm_paddr_t); 625 off = mod[0].paddr + KERNBASE - metadata; 626 } 627 628 preload_bootstrap_relocate(off); 629 630 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); 631 envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *); 632 if (envp != NULL) 633 envp += off; 634 xen_pvh_set_env(envp, reject_option); 635 636 if (MD_FETCH(kmdp, MODINFOMD_EFI_MAP, void *) != NULL) 637 strlcpy(bootmethod, "UEFI", sizeof(bootmethod)); 638 else 639 strlcpy(bootmethod, "BIOS", sizeof(bootmethod)); 640 } else { 641 /* Parse the extra boot information given by Xen */ 642 if (start_info->cmdline_paddr != 0) 643 boot_parse_cmdline_delim( 644 (char *)(start_info->cmdline_paddr + KERNBASE), 645 ","); 646 kmdp = NULL; 647 strlcpy(bootmethod, "XEN", sizeof(bootmethod)); 648 } 649 650 boothowto |= boot_env_to_howto(); 651 652 snprintf(acpi_rsdp, sizeof(acpi_rsdp), "%#" PRIx64, 653 start_info->rsdp_paddr); 654 kern_setenv("acpi.rsdp", acpi_rsdp); 655 656 #ifdef DDB 657 xen_pvh_parse_symtab(); 658 #endif 659 return (kmdp); 660 } 661 662 static void 663 xen_pvh_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx) 664 { 665 struct xen_memory_map memmap; 666 u_int32_t size; 667 int rc; 668 669 /* Fetch the E820 map from Xen */ 670 memmap.nr_entries = MAX_E820_ENTRIES; 671 set_xen_guest_handle(memmap.buffer, xen_smap); 672 rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap); 673 if (rc) { 674 xc_printf("ERROR: unable to fetch Xen E820 memory map: %d\n", 675 rc); 676 HYPERVISOR_shutdown(SHUTDOWN_crash); 677 } 678 679 size = memmap.nr_entries * sizeof(xen_smap[0]); 680 681 bios_add_smap_entries(xen_smap, size, physmap, physmap_idx); 682 } 683