xref: /freebsd/sys/x86/x86/tsc.c (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_clock.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/cpu.h>
38 #include <sys/eventhandler.h>
39 #include <sys/limits.h>
40 #include <sys/malloc.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/sysctl.h>
44 #include <sys/time.h>
45 #include <sys/timetc.h>
46 #include <sys/kernel.h>
47 #include <sys/smp.h>
48 #include <sys/vdso.h>
49 #include <machine/clock.h>
50 #include <machine/cputypes.h>
51 #include <machine/fpu.h>
52 #include <machine/md_var.h>
53 #include <machine/specialreg.h>
54 #include <x86/vmware.h>
55 #include <dev/acpica/acpi_hpet.h>
56 #include <contrib/dev/acpica/include/acpi.h>
57 
58 #include "cpufreq_if.h"
59 
60 uint64_t	tsc_freq;
61 int		tsc_is_invariant;
62 int		tsc_perf_stat;
63 static int	tsc_early_calib_exact;
64 
65 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
66 
67 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
68     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
69 
70 #ifdef SMP
71 int	smp_tsc;
72 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
73     "Indicates whether the TSC is safe to use in SMP mode");
74 
75 int	smp_tsc_adjust = 0;
76 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
77     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
78 #endif
79 
80 static int	tsc_shift = 1;
81 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
82     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
83 
84 static int	tsc_disabled;
85 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
86     "Disable x86 Time Stamp Counter");
87 
88 static int	tsc_skip_calibration;
89 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
90     &tsc_skip_calibration, 0,
91     "Disable early TSC frequency calibration");
92 
93 static void tsc_freq_changed(void *arg, const struct cf_level *level,
94     int status);
95 static void tsc_freq_changing(void *arg, const struct cf_level *level,
96     int *status);
97 static u_int tsc_get_timecount(struct timecounter *tc);
98 static inline u_int tsc_get_timecount_low(struct timecounter *tc);
99 static u_int tsc_get_timecount_lfence(struct timecounter *tc);
100 static u_int tsc_get_timecount_low_lfence(struct timecounter *tc);
101 static u_int tsc_get_timecount_mfence(struct timecounter *tc);
102 static u_int tsc_get_timecount_low_mfence(struct timecounter *tc);
103 static u_int tscp_get_timecount(struct timecounter *tc);
104 static u_int tscp_get_timecount_low(struct timecounter *tc);
105 static void tsc_levels_changed(void *arg, int unit);
106 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
107     struct timecounter *tc);
108 #ifdef COMPAT_FREEBSD32
109 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
110     struct timecounter *tc);
111 #endif
112 
113 static struct timecounter tsc_timecounter = {
114 	.tc_get_timecount =		tsc_get_timecount,
115 	.tc_counter_mask =		~0u,
116 	.tc_name =			"TSC",
117 	.tc_quality =			800,	/* adjusted in code */
118 	.tc_fill_vdso_timehands = 	x86_tsc_vdso_timehands,
119 #ifdef COMPAT_FREEBSD32
120 	.tc_fill_vdso_timehands32 = 	x86_tsc_vdso_timehands32,
121 #endif
122 };
123 
124 static int
125 tsc_freq_cpuid_vm(void)
126 {
127 	u_int regs[4];
128 
129 	if (vm_guest == VM_GUEST_NO)
130 		return (false);
131 	if (hv_high < 0x40000010)
132 		return (false);
133 	do_cpuid(0x40000010, regs);
134 	tsc_freq = (uint64_t)(regs[0]) * 1000;
135 	tsc_early_calib_exact = 1;
136 	return (true);
137 }
138 
139 static void
140 tsc_freq_vmware(void)
141 {
142 	u_int regs[4];
143 
144 	vmware_hvcall(VMW_HVCMD_GETHZ, regs);
145 	if (regs[1] != UINT_MAX)
146 		tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
147 	tsc_early_calib_exact = 1;
148 }
149 
150 static void
151 tsc_freq_xen(void)
152 {
153 	u_int regs[4];
154 
155 	/*
156 	 * Must run *after* generic tsc_freq_cpuid_vm, so that when Xen is
157 	 * emulating Viridian support the Viridian leaf is used instead.
158 	 */
159 	KASSERT(hv_high >= 0x40000003, ("Invalid max hypervisor leaf on Xen"));
160 	cpuid_count(0x40000003, 0, regs);
161 	tsc_freq = (uint64_t)(regs[2]) * 1000;
162 	tsc_early_calib_exact = 1;
163 }
164 
165 /*
166  * Calculate TSC frequency using information from the CPUID leaf 0x15 'Time
167  * Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15 is not
168  * functional, as it is on Skylake/Kabylake, try 0x16 'Processor Frequency
169  * Information'.  Leaf 0x16 is described in the SDM as informational only, but
170  * we can use this value until late calibration is complete.
171  */
172 static bool
173 tsc_freq_cpuid(uint64_t *res)
174 {
175 	u_int regs[4];
176 
177 	if (cpu_high < 0x15)
178 		return (false);
179 	do_cpuid(0x15, regs);
180 	if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
181 		*res = (uint64_t)regs[2] * regs[1] / regs[0];
182 		return (true);
183 	}
184 
185 	if (cpu_high < 0x16)
186 		return (false);
187 	do_cpuid(0x16, regs);
188 	if (regs[0] != 0) {
189 		*res = (uint64_t)regs[0] * 1000000;
190 		return (true);
191 	}
192 
193 	return (false);
194 }
195 
196 static bool
197 tsc_freq_intel_brand(uint64_t *res)
198 {
199 	char brand[48];
200 	u_int regs[4];
201 	uint64_t freq;
202 	char *p;
203 	u_int i;
204 
205 	/*
206 	 * Intel Processor Identification and the CPUID Instruction
207 	 * Application Note 485.
208 	 * http://www.intel.com/assets/pdf/appnote/241618.pdf
209 	 */
210 	if (cpu_exthigh >= 0x80000004) {
211 		p = brand;
212 		for (i = 0x80000002; i < 0x80000005; i++) {
213 			do_cpuid(i, regs);
214 			memcpy(p, regs, sizeof(regs));
215 			p += sizeof(regs);
216 		}
217 		p = NULL;
218 		for (i = 0; i < sizeof(brand) - 1; i++)
219 			if (brand[i] == 'H' && brand[i + 1] == 'z')
220 				p = brand + i;
221 		if (p != NULL) {
222 			p -= 5;
223 			switch (p[4]) {
224 			case 'M':
225 				i = 1;
226 				break;
227 			case 'G':
228 				i = 1000;
229 				break;
230 			case 'T':
231 				i = 1000000;
232 				break;
233 			default:
234 				return (false);
235 			}
236 #define	C2D(c)	((c) - '0')
237 			if (p[1] == '.') {
238 				freq = C2D(p[0]) * 1000;
239 				freq += C2D(p[2]) * 100;
240 				freq += C2D(p[3]) * 10;
241 				freq *= i * 1000;
242 			} else {
243 				freq = C2D(p[0]) * 1000;
244 				freq += C2D(p[1]) * 100;
245 				freq += C2D(p[2]) * 10;
246 				freq += C2D(p[3]);
247 				freq *= i * 1000000;
248 			}
249 #undef C2D
250 			*res = freq;
251 			return (true);
252 		}
253 	}
254 	return (false);
255 }
256 
257 static void
258 tsc_freq_tc(uint64_t *res)
259 {
260 	uint64_t tsc1, tsc2;
261 	int64_t overhead;
262 	int count, i;
263 
264 	overhead = 0;
265 	for (i = 0, count = 8; i < count; i++) {
266 		tsc1 = rdtsc_ordered();
267 		DELAY(0);
268 		tsc2 = rdtsc_ordered();
269 		if (i > 0)
270 			overhead += tsc2 - tsc1;
271 	}
272 	overhead /= count;
273 
274 	tsc1 = rdtsc_ordered();
275 	DELAY(100000);
276 	tsc2 = rdtsc_ordered();
277 	tsc_freq = (tsc2 - tsc1 - overhead) * 10;
278 }
279 
280 /*
281  * Try to determine the TSC frequency using CPUID or hypercalls.  If successful,
282  * this lets use the TSC for early DELAY() calls instead of the 8254 timer,
283  * which may be unreliable or entirely absent on contemporary systems.  However,
284  * avoid calibrating using the 8254 here so as to give hypervisors a chance to
285  * register a timecounter that can be used instead.
286  */
287 static void
288 probe_tsc_freq_early(void)
289 {
290 #ifdef __i386__
291 	/* The TSC is known to be broken on certain CPUs. */
292 	switch (cpu_vendor_id) {
293 	case CPU_VENDOR_AMD:
294 		switch (cpu_id & 0xFF0) {
295 		case 0x500:
296 			/* K5 Model 0 */
297 			tsc_disabled = 1;
298 			return;
299 		}
300 		break;
301 	case CPU_VENDOR_CENTAUR:
302 		switch (cpu_id & 0xff0) {
303 		case 0x540:
304 			/*
305 			 * http://www.centtech.com/c6_data_sheet.pdf
306 			 *
307 			 * I-12 RDTSC may return incoherent values in EDX:EAX
308 			 * I-13 RDTSC hangs when certain event counters are used
309 			 */
310 			tsc_disabled = 1;
311 			return;
312 		}
313 		break;
314 	case CPU_VENDOR_NSC:
315 		switch (cpu_id & 0xff0) {
316 		case 0x540:
317 			if ((cpu_id & CPUID_STEPPING) == 0) {
318 				tsc_disabled = 1;
319 				return;
320 			}
321 			break;
322 		}
323 		break;
324 	}
325 #endif
326 
327 	switch (cpu_vendor_id) {
328 	case CPU_VENDOR_AMD:
329 	case CPU_VENDOR_HYGON:
330 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
331 		    (vm_guest == VM_GUEST_NO &&
332 		    CPUID_TO_FAMILY(cpu_id) >= 0x10))
333 			tsc_is_invariant = 1;
334 		if (cpu_feature & CPUID_SSE2) {
335 			tsc_timecounter.tc_get_timecount =
336 			    tsc_get_timecount_mfence;
337 		}
338 		break;
339 	case CPU_VENDOR_INTEL:
340 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
341 		    (vm_guest == VM_GUEST_NO &&
342 		    ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
343 		    CPUID_TO_MODEL(cpu_id) >= 0xe) ||
344 		    (CPUID_TO_FAMILY(cpu_id) == 0xf &&
345 		    CPUID_TO_MODEL(cpu_id) >= 0x3))))
346 			tsc_is_invariant = 1;
347 		if (cpu_feature & CPUID_SSE2) {
348 			tsc_timecounter.tc_get_timecount =
349 			    tsc_get_timecount_lfence;
350 		}
351 		break;
352 	case CPU_VENDOR_CENTAUR:
353 		if (vm_guest == VM_GUEST_NO &&
354 		    CPUID_TO_FAMILY(cpu_id) == 0x6 &&
355 		    CPUID_TO_MODEL(cpu_id) >= 0xf &&
356 		    (rdmsr(0x1203) & 0x100000000ULL) == 0)
357 			tsc_is_invariant = 1;
358 		if (cpu_feature & CPUID_SSE2) {
359 			tsc_timecounter.tc_get_timecount =
360 			    tsc_get_timecount_lfence;
361 		}
362 		break;
363 	}
364 
365 	if (tsc_freq_cpuid_vm()) {
366 		if (bootverbose)
367 			printf(
368 		    "Early TSC frequency %juHz derived from hypervisor CPUID\n",
369 			    (uintmax_t)tsc_freq);
370 	} else if (vm_guest == VM_GUEST_VMWARE) {
371 		tsc_freq_vmware();
372 		if (bootverbose)
373 			printf(
374 		    "Early TSC frequency %juHz derived from VMWare hypercall\n",
375 			    (uintmax_t)tsc_freq);
376 	} else if (vm_guest == VM_GUEST_XEN) {
377 		tsc_freq_xen();
378 		if (bootverbose)
379 			printf(
380 			"Early TSC frequency %juHz derived from Xen CPUID\n",
381 			    (uintmax_t)tsc_freq);
382 	} else if (tsc_freq_cpuid(&tsc_freq)) {
383 		/*
384 		 * If possible, use the value obtained from CPUID as the initial
385 		 * frequency.  This will be refined later during boot but is
386 		 * good enough for now.  The 8254 PIT is not functional on some
387 		 * newer platforms anyway, so don't delay our boot for what
388 		 * might be a garbage result.  Late calibration is required if
389 		 * the initial frequency was obtained from CPUID.16H, as the
390 		 * derived value may be off by as much as 1%.
391 		 */
392 		if (bootverbose)
393 			printf("Early TSC frequency %juHz derived from CPUID\n",
394 			    (uintmax_t)tsc_freq);
395 	}
396 }
397 
398 /*
399  * If we were unable to determine the TSC frequency via CPU registers, try
400  * to calibrate against a known clock.
401  */
402 static void
403 probe_tsc_freq_late(void)
404 {
405 	if (tsc_freq != 0)
406 		return;
407 
408 	if (tsc_skip_calibration) {
409 		/*
410 		 * Try to parse the brand string to obtain the nominal TSC
411 		 * frequency.
412 		 */
413 		if (cpu_vendor_id == CPU_VENDOR_INTEL &&
414 		    tsc_freq_intel_brand(&tsc_freq)) {
415 			if (bootverbose)
416 				printf(
417 		    "Early TSC frequency %juHz derived from brand string\n",
418 				    (uintmax_t)tsc_freq);
419 		} else {
420 			tsc_disabled = 1;
421 		}
422 	} else {
423 		/*
424 		 * Calibrate against a timecounter or the 8254 PIT.  This
425 		 * estimate will be refined later in tsc_calib().
426 		 */
427 		tsc_freq_tc(&tsc_freq);
428 		if (bootverbose)
429 			printf(
430 		    "Early TSC frequency %juHz calibrated from 8254 PIT\n",
431 			    (uintmax_t)tsc_freq);
432 	}
433 }
434 
435 void
436 start_TSC(void)
437 {
438 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
439 		return;
440 
441 	probe_tsc_freq_late();
442 
443 	if (cpu_power_ecx & CPUID_PERF_STAT) {
444 		/*
445 		 * XXX Some emulators expose host CPUID without actual support
446 		 * for these MSRs.  We must test whether they really work.
447 		 */
448 		wrmsr(MSR_MPERF, 0);
449 		wrmsr(MSR_APERF, 0);
450 		DELAY(10);
451 		if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
452 			tsc_perf_stat = 1;
453 	}
454 
455 	/*
456 	 * Inform CPU accounting about our boot-time clock rate.  This will
457 	 * be updated if someone loads a cpufreq driver after boot that
458 	 * discovers a new max frequency.
459 	 *
460 	 * The frequency may also be updated after late calibration is complete;
461 	 * however, we register the TSC as the ticker now to avoid switching
462 	 * counters after much of the kernel has already booted and potentially
463 	 * sampled the CPU clock.
464 	 */
465 	if (tsc_freq != 0)
466 		set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
467 
468 	if (tsc_is_invariant)
469 		return;
470 
471 	/* Register to find out about changes in CPU frequency. */
472 	tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
473 	    tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
474 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
475 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
476 	tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
477 	    tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
478 }
479 
480 #ifdef SMP
481 
482 /*
483  * RDTSC is not a serializing instruction, and does not drain
484  * instruction stream, so we need to drain the stream before executing
485  * it.  It could be fixed by use of RDTSCP, except the instruction is
486  * not available everywhere.
487  *
488  * Use CPUID for draining in the boot-time SMP constistency test.  The
489  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
490  * and VIA) when SSE2 is present, and nothing on older machines which
491  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
492  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
493  *
494  * Do not use do_cpuid(), since we do not need CPUID results, which
495  * have to be written into memory with do_cpuid().
496  */
497 #define	TSC_READ(x)							\
498 static void								\
499 tsc_read_##x(void *arg)							\
500 {									\
501 	uint64_t *tsc = arg;						\
502 	u_int cpu = PCPU_GET(cpuid);					\
503 									\
504 	__asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");	\
505 	tsc[cpu * 3 + x] = rdtsc();					\
506 }
507 TSC_READ(0)
508 TSC_READ(1)
509 TSC_READ(2)
510 #undef TSC_READ
511 
512 #define	N	1000
513 
514 static void
515 comp_smp_tsc(void *arg)
516 {
517 	uint64_t *tsc;
518 	int64_t d1, d2;
519 	u_int cpu = PCPU_GET(cpuid);
520 	u_int i, j, size;
521 
522 	size = (mp_maxid + 1) * 3;
523 	for (i = 0, tsc = arg; i < N; i++, tsc += size)
524 		CPU_FOREACH(j) {
525 			if (j == cpu)
526 				continue;
527 			d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
528 			d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
529 			if (d1 <= 0 || d2 <= 0) {
530 				smp_tsc = 0;
531 				return;
532 			}
533 		}
534 }
535 
536 static void
537 adj_smp_tsc(void *arg)
538 {
539 	uint64_t *tsc;
540 	int64_t d, min, max;
541 	u_int cpu = PCPU_GET(cpuid);
542 	u_int first, i, size;
543 
544 	first = CPU_FIRST();
545 	if (cpu == first)
546 		return;
547 	min = INT64_MIN;
548 	max = INT64_MAX;
549 	size = (mp_maxid + 1) * 3;
550 	for (i = 0, tsc = arg; i < N; i++, tsc += size) {
551 		d = tsc[first * 3] - tsc[cpu * 3 + 1];
552 		if (d > min)
553 			min = d;
554 		d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
555 		if (d > min)
556 			min = d;
557 		d = tsc[first * 3 + 1] - tsc[cpu * 3];
558 		if (d < max)
559 			max = d;
560 		d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
561 		if (d < max)
562 			max = d;
563 	}
564 	if (min > max)
565 		return;
566 	d = min / 2 + max / 2;
567 	__asm __volatile (
568 		"movl $0x10, %%ecx\n\t"
569 		"rdmsr\n\t"
570 		"addl %%edi, %%eax\n\t"
571 		"adcl %%esi, %%edx\n\t"
572 		"wrmsr\n"
573 		: /* No output */
574 		: "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
575 		: "ax", "cx", "dx", "cc"
576 	);
577 }
578 
579 static int
580 test_tsc(int adj_max_count)
581 {
582 	uint64_t *data, *tsc;
583 	u_int i, size, adj;
584 
585 	if ((!smp_tsc && !tsc_is_invariant))
586 		return (-100);
587 	/*
588 	 * Misbehavior of TSC under VirtualBox has been observed.  In
589 	 * particular, threads doing small (~1 second) sleeps may miss their
590 	 * wakeup and hang around in sleep state, causing hangs on shutdown.
591 	 */
592 	if (vm_guest == VM_GUEST_VBOX)
593 		return (0);
594 
595 	TSENTER();
596 	size = (mp_maxid + 1) * 3;
597 	data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
598 	adj = 0;
599 retry:
600 	for (i = 0, tsc = data; i < N; i++, tsc += size)
601 		smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
602 	smp_tsc = 1;	/* XXX */
603 	smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
604 	    smp_no_rendezvous_barrier, data);
605 	if (!smp_tsc && adj < adj_max_count) {
606 		adj++;
607 		smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
608 		    smp_no_rendezvous_barrier, data);
609 		goto retry;
610 	}
611 	free(data, M_TEMP);
612 	if (bootverbose)
613 		printf("SMP: %sed TSC synchronization test%s\n",
614 		    smp_tsc ? "pass" : "fail",
615 		    adj > 0 ? " after adjustment" : "");
616 	TSEXIT();
617 	if (smp_tsc && tsc_is_invariant) {
618 		switch (cpu_vendor_id) {
619 		case CPU_VENDOR_AMD:
620 		case CPU_VENDOR_HYGON:
621 			/*
622 			 * Processor Programming Reference (PPR) for AMD
623 			 * Family 17h states that the TSC uses a common
624 			 * reference for all sockets, cores and threads.
625 			 */
626 			if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
627 				return (1000);
628 			/*
629 			 * Starting with Family 15h processors, TSC clock
630 			 * source is in the north bridge.  Check whether
631 			 * we have a single-socket/multi-core platform.
632 			 * XXX Need more work for complex cases.
633 			 */
634 			if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
635 			    (amd_feature2 & AMDID2_CMP) == 0 ||
636 			    smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
637 				break;
638 			return (1000);
639 		case CPU_VENDOR_INTEL:
640 			/*
641 			 * XXX Assume Intel platforms have synchronized TSCs.
642 			 */
643 			return (1000);
644 		}
645 		return (800);
646 	}
647 	return (-100);
648 }
649 
650 #undef N
651 
652 #endif /* SMP */
653 
654 static void
655 init_TSC_tc(void)
656 {
657 	uint64_t max_freq;
658 	int shift;
659 
660 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
661 		return;
662 
663 	/*
664 	 * Limit timecounter frequency to fit in an int and prevent it from
665 	 * overflowing too fast.
666 	 */
667 	max_freq = UINT_MAX;
668 
669 	/*
670 	 * Intel CPUs without a C-state invariant TSC can stop the TSC
671 	 * in either C2 or C3.  Disable use of C2 and C3 while using
672 	 * the TSC as the timecounter.  The timecounter can be changed
673 	 * to enable C2 and C3.
674 	 *
675 	 * Note that the TSC is used as the cputicker for computing
676 	 * thread runtime regardless of the timecounter setting, so
677 	 * using an alternate timecounter and enabling C2 or C3 can
678 	 * result incorrect runtimes for kernel idle threads (but not
679 	 * for any non-idle threads).
680 	 */
681 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
682 	    (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
683 		tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
684 		if (bootverbose)
685 			printf("TSC timecounter disables C2 and C3.\n");
686 	}
687 
688 	/*
689 	 * We can not use the TSC in SMP mode unless the TSCs on all CPUs
690 	 * are synchronized.  If the user is sure that the system has
691 	 * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
692 	 * non-zero value.  The TSC seems unreliable in virtualized SMP
693 	 * environments, so it is set to a negative quality in those cases.
694 	 */
695 #ifdef SMP
696 	if (mp_ncpus > 1)
697 		tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
698 	else
699 #endif /* SMP */
700 	if (tsc_is_invariant)
701 		tsc_timecounter.tc_quality = 1000;
702 	max_freq >>= tsc_shift;
703 
704 	for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
705 		;
706 
707 	/*
708 	 * Timecounter implementation selection, top to bottom:
709 	 * - If RDTSCP is available, use RDTSCP.
710 	 * - If fence instructions are provided (SSE2), use LFENCE;RDTSC
711 	 *   on Intel, and MFENCE;RDTSC on AMD.
712 	 * - For really old CPUs, just use RDTSC.
713 	 */
714 	if ((amd_feature & AMDID_RDTSCP) != 0) {
715 		tsc_timecounter.tc_get_timecount = shift > 0 ?
716 		    tscp_get_timecount_low : tscp_get_timecount;
717 	} else if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
718 		if (cpu_vendor_id == CPU_VENDOR_AMD ||
719 		    cpu_vendor_id == CPU_VENDOR_HYGON) {
720 			tsc_timecounter.tc_get_timecount = shift > 0 ?
721 			    tsc_get_timecount_low_mfence :
722 			    tsc_get_timecount_mfence;
723 		} else {
724 			tsc_timecounter.tc_get_timecount = shift > 0 ?
725 			    tsc_get_timecount_low_lfence :
726 			    tsc_get_timecount_lfence;
727 		}
728 	} else {
729 		tsc_timecounter.tc_get_timecount = shift > 0 ?
730 		    tsc_get_timecount_low : tsc_get_timecount;
731 	}
732 	if (shift > 0) {
733 		tsc_timecounter.tc_name = "TSC-low";
734 		if (bootverbose)
735 			printf("TSC timecounter discards lower %d bit(s)\n",
736 			    shift);
737 	}
738 	if (tsc_freq != 0) {
739 		tsc_timecounter.tc_frequency = tsc_freq >> shift;
740 		tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
741 
742 		/*
743 		 * Timecounter registration is deferred until after late
744 		 * calibration is finished.
745 		 */
746 	}
747 }
748 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
749 
750 static void
751 tsc_update_freq(uint64_t new_freq)
752 {
753 	atomic_store_rel_64(&tsc_freq, new_freq);
754 	atomic_store_rel_64(&tsc_timecounter.tc_frequency,
755 	    new_freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
756 }
757 
758 void
759 tsc_init(void)
760 {
761 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
762 		return;
763 
764 	probe_tsc_freq_early();
765 }
766 
767 /*
768  * Perform late calibration of the TSC frequency once ACPI-based timecounters
769  * are available.  At this point timehands are not set up, so we read the
770  * highest-quality timecounter directly rather than using (s)binuptime().
771  */
772 void
773 tsc_calibrate(void)
774 {
775 	uint64_t freq;
776 
777 	if (tsc_disabled)
778 		return;
779 	if (tsc_early_calib_exact)
780 		goto calibrated;
781 
782 	fpu_kern_enter(curthread, NULL, FPU_KERN_NOCTX);
783 	freq = clockcalib(rdtsc_ordered, "TSC");
784 	fpu_kern_leave(curthread, NULL);
785 	tsc_update_freq(freq);
786 
787 calibrated:
788 	tc_init(&tsc_timecounter);
789 	set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
790 }
791 
792 void
793 resume_TSC(void)
794 {
795 #ifdef SMP
796 	int quality;
797 
798 	/* If TSC was not good on boot, it is unlikely to become good now. */
799 	if (tsc_timecounter.tc_quality < 0)
800 		return;
801 	/* Nothing to do with UP. */
802 	if (mp_ncpus < 2)
803 		return;
804 
805 	/*
806 	 * If TSC was good, a single synchronization should be enough,
807 	 * but honour smp_tsc_adjust if it's set.
808 	 */
809 	quality = test_tsc(MAX(smp_tsc_adjust, 1));
810 	if (quality != tsc_timecounter.tc_quality) {
811 		printf("TSC timecounter quality changed: %d -> %d\n",
812 		    tsc_timecounter.tc_quality, quality);
813 		tsc_timecounter.tc_quality = quality;
814 	}
815 #endif /* SMP */
816 }
817 
818 /*
819  * When cpufreq levels change, find out about the (new) max frequency.  We
820  * use this to update CPU accounting in case it got a lower estimate at boot.
821  */
822 static void
823 tsc_levels_changed(void *arg, int unit)
824 {
825 	device_t cf_dev;
826 	struct cf_level *levels;
827 	int count, error;
828 	uint64_t max_freq;
829 
830 	/* Only use values from the first CPU, assuming all are equal. */
831 	if (unit != 0)
832 		return;
833 
834 	/* Find the appropriate cpufreq device instance. */
835 	cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
836 	if (cf_dev == NULL) {
837 		printf("tsc_levels_changed() called but no cpufreq device?\n");
838 		return;
839 	}
840 
841 	/* Get settings from the device and find the max frequency. */
842 	count = 64;
843 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
844 	if (levels == NULL)
845 		return;
846 	error = CPUFREQ_LEVELS(cf_dev, levels, &count);
847 	if (error == 0 && count != 0) {
848 		max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
849 		set_cputicker(rdtsc, max_freq, true);
850 	} else
851 		printf("tsc_levels_changed: no max freq found\n");
852 	free(levels, M_TEMP);
853 }
854 
855 /*
856  * If the TSC timecounter is in use, veto the pending change.  It may be
857  * possible in the future to handle a dynamically-changing timecounter rate.
858  */
859 static void
860 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
861 {
862 
863 	if (*status != 0 || timecounter != &tsc_timecounter)
864 		return;
865 
866 	printf("timecounter TSC must not be in use when "
867 	    "changing frequencies; change denied\n");
868 	*status = EBUSY;
869 }
870 
871 /* Update TSC freq with the value indicated by the caller. */
872 static void
873 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
874 {
875 	uint64_t freq;
876 
877 	/* If there was an error during the transition, don't do anything. */
878 	if (tsc_disabled || status != 0)
879 		return;
880 
881 	/* Total setting for this level gives the new frequency in MHz. */
882 	freq = (uint64_t)level->total_set.freq * 1000000;
883 	tsc_update_freq(freq);
884 }
885 
886 static int
887 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
888 {
889 	int error;
890 	uint64_t freq;
891 
892 	freq = atomic_load_acq_64(&tsc_freq);
893 	if (freq == 0)
894 		return (EOPNOTSUPP);
895 	error = sysctl_handle_64(oidp, &freq, 0, req);
896 	if (error == 0 && req->newptr != NULL)
897 		tsc_update_freq(freq);
898 	return (error);
899 }
900 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq,
901     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE,
902     0, 0, sysctl_machdep_tsc_freq, "QU",
903     "Time Stamp Counter frequency");
904 
905 static u_int
906 tsc_get_timecount(struct timecounter *tc __unused)
907 {
908 
909 	return (rdtsc32());
910 }
911 
912 static u_int
913 tscp_get_timecount(struct timecounter *tc __unused)
914 {
915 
916 	return (rdtscp32());
917 }
918 
919 static inline u_int
920 tsc_get_timecount_low(struct timecounter *tc)
921 {
922 	uint32_t rv;
923 
924 	__asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
925 	    : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
926 	return (rv);
927 }
928 
929 static u_int
930 tscp_get_timecount_low(struct timecounter *tc)
931 {
932 	uint32_t rv;
933 
934 	__asm __volatile("rdtscp; movl %1, %%ecx; shrd %%cl, %%edx, %0"
935 	    : "=&a" (rv) : "m" (tc->tc_priv) : "ecx", "edx");
936 	return (rv);
937 }
938 
939 static u_int
940 tsc_get_timecount_lfence(struct timecounter *tc __unused)
941 {
942 
943 	lfence();
944 	return (rdtsc32());
945 }
946 
947 static u_int
948 tsc_get_timecount_low_lfence(struct timecounter *tc)
949 {
950 
951 	lfence();
952 	return (tsc_get_timecount_low(tc));
953 }
954 
955 static u_int
956 tsc_get_timecount_mfence(struct timecounter *tc __unused)
957 {
958 
959 	mfence();
960 	return (rdtsc32());
961 }
962 
963 static u_int
964 tsc_get_timecount_low_mfence(struct timecounter *tc)
965 {
966 
967 	mfence();
968 	return (tsc_get_timecount_low(tc));
969 }
970 
971 static uint32_t
972 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
973 {
974 
975 	vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
976 	vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
977 	vdso_th->th_x86_hpet_idx = 0xffffffff;
978 	vdso_th->th_x86_pvc_last_systime = 0;
979 	vdso_th->th_x86_pvc_stable_mask = 0;
980 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
981 	return (1);
982 }
983 
984 #ifdef COMPAT_FREEBSD32
985 static uint32_t
986 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
987     struct timecounter *tc)
988 {
989 
990 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
991 	vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
992 	vdso_th32->th_x86_hpet_idx = 0xffffffff;
993 	vdso_th32->th_x86_pvc_last_systime = 0;
994 	vdso_th32->th_x86_pvc_stable_mask = 0;
995 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
996 	return (1);
997 }
998 #endif
999