xref: /freebsd/sys/x86/x86/tsc.c (revision 2faf504d1ab821fe2b9df9d2afb49bb35e1334f4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_clock.h"
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/cpu.h>
37 #include <sys/eventhandler.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/time.h>
43 #include <sys/timetc.h>
44 #include <sys/kernel.h>
45 #include <sys/power.h>
46 #include <sys/smp.h>
47 #include <sys/vdso.h>
48 #include <machine/clock.h>
49 #include <machine/cputypes.h>
50 #include <machine/md_var.h>
51 #include <machine/specialreg.h>
52 #include <x86/vmware.h>
53 #include <dev/acpica/acpi_hpet.h>
54 #include <contrib/dev/acpica/include/acpi.h>
55 
56 #include "cpufreq_if.h"
57 
58 uint64_t	tsc_freq;
59 int		tsc_is_invariant;
60 int		tsc_perf_stat;
61 
62 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
63 
64 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
65     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
66 
67 #ifdef SMP
68 int	smp_tsc;
69 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
70     "Indicates whether the TSC is safe to use in SMP mode");
71 
72 int	smp_tsc_adjust = 0;
73 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
74     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
75 #endif
76 
77 static int	tsc_shift = 1;
78 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
79     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
80 
81 static int	tsc_disabled;
82 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
83     "Disable x86 Time Stamp Counter");
84 
85 static int	tsc_skip_calibration;
86 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
87     &tsc_skip_calibration, 0,
88     "Disable TSC frequency calibration");
89 
90 static void tsc_freq_changed(void *arg, const struct cf_level *level,
91     int status);
92 static void tsc_freq_changing(void *arg, const struct cf_level *level,
93     int *status);
94 static u_int tsc_get_timecount(struct timecounter *tc);
95 static inline u_int tsc_get_timecount_low(struct timecounter *tc);
96 static u_int tsc_get_timecount_lfence(struct timecounter *tc);
97 static u_int tsc_get_timecount_low_lfence(struct timecounter *tc);
98 static u_int tsc_get_timecount_mfence(struct timecounter *tc);
99 static u_int tsc_get_timecount_low_mfence(struct timecounter *tc);
100 static u_int tscp_get_timecount(struct timecounter *tc);
101 static u_int tscp_get_timecount_low(struct timecounter *tc);
102 static void tsc_levels_changed(void *arg, int unit);
103 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
104     struct timecounter *tc);
105 #ifdef COMPAT_FREEBSD32
106 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
107     struct timecounter *tc);
108 #endif
109 
110 static struct timecounter tsc_timecounter = {
111 	.tc_get_timecount =		tsc_get_timecount,
112 	.tc_counter_mask =		~0u,
113 	.tc_name =			"TSC",
114 	.tc_quality =			800,	/* adjusted in code */
115 	.tc_fill_vdso_timehands = 	x86_tsc_vdso_timehands,
116 #ifdef COMPAT_FREEBSD32
117 	.tc_fill_vdso_timehands32 = 	x86_tsc_vdso_timehands32,
118 #endif
119 };
120 
121 static void
122 tsc_freq_vmware(void)
123 {
124 	u_int regs[4];
125 
126 	if (hv_high >= 0x40000010) {
127 		do_cpuid(0x40000010, regs);
128 		tsc_freq = regs[0] * 1000;
129 	} else {
130 		vmware_hvcall(VMW_HVCMD_GETHZ, regs);
131 		if (regs[1] != UINT_MAX)
132 			tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
133 	}
134 	tsc_is_invariant = 1;
135 }
136 
137 /*
138  * Calculate TSC frequency using information from the CPUID leaf 0x15
139  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15
140  * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor
141  * Frequency Information'.  Leaf 0x16 is described in the SDM as
142  * informational only, but if 0x15 did not work, and TSC calibration
143  * is disabled, it is the best we can get at all.  It should still be
144  * an improvement over the parsing of the CPU model name in
145  * tsc_freq_intel(), when available.
146  */
147 static bool
148 tsc_freq_cpuid(uint64_t *res)
149 {
150 	u_int regs[4];
151 
152 	if (cpu_high < 0x15)
153 		return (false);
154 	do_cpuid(0x15, regs);
155 	if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
156 		*res = (uint64_t)regs[2] * regs[1] / regs[0];
157 		return (true);
158 	}
159 
160 	if (cpu_high < 0x16)
161 		return (false);
162 	do_cpuid(0x16, regs);
163 	if (regs[0] != 0) {
164 		*res = (uint64_t)regs[0] * 1000000;
165 		return (true);
166 	}
167 
168 	return (false);
169 }
170 
171 static void
172 tsc_freq_intel(void)
173 {
174 	char brand[48];
175 	u_int regs[4];
176 	uint64_t freq;
177 	char *p;
178 	u_int i;
179 
180 	/*
181 	 * Intel Processor Identification and the CPUID Instruction
182 	 * Application Note 485.
183 	 * http://www.intel.com/assets/pdf/appnote/241618.pdf
184 	 */
185 	if (cpu_exthigh >= 0x80000004) {
186 		p = brand;
187 		for (i = 0x80000002; i < 0x80000005; i++) {
188 			do_cpuid(i, regs);
189 			memcpy(p, regs, sizeof(regs));
190 			p += sizeof(regs);
191 		}
192 		p = NULL;
193 		for (i = 0; i < sizeof(brand) - 1; i++)
194 			if (brand[i] == 'H' && brand[i + 1] == 'z')
195 				p = brand + i;
196 		if (p != NULL) {
197 			p -= 5;
198 			switch (p[4]) {
199 			case 'M':
200 				i = 1;
201 				break;
202 			case 'G':
203 				i = 1000;
204 				break;
205 			case 'T':
206 				i = 1000000;
207 				break;
208 			default:
209 				return;
210 			}
211 #define	C2D(c)	((c) - '0')
212 			if (p[1] == '.') {
213 				freq = C2D(p[0]) * 1000;
214 				freq += C2D(p[2]) * 100;
215 				freq += C2D(p[3]) * 10;
216 				freq *= i * 1000;
217 			} else {
218 				freq = C2D(p[0]) * 1000;
219 				freq += C2D(p[1]) * 100;
220 				freq += C2D(p[2]) * 10;
221 				freq += C2D(p[3]);
222 				freq *= i * 1000000;
223 			}
224 #undef C2D
225 			tsc_freq = freq;
226 		}
227 	}
228 }
229 
230 static void
231 probe_tsc_freq(void)
232 {
233 	uint64_t tmp_freq, tsc1, tsc2;
234 	int no_cpuid_override;
235 
236 	if (cpu_power_ecx & CPUID_PERF_STAT) {
237 		/*
238 		 * XXX Some emulators expose host CPUID without actual support
239 		 * for these MSRs.  We must test whether they really work.
240 		 */
241 		wrmsr(MSR_MPERF, 0);
242 		wrmsr(MSR_APERF, 0);
243 		DELAY(10);
244 		if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
245 			tsc_perf_stat = 1;
246 	}
247 
248 	if (vm_guest == VM_GUEST_VMWARE) {
249 		tsc_freq_vmware();
250 		return;
251 	}
252 
253 	switch (cpu_vendor_id) {
254 	case CPU_VENDOR_AMD:
255 	case CPU_VENDOR_HYGON:
256 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
257 		    (vm_guest == VM_GUEST_NO &&
258 		    CPUID_TO_FAMILY(cpu_id) >= 0x10))
259 			tsc_is_invariant = 1;
260 		if (cpu_feature & CPUID_SSE2) {
261 			tsc_timecounter.tc_get_timecount =
262 			    tsc_get_timecount_mfence;
263 		}
264 		break;
265 	case CPU_VENDOR_INTEL:
266 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
267 		    (vm_guest == VM_GUEST_NO &&
268 		    ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
269 		    CPUID_TO_MODEL(cpu_id) >= 0xe) ||
270 		    (CPUID_TO_FAMILY(cpu_id) == 0xf &&
271 		    CPUID_TO_MODEL(cpu_id) >= 0x3))))
272 			tsc_is_invariant = 1;
273 		if (cpu_feature & CPUID_SSE2) {
274 			tsc_timecounter.tc_get_timecount =
275 			    tsc_get_timecount_lfence;
276 		}
277 		break;
278 	case CPU_VENDOR_CENTAUR:
279 		if (vm_guest == VM_GUEST_NO &&
280 		    CPUID_TO_FAMILY(cpu_id) == 0x6 &&
281 		    CPUID_TO_MODEL(cpu_id) >= 0xf &&
282 		    (rdmsr(0x1203) & 0x100000000ULL) == 0)
283 			tsc_is_invariant = 1;
284 		if (cpu_feature & CPUID_SSE2) {
285 			tsc_timecounter.tc_get_timecount =
286 			    tsc_get_timecount_lfence;
287 		}
288 		break;
289 	}
290 
291 	if (tsc_skip_calibration) {
292 		if (tsc_freq_cpuid(&tmp_freq))
293 			tsc_freq = tmp_freq;
294 		else if (cpu_vendor_id == CPU_VENDOR_INTEL)
295 			tsc_freq_intel();
296 		if (tsc_freq == 0)
297 			tsc_disabled = 1;
298 	} else {
299 		if (bootverbose)
300 			printf("Calibrating TSC clock ... ");
301 		tsc1 = rdtsc();
302 		DELAY(1000000);
303 		tsc2 = rdtsc();
304 		tsc_freq = tsc2 - tsc1;
305 
306 		/*
307 		 * If the difference between calibrated frequency and
308 		 * the frequency reported by CPUID 0x15/0x16 leafs
309 		 * differ significantly, this probably means that
310 		 * calibration is bogus.  It happens on machines
311 		 * without 8254 timer.  The BIOS rarely properly
312 		 * reports it in FADT boot flags, so just compare the
313 		 * frequencies directly.
314 		 */
315 		if (tsc_freq_cpuid(&tmp_freq) && qabs(tsc_freq - tmp_freq) >
316 		    uqmin(tsc_freq, tmp_freq)) {
317 			no_cpuid_override = 0;
318 			TUNABLE_INT_FETCH("machdep.disable_tsc_cpuid_override",
319 			    &no_cpuid_override);
320 			if (!no_cpuid_override) {
321 				if (bootverbose) {
322 					printf(
323 	"TSC clock: calibration freq %ju Hz, CPUID freq %ju Hz%s\n",
324 					    (uintmax_t)tsc_freq,
325 					    (uintmax_t)tmp_freq,
326 					    no_cpuid_override ? "" :
327 					    ", doing CPUID override");
328 				}
329 				tsc_freq = tmp_freq;
330 			}
331 		}
332 	}
333 	if (bootverbose)
334 		printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
335 }
336 
337 void
338 init_TSC(void)
339 {
340 
341 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
342 		return;
343 
344 #ifdef __i386__
345 	/* The TSC is known to be broken on certain CPUs. */
346 	switch (cpu_vendor_id) {
347 	case CPU_VENDOR_AMD:
348 		switch (cpu_id & 0xFF0) {
349 		case 0x500:
350 			/* K5 Model 0 */
351 			return;
352 		}
353 		break;
354 	case CPU_VENDOR_CENTAUR:
355 		switch (cpu_id & 0xff0) {
356 		case 0x540:
357 			/*
358 			 * http://www.centtech.com/c6_data_sheet.pdf
359 			 *
360 			 * I-12 RDTSC may return incoherent values in EDX:EAX
361 			 * I-13 RDTSC hangs when certain event counters are used
362 			 */
363 			return;
364 		}
365 		break;
366 	case CPU_VENDOR_NSC:
367 		switch (cpu_id & 0xff0) {
368 		case 0x540:
369 			if ((cpu_id & CPUID_STEPPING) == 0)
370 				return;
371 			break;
372 		}
373 		break;
374 	}
375 #endif
376 
377 	probe_tsc_freq();
378 
379 	/*
380 	 * Inform CPU accounting about our boot-time clock rate.  This will
381 	 * be updated if someone loads a cpufreq driver after boot that
382 	 * discovers a new max frequency.
383 	 */
384 	if (tsc_freq != 0)
385 		set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
386 
387 	if (tsc_is_invariant)
388 		return;
389 
390 	/* Register to find out about changes in CPU frequency. */
391 	tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
392 	    tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
393 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
394 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
395 	tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
396 	    tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
397 }
398 
399 #ifdef SMP
400 
401 /*
402  * RDTSC is not a serializing instruction, and does not drain
403  * instruction stream, so we need to drain the stream before executing
404  * it.  It could be fixed by use of RDTSCP, except the instruction is
405  * not available everywhere.
406  *
407  * Use CPUID for draining in the boot-time SMP constistency test.  The
408  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
409  * and VIA) when SSE2 is present, and nothing on older machines which
410  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
411  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
412  *
413  * Do not use do_cpuid(), since we do not need CPUID results, which
414  * have to be written into memory with do_cpuid().
415  */
416 #define	TSC_READ(x)							\
417 static void								\
418 tsc_read_##x(void *arg)							\
419 {									\
420 	uint64_t *tsc = arg;						\
421 	u_int cpu = PCPU_GET(cpuid);					\
422 									\
423 	__asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");	\
424 	tsc[cpu * 3 + x] = rdtsc();					\
425 }
426 TSC_READ(0)
427 TSC_READ(1)
428 TSC_READ(2)
429 #undef TSC_READ
430 
431 #define	N	1000
432 
433 static void
434 comp_smp_tsc(void *arg)
435 {
436 	uint64_t *tsc;
437 	int64_t d1, d2;
438 	u_int cpu = PCPU_GET(cpuid);
439 	u_int i, j, size;
440 
441 	size = (mp_maxid + 1) * 3;
442 	for (i = 0, tsc = arg; i < N; i++, tsc += size)
443 		CPU_FOREACH(j) {
444 			if (j == cpu)
445 				continue;
446 			d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
447 			d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
448 			if (d1 <= 0 || d2 <= 0) {
449 				smp_tsc = 0;
450 				return;
451 			}
452 		}
453 }
454 
455 static void
456 adj_smp_tsc(void *arg)
457 {
458 	uint64_t *tsc;
459 	int64_t d, min, max;
460 	u_int cpu = PCPU_GET(cpuid);
461 	u_int first, i, size;
462 
463 	first = CPU_FIRST();
464 	if (cpu == first)
465 		return;
466 	min = INT64_MIN;
467 	max = INT64_MAX;
468 	size = (mp_maxid + 1) * 3;
469 	for (i = 0, tsc = arg; i < N; i++, tsc += size) {
470 		d = tsc[first * 3] - tsc[cpu * 3 + 1];
471 		if (d > min)
472 			min = d;
473 		d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
474 		if (d > min)
475 			min = d;
476 		d = tsc[first * 3 + 1] - tsc[cpu * 3];
477 		if (d < max)
478 			max = d;
479 		d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
480 		if (d < max)
481 			max = d;
482 	}
483 	if (min > max)
484 		return;
485 	d = min / 2 + max / 2;
486 	__asm __volatile (
487 		"movl $0x10, %%ecx\n\t"
488 		"rdmsr\n\t"
489 		"addl %%edi, %%eax\n\t"
490 		"adcl %%esi, %%edx\n\t"
491 		"wrmsr\n"
492 		: /* No output */
493 		: "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
494 		: "ax", "cx", "dx", "cc"
495 	);
496 }
497 
498 static int
499 test_tsc(int adj_max_count)
500 {
501 	uint64_t *data, *tsc;
502 	u_int i, size, adj;
503 
504 	if ((!smp_tsc && !tsc_is_invariant))
505 		return (-100);
506 	/*
507 	 * Misbehavior of TSC under VirtualBox has been observed.  In
508 	 * particular, threads doing small (~1 second) sleeps may miss their
509 	 * wakeup and hang around in sleep state, causing hangs on shutdown.
510 	 */
511 	if (vm_guest == VM_GUEST_VBOX)
512 		return (0);
513 
514 	size = (mp_maxid + 1) * 3;
515 	data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
516 	adj = 0;
517 retry:
518 	for (i = 0, tsc = data; i < N; i++, tsc += size)
519 		smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
520 	smp_tsc = 1;	/* XXX */
521 	smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
522 	    smp_no_rendezvous_barrier, data);
523 	if (!smp_tsc && adj < adj_max_count) {
524 		adj++;
525 		smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
526 		    smp_no_rendezvous_barrier, data);
527 		goto retry;
528 	}
529 	free(data, M_TEMP);
530 	if (bootverbose)
531 		printf("SMP: %sed TSC synchronization test%s\n",
532 		    smp_tsc ? "pass" : "fail",
533 		    adj > 0 ? " after adjustment" : "");
534 	if (smp_tsc && tsc_is_invariant) {
535 		switch (cpu_vendor_id) {
536 		case CPU_VENDOR_AMD:
537 		case CPU_VENDOR_HYGON:
538 			/*
539 			 * Processor Programming Reference (PPR) for AMD
540 			 * Family 17h states that the TSC uses a common
541 			 * reference for all sockets, cores and threads.
542 			 */
543 			if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
544 				return (1000);
545 			/*
546 			 * Starting with Family 15h processors, TSC clock
547 			 * source is in the north bridge.  Check whether
548 			 * we have a single-socket/multi-core platform.
549 			 * XXX Need more work for complex cases.
550 			 */
551 			if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
552 			    (amd_feature2 & AMDID2_CMP) == 0 ||
553 			    smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
554 				break;
555 			return (1000);
556 		case CPU_VENDOR_INTEL:
557 			/*
558 			 * XXX Assume Intel platforms have synchronized TSCs.
559 			 */
560 			return (1000);
561 		}
562 		return (800);
563 	}
564 	return (-100);
565 }
566 
567 #undef N
568 
569 #endif /* SMP */
570 
571 static void
572 init_TSC_tc(void)
573 {
574 	uint64_t max_freq;
575 	int shift;
576 
577 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
578 		return;
579 
580 	/*
581 	 * Limit timecounter frequency to fit in an int and prevent it from
582 	 * overflowing too fast.
583 	 */
584 	max_freq = UINT_MAX;
585 
586 	/*
587 	 * We can not use the TSC if we support APM.  Precise timekeeping
588 	 * on an APM'ed machine is at best a fools pursuit, since
589 	 * any and all of the time spent in various SMM code can't
590 	 * be reliably accounted for.  Reading the RTC is your only
591 	 * source of reliable time info.  The i8254 loses too, of course,
592 	 * but we need to have some kind of time...
593 	 * We don't know at this point whether APM is going to be used
594 	 * or not, nor when it might be activated.  Play it safe.
595 	 */
596 	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
597 		tsc_timecounter.tc_quality = -1000;
598 		if (bootverbose)
599 			printf("TSC timecounter disabled: APM enabled.\n");
600 		goto init;
601 	}
602 
603 	/*
604 	 * Intel CPUs without a C-state invariant TSC can stop the TSC
605 	 * in either C2 or C3.  Disable use of C2 and C3 while using
606 	 * the TSC as the timecounter.  The timecounter can be changed
607 	 * to enable C2 and C3.
608 	 *
609 	 * Note that the TSC is used as the cputicker for computing
610 	 * thread runtime regardless of the timecounter setting, so
611 	 * using an alternate timecounter and enabling C2 or C3 can
612 	 * result incorrect runtimes for kernel idle threads (but not
613 	 * for any non-idle threads).
614 	 */
615 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
616 	    (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
617 		tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
618 		if (bootverbose)
619 			printf("TSC timecounter disables C2 and C3.\n");
620 	}
621 
622 	/*
623 	 * We can not use the TSC in SMP mode unless the TSCs on all CPUs
624 	 * are synchronized.  If the user is sure that the system has
625 	 * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
626 	 * non-zero value.  The TSC seems unreliable in virtualized SMP
627 	 * environments, so it is set to a negative quality in those cases.
628 	 */
629 #ifdef SMP
630 	if (mp_ncpus > 1)
631 		tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
632 	else
633 #endif /* SMP */
634 	if (tsc_is_invariant)
635 		tsc_timecounter.tc_quality = 1000;
636 	max_freq >>= tsc_shift;
637 
638 init:
639 	for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
640 		;
641 
642 	/*
643 	 * Timecounter implementation selection, top to bottom:
644 	 * - If RDTSCP is available, use RDTSCP.
645 	 * - If fence instructions are provided (SSE2), use LFENCE;RDTSC
646 	 *   on Intel, and MFENCE;RDTSC on AMD.
647 	 * - For really old CPUs, just use RDTSC.
648 	 */
649 	if ((amd_feature & AMDID_RDTSCP) != 0) {
650 		tsc_timecounter.tc_get_timecount = shift > 0 ?
651 		    tscp_get_timecount_low : tscp_get_timecount;
652 	} else if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
653 		if (cpu_vendor_id == CPU_VENDOR_AMD ||
654 		    cpu_vendor_id == CPU_VENDOR_HYGON) {
655 			tsc_timecounter.tc_get_timecount = shift > 0 ?
656 			    tsc_get_timecount_low_mfence :
657 			    tsc_get_timecount_mfence;
658 		} else {
659 			tsc_timecounter.tc_get_timecount = shift > 0 ?
660 			    tsc_get_timecount_low_lfence :
661 			    tsc_get_timecount_lfence;
662 		}
663 	} else {
664 		tsc_timecounter.tc_get_timecount = shift > 0 ?
665 		    tsc_get_timecount_low : tsc_get_timecount;
666 	}
667 	if (shift > 0) {
668 		tsc_timecounter.tc_name = "TSC-low";
669 		if (bootverbose)
670 			printf("TSC timecounter discards lower %d bit(s)\n",
671 			    shift);
672 	}
673 	if (tsc_freq != 0) {
674 		tsc_timecounter.tc_frequency = tsc_freq >> shift;
675 		tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
676 		tc_init(&tsc_timecounter);
677 	}
678 }
679 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
680 
681 void
682 resume_TSC(void)
683 {
684 #ifdef SMP
685 	int quality;
686 
687 	/* If TSC was not good on boot, it is unlikely to become good now. */
688 	if (tsc_timecounter.tc_quality < 0)
689 		return;
690 	/* Nothing to do with UP. */
691 	if (mp_ncpus < 2)
692 		return;
693 
694 	/*
695 	 * If TSC was good, a single synchronization should be enough,
696 	 * but honour smp_tsc_adjust if it's set.
697 	 */
698 	quality = test_tsc(MAX(smp_tsc_adjust, 1));
699 	if (quality != tsc_timecounter.tc_quality) {
700 		printf("TSC timecounter quality changed: %d -> %d\n",
701 		    tsc_timecounter.tc_quality, quality);
702 		tsc_timecounter.tc_quality = quality;
703 	}
704 #endif /* SMP */
705 }
706 
707 /*
708  * When cpufreq levels change, find out about the (new) max frequency.  We
709  * use this to update CPU accounting in case it got a lower estimate at boot.
710  */
711 static void
712 tsc_levels_changed(void *arg, int unit)
713 {
714 	device_t cf_dev;
715 	struct cf_level *levels;
716 	int count, error;
717 	uint64_t max_freq;
718 
719 	/* Only use values from the first CPU, assuming all are equal. */
720 	if (unit != 0)
721 		return;
722 
723 	/* Find the appropriate cpufreq device instance. */
724 	cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
725 	if (cf_dev == NULL) {
726 		printf("tsc_levels_changed() called but no cpufreq device?\n");
727 		return;
728 	}
729 
730 	/* Get settings from the device and find the max frequency. */
731 	count = 64;
732 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
733 	if (levels == NULL)
734 		return;
735 	error = CPUFREQ_LEVELS(cf_dev, levels, &count);
736 	if (error == 0 && count != 0) {
737 		max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
738 		set_cputicker(rdtsc, max_freq, 1);
739 	} else
740 		printf("tsc_levels_changed: no max freq found\n");
741 	free(levels, M_TEMP);
742 }
743 
744 /*
745  * If the TSC timecounter is in use, veto the pending change.  It may be
746  * possible in the future to handle a dynamically-changing timecounter rate.
747  */
748 static void
749 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
750 {
751 
752 	if (*status != 0 || timecounter != &tsc_timecounter)
753 		return;
754 
755 	printf("timecounter TSC must not be in use when "
756 	    "changing frequencies; change denied\n");
757 	*status = EBUSY;
758 }
759 
760 /* Update TSC freq with the value indicated by the caller. */
761 static void
762 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
763 {
764 	uint64_t freq;
765 
766 	/* If there was an error during the transition, don't do anything. */
767 	if (tsc_disabled || status != 0)
768 		return;
769 
770 	/* Total setting for this level gives the new frequency in MHz. */
771 	freq = (uint64_t)level->total_set.freq * 1000000;
772 	atomic_store_rel_64(&tsc_freq, freq);
773 	tsc_timecounter.tc_frequency =
774 	    freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
775 }
776 
777 static int
778 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
779 {
780 	int error;
781 	uint64_t freq;
782 
783 	freq = atomic_load_acq_64(&tsc_freq);
784 	if (freq == 0)
785 		return (EOPNOTSUPP);
786 	error = sysctl_handle_64(oidp, &freq, 0, req);
787 	if (error == 0 && req->newptr != NULL) {
788 		atomic_store_rel_64(&tsc_freq, freq);
789 		atomic_store_rel_64(&tsc_timecounter.tc_frequency,
790 		    freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
791 	}
792 	return (error);
793 }
794 
795 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq,
796     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
797     0, 0, sysctl_machdep_tsc_freq, "QU",
798     "Time Stamp Counter frequency");
799 
800 static u_int
801 tsc_get_timecount(struct timecounter *tc __unused)
802 {
803 
804 	return (rdtsc32());
805 }
806 
807 static u_int
808 tscp_get_timecount(struct timecounter *tc __unused)
809 {
810 
811 	return (rdtscp32());
812 }
813 
814 static inline u_int
815 tsc_get_timecount_low(struct timecounter *tc)
816 {
817 	uint32_t rv;
818 
819 	__asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
820 	    : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
821 	return (rv);
822 }
823 
824 static u_int
825 tscp_get_timecount_low(struct timecounter *tc)
826 {
827 	uint32_t rv;
828 
829 	__asm __volatile("rdtscp; movl %1, %%ecx; shrd %%cl, %%edx, %0"
830 	    : "=&a" (rv) : "m" (tc->tc_priv) : "ecx", "edx");
831 	return (rv);
832 }
833 
834 static u_int
835 tsc_get_timecount_lfence(struct timecounter *tc __unused)
836 {
837 
838 	lfence();
839 	return (rdtsc32());
840 }
841 
842 static u_int
843 tsc_get_timecount_low_lfence(struct timecounter *tc)
844 {
845 
846 	lfence();
847 	return (tsc_get_timecount_low(tc));
848 }
849 
850 static u_int
851 tsc_get_timecount_mfence(struct timecounter *tc __unused)
852 {
853 
854 	mfence();
855 	return (rdtsc32());
856 }
857 
858 static u_int
859 tsc_get_timecount_low_mfence(struct timecounter *tc)
860 {
861 
862 	mfence();
863 	return (tsc_get_timecount_low(tc));
864 }
865 
866 static uint32_t
867 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
868 {
869 
870 	vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
871 	vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
872 	vdso_th->th_x86_hpet_idx = 0xffffffff;
873 	vdso_th->th_x86_pvc_last_systime = 0;
874 	vdso_th->th_x86_pvc_stable_mask = 0;
875 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
876 	return (1);
877 }
878 
879 #ifdef COMPAT_FREEBSD32
880 static uint32_t
881 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
882     struct timecounter *tc)
883 {
884 
885 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
886 	vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
887 	vdso_th32->th_x86_hpet_idx = 0xffffffff;
888 	vdso_th32->th_x86_pvc_last_systime = 0;
889 	vdso_th32->th_x86_pvc_stable_mask = 0;
890 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
891 	return (1);
892 }
893 #endif
894