xref: /freebsd/sys/x86/x86/tsc.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_clock.h"
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/cpu.h>
37 #include <sys/eventhandler.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/time.h>
43 #include <sys/timetc.h>
44 #include <sys/kernel.h>
45 #include <sys/power.h>
46 #include <sys/smp.h>
47 #include <sys/vdso.h>
48 #include <machine/clock.h>
49 #include <machine/cputypes.h>
50 #include <machine/md_var.h>
51 #include <machine/specialreg.h>
52 #include <x86/vmware.h>
53 #include <dev/acpica/acpi_hpet.h>
54 #include <contrib/dev/acpica/include/acpi.h>
55 
56 #include "cpufreq_if.h"
57 
58 uint64_t	tsc_freq;
59 int		tsc_is_invariant;
60 int		tsc_perf_stat;
61 
62 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
63 
64 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
65     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
66 
67 #ifdef SMP
68 int	smp_tsc;
69 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
70     "Indicates whether the TSC is safe to use in SMP mode");
71 
72 int	smp_tsc_adjust = 0;
73 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
74     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
75 #endif
76 
77 static int	tsc_shift = 1;
78 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
79     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
80 
81 static int	tsc_disabled;
82 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
83     "Disable x86 Time Stamp Counter");
84 
85 static int	tsc_skip_calibration;
86 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN |
87     CTLFLAG_NOFETCH, &tsc_skip_calibration, 0,
88     "Disable TSC frequency calibration");
89 
90 static void tsc_freq_changed(void *arg, const struct cf_level *level,
91     int status);
92 static void tsc_freq_changing(void *arg, const struct cf_level *level,
93     int *status);
94 static unsigned tsc_get_timecount(struct timecounter *tc);
95 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
96 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
97 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
98 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
99 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
100 static void tsc_levels_changed(void *arg, int unit);
101 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
102     struct timecounter *tc);
103 #ifdef COMPAT_FREEBSD32
104 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
105     struct timecounter *tc);
106 #endif
107 
108 static struct timecounter tsc_timecounter = {
109 	.tc_get_timecount =		tsc_get_timecount,
110 	.tc_counter_mask =		~0u,
111 	.tc_name =			"TSC",
112 	.tc_quality =			800,	/* adjusted in code */
113 	.tc_fill_vdso_timehands = 	x86_tsc_vdso_timehands,
114 #ifdef COMPAT_FREEBSD32
115 	.tc_fill_vdso_timehands32 = 	x86_tsc_vdso_timehands32,
116 #endif
117 };
118 
119 static void
120 tsc_freq_vmware(void)
121 {
122 	u_int regs[4];
123 
124 	if (hv_high >= 0x40000010) {
125 		do_cpuid(0x40000010, regs);
126 		tsc_freq = regs[0] * 1000;
127 	} else {
128 		vmware_hvcall(VMW_HVCMD_GETHZ, regs);
129 		if (regs[1] != UINT_MAX)
130 			tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
131 	}
132 	tsc_is_invariant = 1;
133 }
134 
135 /*
136  * Calculate TSC frequency using information from the CPUID leaf 0x15
137  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  It should be
138  * an improvement over the parsing of the CPU model name in
139  * tsc_freq_intel(), when available.
140  */
141 static bool
142 tsc_freq_cpuid(void)
143 {
144 	u_int regs[4];
145 
146 	if (cpu_high < 0x15)
147 		return (false);
148 	do_cpuid(0x15, regs);
149 	if (regs[0] == 0 || regs[1] == 0 || regs[2] == 0)
150 		return (false);
151 	tsc_freq = (uint64_t)regs[2] * regs[1] / regs[0];
152 	return (true);
153 }
154 
155 static void
156 tsc_freq_intel(void)
157 {
158 	char brand[48];
159 	u_int regs[4];
160 	uint64_t freq;
161 	char *p;
162 	u_int i;
163 
164 	/*
165 	 * Intel Processor Identification and the CPUID Instruction
166 	 * Application Note 485.
167 	 * http://www.intel.com/assets/pdf/appnote/241618.pdf
168 	 */
169 	if (cpu_exthigh >= 0x80000004) {
170 		p = brand;
171 		for (i = 0x80000002; i < 0x80000005; i++) {
172 			do_cpuid(i, regs);
173 			memcpy(p, regs, sizeof(regs));
174 			p += sizeof(regs);
175 		}
176 		p = NULL;
177 		for (i = 0; i < sizeof(brand) - 1; i++)
178 			if (brand[i] == 'H' && brand[i + 1] == 'z')
179 				p = brand + i;
180 		if (p != NULL) {
181 			p -= 5;
182 			switch (p[4]) {
183 			case 'M':
184 				i = 1;
185 				break;
186 			case 'G':
187 				i = 1000;
188 				break;
189 			case 'T':
190 				i = 1000000;
191 				break;
192 			default:
193 				return;
194 			}
195 #define	C2D(c)	((c) - '0')
196 			if (p[1] == '.') {
197 				freq = C2D(p[0]) * 1000;
198 				freq += C2D(p[2]) * 100;
199 				freq += C2D(p[3]) * 10;
200 				freq *= i * 1000;
201 			} else {
202 				freq = C2D(p[0]) * 1000;
203 				freq += C2D(p[1]) * 100;
204 				freq += C2D(p[2]) * 10;
205 				freq += C2D(p[3]);
206 				freq *= i * 1000000;
207 			}
208 #undef C2D
209 			tsc_freq = freq;
210 		}
211 	}
212 }
213 
214 static void
215 probe_tsc_freq(void)
216 {
217 	u_int regs[4];
218 	uint64_t tsc1, tsc2;
219 	uint16_t bootflags;
220 
221 	if (cpu_high >= 6) {
222 		do_cpuid(6, regs);
223 		if ((regs[2] & CPUID_PERF_STAT) != 0) {
224 			/*
225 			 * XXX Some emulators expose host CPUID without actual
226 			 * support for these MSRs.  We must test whether they
227 			 * really work.
228 			 */
229 			wrmsr(MSR_MPERF, 0);
230 			wrmsr(MSR_APERF, 0);
231 			DELAY(10);
232 			if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
233 				tsc_perf_stat = 1;
234 		}
235 	}
236 
237 	if (vm_guest == VM_GUEST_VMWARE) {
238 		tsc_freq_vmware();
239 		return;
240 	}
241 
242 	switch (cpu_vendor_id) {
243 	case CPU_VENDOR_AMD:
244 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
245 		    (vm_guest == VM_GUEST_NO &&
246 		    CPUID_TO_FAMILY(cpu_id) >= 0x10))
247 			tsc_is_invariant = 1;
248 		if (cpu_feature & CPUID_SSE2) {
249 			tsc_timecounter.tc_get_timecount =
250 			    tsc_get_timecount_mfence;
251 		}
252 		break;
253 	case CPU_VENDOR_INTEL:
254 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
255 		    (vm_guest == VM_GUEST_NO &&
256 		    ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
257 		    CPUID_TO_MODEL(cpu_id) >= 0xe) ||
258 		    (CPUID_TO_FAMILY(cpu_id) == 0xf &&
259 		    CPUID_TO_MODEL(cpu_id) >= 0x3))))
260 			tsc_is_invariant = 1;
261 		if (cpu_feature & CPUID_SSE2) {
262 			tsc_timecounter.tc_get_timecount =
263 			    tsc_get_timecount_lfence;
264 		}
265 		break;
266 	case CPU_VENDOR_CENTAUR:
267 		if (vm_guest == VM_GUEST_NO &&
268 		    CPUID_TO_FAMILY(cpu_id) == 0x6 &&
269 		    CPUID_TO_MODEL(cpu_id) >= 0xf &&
270 		    (rdmsr(0x1203) & 0x100000000ULL) == 0)
271 			tsc_is_invariant = 1;
272 		if (cpu_feature & CPUID_SSE2) {
273 			tsc_timecounter.tc_get_timecount =
274 			    tsc_get_timecount_lfence;
275 		}
276 		break;
277 	}
278 
279 	if (!TUNABLE_INT_FETCH("machdep.disable_tsc_calibration",
280 	    &tsc_skip_calibration)) {
281 		/*
282 		 * User did not give the order about calibration.
283 		 * If he did, we do not try to guess.
284 		 *
285 		 * Otherwise, if ACPI FADT reports that the platform
286 		 * is legacy-free and CPUID provides TSC frequency,
287 		 * use it.  The calibration could fail anyway since
288 		 * ISA timer can be absent or power gated.
289 		 */
290 		if (acpi_get_fadt_bootflags(&bootflags) &&
291 		    (bootflags & ACPI_FADT_LEGACY_DEVICES) == 0 &&
292 		    tsc_freq_cpuid()) {
293 			printf("Skipping TSC calibration since no legacy "
294 			    "devices reported by FADT and CPUID works\n");
295 			tsc_skip_calibration = 1;
296 		}
297 	}
298 	if (tsc_skip_calibration) {
299 		if (tsc_freq_cpuid())
300 			;
301 		else if (cpu_vendor_id == CPU_VENDOR_INTEL)
302 			tsc_freq_intel();
303 	} else {
304 		if (bootverbose)
305 			printf("Calibrating TSC clock ... ");
306 		tsc1 = rdtsc();
307 		DELAY(1000000);
308 		tsc2 = rdtsc();
309 		tsc_freq = tsc2 - tsc1;
310 	}
311 	if (bootverbose)
312 		printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
313 }
314 
315 void
316 init_TSC(void)
317 {
318 
319 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
320 		return;
321 
322 #ifdef __i386__
323 	/* The TSC is known to be broken on certain CPUs. */
324 	switch (cpu_vendor_id) {
325 	case CPU_VENDOR_AMD:
326 		switch (cpu_id & 0xFF0) {
327 		case 0x500:
328 			/* K5 Model 0 */
329 			return;
330 		}
331 		break;
332 	case CPU_VENDOR_CENTAUR:
333 		switch (cpu_id & 0xff0) {
334 		case 0x540:
335 			/*
336 			 * http://www.centtech.com/c6_data_sheet.pdf
337 			 *
338 			 * I-12 RDTSC may return incoherent values in EDX:EAX
339 			 * I-13 RDTSC hangs when certain event counters are used
340 			 */
341 			return;
342 		}
343 		break;
344 	case CPU_VENDOR_NSC:
345 		switch (cpu_id & 0xff0) {
346 		case 0x540:
347 			if ((cpu_id & CPUID_STEPPING) == 0)
348 				return;
349 			break;
350 		}
351 		break;
352 	}
353 #endif
354 
355 	probe_tsc_freq();
356 
357 	/*
358 	 * Inform CPU accounting about our boot-time clock rate.  This will
359 	 * be updated if someone loads a cpufreq driver after boot that
360 	 * discovers a new max frequency.
361 	 */
362 	if (tsc_freq != 0)
363 		set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
364 
365 	if (tsc_is_invariant)
366 		return;
367 
368 	/* Register to find out about changes in CPU frequency. */
369 	tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
370 	    tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
371 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
372 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
373 	tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
374 	    tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
375 }
376 
377 #ifdef SMP
378 
379 /*
380  * RDTSC is not a serializing instruction, and does not drain
381  * instruction stream, so we need to drain the stream before executing
382  * it.  It could be fixed by use of RDTSCP, except the instruction is
383  * not available everywhere.
384  *
385  * Use CPUID for draining in the boot-time SMP constistency test.  The
386  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
387  * and VIA) when SSE2 is present, and nothing on older machines which
388  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
389  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
390  *
391  * Do not use do_cpuid(), since we do not need CPUID results, which
392  * have to be written into memory with do_cpuid().
393  */
394 #define	TSC_READ(x)							\
395 static void								\
396 tsc_read_##x(void *arg)							\
397 {									\
398 	uint64_t *tsc = arg;						\
399 	u_int cpu = PCPU_GET(cpuid);					\
400 									\
401 	__asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");	\
402 	tsc[cpu * 3 + x] = rdtsc();					\
403 }
404 TSC_READ(0)
405 TSC_READ(1)
406 TSC_READ(2)
407 #undef TSC_READ
408 
409 #define	N	1000
410 
411 static void
412 comp_smp_tsc(void *arg)
413 {
414 	uint64_t *tsc;
415 	int64_t d1, d2;
416 	u_int cpu = PCPU_GET(cpuid);
417 	u_int i, j, size;
418 
419 	size = (mp_maxid + 1) * 3;
420 	for (i = 0, tsc = arg; i < N; i++, tsc += size)
421 		CPU_FOREACH(j) {
422 			if (j == cpu)
423 				continue;
424 			d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
425 			d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
426 			if (d1 <= 0 || d2 <= 0) {
427 				smp_tsc = 0;
428 				return;
429 			}
430 		}
431 }
432 
433 static void
434 adj_smp_tsc(void *arg)
435 {
436 	uint64_t *tsc;
437 	int64_t d, min, max;
438 	u_int cpu = PCPU_GET(cpuid);
439 	u_int first, i, size;
440 
441 	first = CPU_FIRST();
442 	if (cpu == first)
443 		return;
444 	min = INT64_MIN;
445 	max = INT64_MAX;
446 	size = (mp_maxid + 1) * 3;
447 	for (i = 0, tsc = arg; i < N; i++, tsc += size) {
448 		d = tsc[first * 3] - tsc[cpu * 3 + 1];
449 		if (d > min)
450 			min = d;
451 		d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
452 		if (d > min)
453 			min = d;
454 		d = tsc[first * 3 + 1] - tsc[cpu * 3];
455 		if (d < max)
456 			max = d;
457 		d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
458 		if (d < max)
459 			max = d;
460 	}
461 	if (min > max)
462 		return;
463 	d = min / 2 + max / 2;
464 	__asm __volatile (
465 		"movl $0x10, %%ecx\n\t"
466 		"rdmsr\n\t"
467 		"addl %%edi, %%eax\n\t"
468 		"adcl %%esi, %%edx\n\t"
469 		"wrmsr\n"
470 		: /* No output */
471 		: "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
472 		: "ax", "cx", "dx", "cc"
473 	);
474 }
475 
476 static int
477 test_tsc(int adj_max_count)
478 {
479 	uint64_t *data, *tsc;
480 	u_int i, size, adj;
481 
482 	if ((!smp_tsc && !tsc_is_invariant) || vm_guest)
483 		return (-100);
484 	size = (mp_maxid + 1) * 3;
485 	data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
486 	adj = 0;
487 retry:
488 	for (i = 0, tsc = data; i < N; i++, tsc += size)
489 		smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
490 	smp_tsc = 1;	/* XXX */
491 	smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
492 	    smp_no_rendezvous_barrier, data);
493 	if (!smp_tsc && adj < adj_max_count) {
494 		adj++;
495 		smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
496 		    smp_no_rendezvous_barrier, data);
497 		goto retry;
498 	}
499 	free(data, M_TEMP);
500 	if (bootverbose)
501 		printf("SMP: %sed TSC synchronization test%s\n",
502 		    smp_tsc ? "pass" : "fail",
503 		    adj > 0 ? " after adjustment" : "");
504 	if (smp_tsc && tsc_is_invariant) {
505 		switch (cpu_vendor_id) {
506 		case CPU_VENDOR_AMD:
507 			/*
508 			 * Starting with Family 15h processors, TSC clock
509 			 * source is in the north bridge.  Check whether
510 			 * we have a single-socket/multi-core platform.
511 			 * XXX Need more work for complex cases.
512 			 */
513 			if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
514 			    (amd_feature2 & AMDID2_CMP) == 0 ||
515 			    smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
516 				break;
517 			return (1000);
518 		case CPU_VENDOR_INTEL:
519 			/*
520 			 * XXX Assume Intel platforms have synchronized TSCs.
521 			 */
522 			return (1000);
523 		}
524 		return (800);
525 	}
526 	return (-100);
527 }
528 
529 #undef N
530 
531 #endif /* SMP */
532 
533 static void
534 init_TSC_tc(void)
535 {
536 	uint64_t max_freq;
537 	int shift;
538 
539 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
540 		return;
541 
542 	/*
543 	 * Limit timecounter frequency to fit in an int and prevent it from
544 	 * overflowing too fast.
545 	 */
546 	max_freq = UINT_MAX;
547 
548 	/*
549 	 * We can not use the TSC if we support APM.  Precise timekeeping
550 	 * on an APM'ed machine is at best a fools pursuit, since
551 	 * any and all of the time spent in various SMM code can't
552 	 * be reliably accounted for.  Reading the RTC is your only
553 	 * source of reliable time info.  The i8254 loses too, of course,
554 	 * but we need to have some kind of time...
555 	 * We don't know at this point whether APM is going to be used
556 	 * or not, nor when it might be activated.  Play it safe.
557 	 */
558 	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
559 		tsc_timecounter.tc_quality = -1000;
560 		if (bootverbose)
561 			printf("TSC timecounter disabled: APM enabled.\n");
562 		goto init;
563 	}
564 
565 	/*
566 	 * Intel CPUs without a C-state invariant TSC can stop the TSC
567 	 * in either C2 or C3.  Disable use of C2 and C3 while using
568 	 * the TSC as the timecounter.  The timecounter can be changed
569 	 * to enable C2 and C3.
570 	 *
571 	 * Note that the TSC is used as the cputicker for computing
572 	 * thread runtime regardless of the timecounter setting, so
573 	 * using an alternate timecounter and enabling C2 or C3 can
574 	 * result incorrect runtimes for kernel idle threads (but not
575 	 * for any non-idle threads).
576 	 */
577 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
578 	    (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
579 		tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
580 		if (bootverbose)
581 			printf("TSC timecounter disables C2 and C3.\n");
582 	}
583 
584 	/*
585 	 * We can not use the TSC in SMP mode unless the TSCs on all CPUs
586 	 * are synchronized.  If the user is sure that the system has
587 	 * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
588 	 * non-zero value.  The TSC seems unreliable in virtualized SMP
589 	 * environments, so it is set to a negative quality in those cases.
590 	 */
591 #ifdef SMP
592 	if (mp_ncpus > 1)
593 		tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
594 	else
595 #endif /* SMP */
596 	if (tsc_is_invariant)
597 		tsc_timecounter.tc_quality = 1000;
598 	max_freq >>= tsc_shift;
599 
600 init:
601 	for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
602 		;
603 	if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
604 		if (cpu_vendor_id == CPU_VENDOR_AMD) {
605 			tsc_timecounter.tc_get_timecount = shift > 0 ?
606 			    tsc_get_timecount_low_mfence :
607 			    tsc_get_timecount_mfence;
608 		} else {
609 			tsc_timecounter.tc_get_timecount = shift > 0 ?
610 			    tsc_get_timecount_low_lfence :
611 			    tsc_get_timecount_lfence;
612 		}
613 	} else {
614 		tsc_timecounter.tc_get_timecount = shift > 0 ?
615 		    tsc_get_timecount_low : tsc_get_timecount;
616 	}
617 	if (shift > 0) {
618 		tsc_timecounter.tc_name = "TSC-low";
619 		if (bootverbose)
620 			printf("TSC timecounter discards lower %d bit(s)\n",
621 			    shift);
622 	}
623 	if (tsc_freq != 0) {
624 		tsc_timecounter.tc_frequency = tsc_freq >> shift;
625 		tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
626 		tc_init(&tsc_timecounter);
627 	}
628 }
629 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
630 
631 void
632 resume_TSC(void)
633 {
634 #ifdef SMP
635 	int quality;
636 
637 	/* If TSC was not good on boot, it is unlikely to become good now. */
638 	if (tsc_timecounter.tc_quality < 0)
639 		return;
640 	/* Nothing to do with UP. */
641 	if (mp_ncpus < 2)
642 		return;
643 
644 	/*
645 	 * If TSC was good, a single synchronization should be enough,
646 	 * but honour smp_tsc_adjust if it's set.
647 	 */
648 	quality = test_tsc(MAX(smp_tsc_adjust, 1));
649 	if (quality != tsc_timecounter.tc_quality) {
650 		printf("TSC timecounter quality changed: %d -> %d\n",
651 		    tsc_timecounter.tc_quality, quality);
652 		tsc_timecounter.tc_quality = quality;
653 	}
654 #endif /* SMP */
655 }
656 
657 /*
658  * When cpufreq levels change, find out about the (new) max frequency.  We
659  * use this to update CPU accounting in case it got a lower estimate at boot.
660  */
661 static void
662 tsc_levels_changed(void *arg, int unit)
663 {
664 	device_t cf_dev;
665 	struct cf_level *levels;
666 	int count, error;
667 	uint64_t max_freq;
668 
669 	/* Only use values from the first CPU, assuming all are equal. */
670 	if (unit != 0)
671 		return;
672 
673 	/* Find the appropriate cpufreq device instance. */
674 	cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
675 	if (cf_dev == NULL) {
676 		printf("tsc_levels_changed() called but no cpufreq device?\n");
677 		return;
678 	}
679 
680 	/* Get settings from the device and find the max frequency. */
681 	count = 64;
682 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
683 	if (levels == NULL)
684 		return;
685 	error = CPUFREQ_LEVELS(cf_dev, levels, &count);
686 	if (error == 0 && count != 0) {
687 		max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
688 		set_cputicker(rdtsc, max_freq, 1);
689 	} else
690 		printf("tsc_levels_changed: no max freq found\n");
691 	free(levels, M_TEMP);
692 }
693 
694 /*
695  * If the TSC timecounter is in use, veto the pending change.  It may be
696  * possible in the future to handle a dynamically-changing timecounter rate.
697  */
698 static void
699 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
700 {
701 
702 	if (*status != 0 || timecounter != &tsc_timecounter)
703 		return;
704 
705 	printf("timecounter TSC must not be in use when "
706 	    "changing frequencies; change denied\n");
707 	*status = EBUSY;
708 }
709 
710 /* Update TSC freq with the value indicated by the caller. */
711 static void
712 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
713 {
714 	uint64_t freq;
715 
716 	/* If there was an error during the transition, don't do anything. */
717 	if (tsc_disabled || status != 0)
718 		return;
719 
720 	/* Total setting for this level gives the new frequency in MHz. */
721 	freq = (uint64_t)level->total_set.freq * 1000000;
722 	atomic_store_rel_64(&tsc_freq, freq);
723 	tsc_timecounter.tc_frequency =
724 	    freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
725 }
726 
727 static int
728 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
729 {
730 	int error;
731 	uint64_t freq;
732 
733 	freq = atomic_load_acq_64(&tsc_freq);
734 	if (freq == 0)
735 		return (EOPNOTSUPP);
736 	error = sysctl_handle_64(oidp, &freq, 0, req);
737 	if (error == 0 && req->newptr != NULL) {
738 		atomic_store_rel_64(&tsc_freq, freq);
739 		atomic_store_rel_64(&tsc_timecounter.tc_frequency,
740 		    freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
741 	}
742 	return (error);
743 }
744 
745 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW,
746     0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency");
747 
748 static u_int
749 tsc_get_timecount(struct timecounter *tc __unused)
750 {
751 
752 	return (rdtsc32());
753 }
754 
755 static inline u_int
756 tsc_get_timecount_low(struct timecounter *tc)
757 {
758 	uint32_t rv;
759 
760 	__asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
761 	    : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
762 	return (rv);
763 }
764 
765 static u_int
766 tsc_get_timecount_lfence(struct timecounter *tc __unused)
767 {
768 
769 	lfence();
770 	return (rdtsc32());
771 }
772 
773 static u_int
774 tsc_get_timecount_low_lfence(struct timecounter *tc)
775 {
776 
777 	lfence();
778 	return (tsc_get_timecount_low(tc));
779 }
780 
781 static u_int
782 tsc_get_timecount_mfence(struct timecounter *tc __unused)
783 {
784 
785 	mfence();
786 	return (rdtsc32());
787 }
788 
789 static u_int
790 tsc_get_timecount_low_mfence(struct timecounter *tc)
791 {
792 
793 	mfence();
794 	return (tsc_get_timecount_low(tc));
795 }
796 
797 static uint32_t
798 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
799 {
800 
801 	vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
802 	vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
803 	vdso_th->th_x86_hpet_idx = 0xffffffff;
804 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
805 	return (1);
806 }
807 
808 #ifdef COMPAT_FREEBSD32
809 static uint32_t
810 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
811     struct timecounter *tc)
812 {
813 
814 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
815 	vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
816 	vdso_th32->th_x86_hpet_idx = 0xffffffff;
817 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
818 	return (1);
819 }
820 #endif
821