xref: /freebsd/sys/x86/x86/tsc.c (revision 499fe48de8938d4c7b0a91e20eb6c16db9d55633)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_clock.h"
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/cpu.h>
37 #include <sys/eventhandler.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/time.h>
43 #include <sys/timetc.h>
44 #include <sys/kernel.h>
45 #include <sys/power.h>
46 #include <sys/smp.h>
47 #include <sys/vdso.h>
48 #include <machine/clock.h>
49 #include <machine/cputypes.h>
50 #include <machine/md_var.h>
51 #include <machine/specialreg.h>
52 #include <x86/vmware.h>
53 #include <dev/acpica/acpi_hpet.h>
54 #include <contrib/dev/acpica/include/acpi.h>
55 
56 #include "cpufreq_if.h"
57 
58 uint64_t	tsc_freq;
59 int		tsc_is_invariant;
60 int		tsc_perf_stat;
61 
62 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
63 
64 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
65     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
66 
67 #ifdef SMP
68 int	smp_tsc;
69 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
70     "Indicates whether the TSC is safe to use in SMP mode");
71 
72 int	smp_tsc_adjust = 0;
73 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
74     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
75 #endif
76 
77 static int	tsc_shift = 1;
78 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
79     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
80 
81 static int	tsc_disabled;
82 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
83     "Disable x86 Time Stamp Counter");
84 
85 static int	tsc_skip_calibration;
86 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN |
87     CTLFLAG_NOFETCH, &tsc_skip_calibration, 0,
88     "Disable TSC frequency calibration");
89 
90 static void tsc_freq_changed(void *arg, const struct cf_level *level,
91     int status);
92 static void tsc_freq_changing(void *arg, const struct cf_level *level,
93     int *status);
94 static unsigned tsc_get_timecount(struct timecounter *tc);
95 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
96 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
97 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
98 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
99 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
100 static void tsc_levels_changed(void *arg, int unit);
101 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
102     struct timecounter *tc);
103 #ifdef COMPAT_FREEBSD32
104 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
105     struct timecounter *tc);
106 #endif
107 
108 static struct timecounter tsc_timecounter = {
109 	.tc_get_timecount =		tsc_get_timecount,
110 	.tc_counter_mask =		~0u,
111 	.tc_name =			"TSC",
112 	.tc_quality =			800,	/* adjusted in code */
113 	.tc_fill_vdso_timehands = 	x86_tsc_vdso_timehands,
114 #ifdef COMPAT_FREEBSD32
115 	.tc_fill_vdso_timehands32 = 	x86_tsc_vdso_timehands32,
116 #endif
117 };
118 
119 static void
120 tsc_freq_vmware(void)
121 {
122 	u_int regs[4];
123 
124 	if (hv_high >= 0x40000010) {
125 		do_cpuid(0x40000010, regs);
126 		tsc_freq = regs[0] * 1000;
127 	} else {
128 		vmware_hvcall(VMW_HVCMD_GETHZ, regs);
129 		if (regs[1] != UINT_MAX)
130 			tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
131 	}
132 	tsc_is_invariant = 1;
133 }
134 
135 /*
136  * Calculate TSC frequency using information from the CPUID leaf 0x15
137  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15
138  * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor
139  * Frequency Information'.  Leaf 0x16 is described in the SDM as
140  * informational only, but if 0x15 did not work, and TSC calibration
141  * is disabled, it is the best we can get at all.  It should still be
142  * an improvement over the parsing of the CPU model name in
143  * tsc_freq_intel(), when available.
144  */
145 static bool
146 tsc_freq_cpuid(void)
147 {
148 	u_int regs[4];
149 
150 	if (cpu_high < 0x15)
151 		return (false);
152 	do_cpuid(0x15, regs);
153 	if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
154 		tsc_freq = (uint64_t)regs[2] * regs[1] / regs[0];
155 		return (true);
156 	}
157 
158 	if (cpu_high < 0x16)
159 		return (false);
160 	do_cpuid(0x16, regs);
161 	if (regs[0] != 0) {
162 		tsc_freq = (uint64_t)regs[0] * 1000000;
163 		return (true);
164 	}
165 
166 	return (false);
167 }
168 
169 static void
170 tsc_freq_intel(void)
171 {
172 	char brand[48];
173 	u_int regs[4];
174 	uint64_t freq;
175 	char *p;
176 	u_int i;
177 
178 	/*
179 	 * Intel Processor Identification and the CPUID Instruction
180 	 * Application Note 485.
181 	 * http://www.intel.com/assets/pdf/appnote/241618.pdf
182 	 */
183 	if (cpu_exthigh >= 0x80000004) {
184 		p = brand;
185 		for (i = 0x80000002; i < 0x80000005; i++) {
186 			do_cpuid(i, regs);
187 			memcpy(p, regs, sizeof(regs));
188 			p += sizeof(regs);
189 		}
190 		p = NULL;
191 		for (i = 0; i < sizeof(brand) - 1; i++)
192 			if (brand[i] == 'H' && brand[i + 1] == 'z')
193 				p = brand + i;
194 		if (p != NULL) {
195 			p -= 5;
196 			switch (p[4]) {
197 			case 'M':
198 				i = 1;
199 				break;
200 			case 'G':
201 				i = 1000;
202 				break;
203 			case 'T':
204 				i = 1000000;
205 				break;
206 			default:
207 				return;
208 			}
209 #define	C2D(c)	((c) - '0')
210 			if (p[1] == '.') {
211 				freq = C2D(p[0]) * 1000;
212 				freq += C2D(p[2]) * 100;
213 				freq += C2D(p[3]) * 10;
214 				freq *= i * 1000;
215 			} else {
216 				freq = C2D(p[0]) * 1000;
217 				freq += C2D(p[1]) * 100;
218 				freq += C2D(p[2]) * 10;
219 				freq += C2D(p[3]);
220 				freq *= i * 1000000;
221 			}
222 #undef C2D
223 			tsc_freq = freq;
224 		}
225 	}
226 }
227 
228 static void
229 probe_tsc_freq(void)
230 {
231 	uint64_t tsc1, tsc2;
232 	uint16_t bootflags;
233 
234 	if (cpu_power_ecx & CPUID_PERF_STAT) {
235 		/*
236 		 * XXX Some emulators expose host CPUID without actual support
237 		 * for these MSRs.  We must test whether they really work.
238 		 */
239 		wrmsr(MSR_MPERF, 0);
240 		wrmsr(MSR_APERF, 0);
241 		DELAY(10);
242 		if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
243 			tsc_perf_stat = 1;
244 	}
245 
246 	if (vm_guest == VM_GUEST_VMWARE) {
247 		tsc_freq_vmware();
248 		return;
249 	}
250 
251 	switch (cpu_vendor_id) {
252 	case CPU_VENDOR_AMD:
253 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
254 		    (vm_guest == VM_GUEST_NO &&
255 		    CPUID_TO_FAMILY(cpu_id) >= 0x10))
256 			tsc_is_invariant = 1;
257 		if (cpu_feature & CPUID_SSE2) {
258 			tsc_timecounter.tc_get_timecount =
259 			    tsc_get_timecount_mfence;
260 		}
261 		break;
262 	case CPU_VENDOR_INTEL:
263 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
264 		    (vm_guest == VM_GUEST_NO &&
265 		    ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
266 		    CPUID_TO_MODEL(cpu_id) >= 0xe) ||
267 		    (CPUID_TO_FAMILY(cpu_id) == 0xf &&
268 		    CPUID_TO_MODEL(cpu_id) >= 0x3))))
269 			tsc_is_invariant = 1;
270 		if (cpu_feature & CPUID_SSE2) {
271 			tsc_timecounter.tc_get_timecount =
272 			    tsc_get_timecount_lfence;
273 		}
274 		break;
275 	case CPU_VENDOR_CENTAUR:
276 		if (vm_guest == VM_GUEST_NO &&
277 		    CPUID_TO_FAMILY(cpu_id) == 0x6 &&
278 		    CPUID_TO_MODEL(cpu_id) >= 0xf &&
279 		    (rdmsr(0x1203) & 0x100000000ULL) == 0)
280 			tsc_is_invariant = 1;
281 		if (cpu_feature & CPUID_SSE2) {
282 			tsc_timecounter.tc_get_timecount =
283 			    tsc_get_timecount_lfence;
284 		}
285 		break;
286 	}
287 
288 	if (!TUNABLE_INT_FETCH("machdep.disable_tsc_calibration",
289 	    &tsc_skip_calibration)) {
290 		/*
291 		 * User did not give the order about calibration.
292 		 * If he did, we do not try to guess.
293 		 *
294 		 * Otherwise, if ACPI FADT reports that the platform
295 		 * is legacy-free and CPUID provides TSC frequency,
296 		 * use it.  The calibration could fail anyway since
297 		 * ISA timer can be absent or power gated.
298 		 */
299 		if (acpi_get_fadt_bootflags(&bootflags) &&
300 		    (bootflags & ACPI_FADT_LEGACY_DEVICES) == 0 &&
301 		    tsc_freq_cpuid()) {
302 			printf("Skipping TSC calibration since no legacy "
303 			    "devices reported by FADT and CPUID works\n");
304 			tsc_skip_calibration = 1;
305 		}
306 	}
307 	if (tsc_skip_calibration) {
308 		if (tsc_freq_cpuid())
309 			;
310 		else if (cpu_vendor_id == CPU_VENDOR_INTEL)
311 			tsc_freq_intel();
312 	} else {
313 		if (bootverbose)
314 			printf("Calibrating TSC clock ... ");
315 		tsc1 = rdtsc();
316 		DELAY(1000000);
317 		tsc2 = rdtsc();
318 		tsc_freq = tsc2 - tsc1;
319 	}
320 	if (bootverbose)
321 		printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
322 }
323 
324 void
325 init_TSC(void)
326 {
327 
328 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
329 		return;
330 
331 #ifdef __i386__
332 	/* The TSC is known to be broken on certain CPUs. */
333 	switch (cpu_vendor_id) {
334 	case CPU_VENDOR_AMD:
335 		switch (cpu_id & 0xFF0) {
336 		case 0x500:
337 			/* K5 Model 0 */
338 			return;
339 		}
340 		break;
341 	case CPU_VENDOR_CENTAUR:
342 		switch (cpu_id & 0xff0) {
343 		case 0x540:
344 			/*
345 			 * http://www.centtech.com/c6_data_sheet.pdf
346 			 *
347 			 * I-12 RDTSC may return incoherent values in EDX:EAX
348 			 * I-13 RDTSC hangs when certain event counters are used
349 			 */
350 			return;
351 		}
352 		break;
353 	case CPU_VENDOR_NSC:
354 		switch (cpu_id & 0xff0) {
355 		case 0x540:
356 			if ((cpu_id & CPUID_STEPPING) == 0)
357 				return;
358 			break;
359 		}
360 		break;
361 	}
362 #endif
363 
364 	probe_tsc_freq();
365 
366 	/*
367 	 * Inform CPU accounting about our boot-time clock rate.  This will
368 	 * be updated if someone loads a cpufreq driver after boot that
369 	 * discovers a new max frequency.
370 	 */
371 	if (tsc_freq != 0)
372 		set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
373 
374 	if (tsc_is_invariant)
375 		return;
376 
377 	/* Register to find out about changes in CPU frequency. */
378 	tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
379 	    tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
380 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
381 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
382 	tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
383 	    tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
384 }
385 
386 #ifdef SMP
387 
388 /*
389  * RDTSC is not a serializing instruction, and does not drain
390  * instruction stream, so we need to drain the stream before executing
391  * it.  It could be fixed by use of RDTSCP, except the instruction is
392  * not available everywhere.
393  *
394  * Use CPUID for draining in the boot-time SMP constistency test.  The
395  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
396  * and VIA) when SSE2 is present, and nothing on older machines which
397  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
398  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
399  *
400  * Do not use do_cpuid(), since we do not need CPUID results, which
401  * have to be written into memory with do_cpuid().
402  */
403 #define	TSC_READ(x)							\
404 static void								\
405 tsc_read_##x(void *arg)							\
406 {									\
407 	uint64_t *tsc = arg;						\
408 	u_int cpu = PCPU_GET(cpuid);					\
409 									\
410 	__asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");	\
411 	tsc[cpu * 3 + x] = rdtsc();					\
412 }
413 TSC_READ(0)
414 TSC_READ(1)
415 TSC_READ(2)
416 #undef TSC_READ
417 
418 #define	N	1000
419 
420 static void
421 comp_smp_tsc(void *arg)
422 {
423 	uint64_t *tsc;
424 	int64_t d1, d2;
425 	u_int cpu = PCPU_GET(cpuid);
426 	u_int i, j, size;
427 
428 	size = (mp_maxid + 1) * 3;
429 	for (i = 0, tsc = arg; i < N; i++, tsc += size)
430 		CPU_FOREACH(j) {
431 			if (j == cpu)
432 				continue;
433 			d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
434 			d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
435 			if (d1 <= 0 || d2 <= 0) {
436 				smp_tsc = 0;
437 				return;
438 			}
439 		}
440 }
441 
442 static void
443 adj_smp_tsc(void *arg)
444 {
445 	uint64_t *tsc;
446 	int64_t d, min, max;
447 	u_int cpu = PCPU_GET(cpuid);
448 	u_int first, i, size;
449 
450 	first = CPU_FIRST();
451 	if (cpu == first)
452 		return;
453 	min = INT64_MIN;
454 	max = INT64_MAX;
455 	size = (mp_maxid + 1) * 3;
456 	for (i = 0, tsc = arg; i < N; i++, tsc += size) {
457 		d = tsc[first * 3] - tsc[cpu * 3 + 1];
458 		if (d > min)
459 			min = d;
460 		d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
461 		if (d > min)
462 			min = d;
463 		d = tsc[first * 3 + 1] - tsc[cpu * 3];
464 		if (d < max)
465 			max = d;
466 		d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
467 		if (d < max)
468 			max = d;
469 	}
470 	if (min > max)
471 		return;
472 	d = min / 2 + max / 2;
473 	__asm __volatile (
474 		"movl $0x10, %%ecx\n\t"
475 		"rdmsr\n\t"
476 		"addl %%edi, %%eax\n\t"
477 		"adcl %%esi, %%edx\n\t"
478 		"wrmsr\n"
479 		: /* No output */
480 		: "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
481 		: "ax", "cx", "dx", "cc"
482 	);
483 }
484 
485 static int
486 test_tsc(int adj_max_count)
487 {
488 	uint64_t *data, *tsc;
489 	u_int i, size, adj;
490 
491 	if ((!smp_tsc && !tsc_is_invariant) || vm_guest)
492 		return (-100);
493 	size = (mp_maxid + 1) * 3;
494 	data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
495 	adj = 0;
496 retry:
497 	for (i = 0, tsc = data; i < N; i++, tsc += size)
498 		smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
499 	smp_tsc = 1;	/* XXX */
500 	smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
501 	    smp_no_rendezvous_barrier, data);
502 	if (!smp_tsc && adj < adj_max_count) {
503 		adj++;
504 		smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
505 		    smp_no_rendezvous_barrier, data);
506 		goto retry;
507 	}
508 	free(data, M_TEMP);
509 	if (bootverbose)
510 		printf("SMP: %sed TSC synchronization test%s\n",
511 		    smp_tsc ? "pass" : "fail",
512 		    adj > 0 ? " after adjustment" : "");
513 	if (smp_tsc && tsc_is_invariant) {
514 		switch (cpu_vendor_id) {
515 		case CPU_VENDOR_AMD:
516 			/*
517 			 * Starting with Family 15h processors, TSC clock
518 			 * source is in the north bridge.  Check whether
519 			 * we have a single-socket/multi-core platform.
520 			 * XXX Need more work for complex cases.
521 			 */
522 			if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
523 			    (amd_feature2 & AMDID2_CMP) == 0 ||
524 			    smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
525 				break;
526 			return (1000);
527 		case CPU_VENDOR_INTEL:
528 			/*
529 			 * XXX Assume Intel platforms have synchronized TSCs.
530 			 */
531 			return (1000);
532 		}
533 		return (800);
534 	}
535 	return (-100);
536 }
537 
538 #undef N
539 
540 #endif /* SMP */
541 
542 static void
543 init_TSC_tc(void)
544 {
545 	uint64_t max_freq;
546 	int shift;
547 
548 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
549 		return;
550 
551 	/*
552 	 * Limit timecounter frequency to fit in an int and prevent it from
553 	 * overflowing too fast.
554 	 */
555 	max_freq = UINT_MAX;
556 
557 	/*
558 	 * We can not use the TSC if we support APM.  Precise timekeeping
559 	 * on an APM'ed machine is at best a fools pursuit, since
560 	 * any and all of the time spent in various SMM code can't
561 	 * be reliably accounted for.  Reading the RTC is your only
562 	 * source of reliable time info.  The i8254 loses too, of course,
563 	 * but we need to have some kind of time...
564 	 * We don't know at this point whether APM is going to be used
565 	 * or not, nor when it might be activated.  Play it safe.
566 	 */
567 	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
568 		tsc_timecounter.tc_quality = -1000;
569 		if (bootverbose)
570 			printf("TSC timecounter disabled: APM enabled.\n");
571 		goto init;
572 	}
573 
574 	/*
575 	 * Intel CPUs without a C-state invariant TSC can stop the TSC
576 	 * in either C2 or C3.  Disable use of C2 and C3 while using
577 	 * the TSC as the timecounter.  The timecounter can be changed
578 	 * to enable C2 and C3.
579 	 *
580 	 * Note that the TSC is used as the cputicker for computing
581 	 * thread runtime regardless of the timecounter setting, so
582 	 * using an alternate timecounter and enabling C2 or C3 can
583 	 * result incorrect runtimes for kernel idle threads (but not
584 	 * for any non-idle threads).
585 	 */
586 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
587 	    (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
588 		tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
589 		if (bootverbose)
590 			printf("TSC timecounter disables C2 and C3.\n");
591 	}
592 
593 	/*
594 	 * We can not use the TSC in SMP mode unless the TSCs on all CPUs
595 	 * are synchronized.  If the user is sure that the system has
596 	 * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
597 	 * non-zero value.  The TSC seems unreliable in virtualized SMP
598 	 * environments, so it is set to a negative quality in those cases.
599 	 */
600 #ifdef SMP
601 	if (mp_ncpus > 1)
602 		tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
603 	else
604 #endif /* SMP */
605 	if (tsc_is_invariant)
606 		tsc_timecounter.tc_quality = 1000;
607 	max_freq >>= tsc_shift;
608 
609 init:
610 	for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
611 		;
612 	if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
613 		if (cpu_vendor_id == CPU_VENDOR_AMD) {
614 			tsc_timecounter.tc_get_timecount = shift > 0 ?
615 			    tsc_get_timecount_low_mfence :
616 			    tsc_get_timecount_mfence;
617 		} else {
618 			tsc_timecounter.tc_get_timecount = shift > 0 ?
619 			    tsc_get_timecount_low_lfence :
620 			    tsc_get_timecount_lfence;
621 		}
622 	} else {
623 		tsc_timecounter.tc_get_timecount = shift > 0 ?
624 		    tsc_get_timecount_low : tsc_get_timecount;
625 	}
626 	if (shift > 0) {
627 		tsc_timecounter.tc_name = "TSC-low";
628 		if (bootverbose)
629 			printf("TSC timecounter discards lower %d bit(s)\n",
630 			    shift);
631 	}
632 	if (tsc_freq != 0) {
633 		tsc_timecounter.tc_frequency = tsc_freq >> shift;
634 		tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
635 		tc_init(&tsc_timecounter);
636 	}
637 }
638 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
639 
640 void
641 resume_TSC(void)
642 {
643 #ifdef SMP
644 	int quality;
645 
646 	/* If TSC was not good on boot, it is unlikely to become good now. */
647 	if (tsc_timecounter.tc_quality < 0)
648 		return;
649 	/* Nothing to do with UP. */
650 	if (mp_ncpus < 2)
651 		return;
652 
653 	/*
654 	 * If TSC was good, a single synchronization should be enough,
655 	 * but honour smp_tsc_adjust if it's set.
656 	 */
657 	quality = test_tsc(MAX(smp_tsc_adjust, 1));
658 	if (quality != tsc_timecounter.tc_quality) {
659 		printf("TSC timecounter quality changed: %d -> %d\n",
660 		    tsc_timecounter.tc_quality, quality);
661 		tsc_timecounter.tc_quality = quality;
662 	}
663 #endif /* SMP */
664 }
665 
666 /*
667  * When cpufreq levels change, find out about the (new) max frequency.  We
668  * use this to update CPU accounting in case it got a lower estimate at boot.
669  */
670 static void
671 tsc_levels_changed(void *arg, int unit)
672 {
673 	device_t cf_dev;
674 	struct cf_level *levels;
675 	int count, error;
676 	uint64_t max_freq;
677 
678 	/* Only use values from the first CPU, assuming all are equal. */
679 	if (unit != 0)
680 		return;
681 
682 	/* Find the appropriate cpufreq device instance. */
683 	cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
684 	if (cf_dev == NULL) {
685 		printf("tsc_levels_changed() called but no cpufreq device?\n");
686 		return;
687 	}
688 
689 	/* Get settings from the device and find the max frequency. */
690 	count = 64;
691 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
692 	if (levels == NULL)
693 		return;
694 	error = CPUFREQ_LEVELS(cf_dev, levels, &count);
695 	if (error == 0 && count != 0) {
696 		max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
697 		set_cputicker(rdtsc, max_freq, 1);
698 	} else
699 		printf("tsc_levels_changed: no max freq found\n");
700 	free(levels, M_TEMP);
701 }
702 
703 /*
704  * If the TSC timecounter is in use, veto the pending change.  It may be
705  * possible in the future to handle a dynamically-changing timecounter rate.
706  */
707 static void
708 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
709 {
710 
711 	if (*status != 0 || timecounter != &tsc_timecounter)
712 		return;
713 
714 	printf("timecounter TSC must not be in use when "
715 	    "changing frequencies; change denied\n");
716 	*status = EBUSY;
717 }
718 
719 /* Update TSC freq with the value indicated by the caller. */
720 static void
721 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
722 {
723 	uint64_t freq;
724 
725 	/* If there was an error during the transition, don't do anything. */
726 	if (tsc_disabled || status != 0)
727 		return;
728 
729 	/* Total setting for this level gives the new frequency in MHz. */
730 	freq = (uint64_t)level->total_set.freq * 1000000;
731 	atomic_store_rel_64(&tsc_freq, freq);
732 	tsc_timecounter.tc_frequency =
733 	    freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
734 }
735 
736 static int
737 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
738 {
739 	int error;
740 	uint64_t freq;
741 
742 	freq = atomic_load_acq_64(&tsc_freq);
743 	if (freq == 0)
744 		return (EOPNOTSUPP);
745 	error = sysctl_handle_64(oidp, &freq, 0, req);
746 	if (error == 0 && req->newptr != NULL) {
747 		atomic_store_rel_64(&tsc_freq, freq);
748 		atomic_store_rel_64(&tsc_timecounter.tc_frequency,
749 		    freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
750 	}
751 	return (error);
752 }
753 
754 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW,
755     0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency");
756 
757 static u_int
758 tsc_get_timecount(struct timecounter *tc __unused)
759 {
760 
761 	return (rdtsc32());
762 }
763 
764 static inline u_int
765 tsc_get_timecount_low(struct timecounter *tc)
766 {
767 	uint32_t rv;
768 
769 	__asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
770 	    : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
771 	return (rv);
772 }
773 
774 static u_int
775 tsc_get_timecount_lfence(struct timecounter *tc __unused)
776 {
777 
778 	lfence();
779 	return (rdtsc32());
780 }
781 
782 static u_int
783 tsc_get_timecount_low_lfence(struct timecounter *tc)
784 {
785 
786 	lfence();
787 	return (tsc_get_timecount_low(tc));
788 }
789 
790 static u_int
791 tsc_get_timecount_mfence(struct timecounter *tc __unused)
792 {
793 
794 	mfence();
795 	return (rdtsc32());
796 }
797 
798 static u_int
799 tsc_get_timecount_low_mfence(struct timecounter *tc)
800 {
801 
802 	mfence();
803 	return (tsc_get_timecount_low(tc));
804 }
805 
806 static uint32_t
807 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
808 {
809 
810 	vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
811 	vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
812 	vdso_th->th_x86_hpet_idx = 0xffffffff;
813 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
814 	return (1);
815 }
816 
817 #ifdef COMPAT_FREEBSD32
818 static uint32_t
819 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
820     struct timecounter *tc)
821 {
822 
823 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
824 	vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
825 	vdso_th32->th_x86_hpet_idx = 0xffffffff;
826 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
827 	return (1);
828 }
829 #endif
830