xref: /freebsd/sys/x86/x86/tsc.c (revision 2938ecc85c29202824e83d65af5c3a4fb7b3e5fb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_clock.h"
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/cpu.h>
37 #include <sys/eventhandler.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/time.h>
43 #include <sys/timetc.h>
44 #include <sys/kernel.h>
45 #include <sys/power.h>
46 #include <sys/smp.h>
47 #include <sys/vdso.h>
48 #include <machine/clock.h>
49 #include <machine/cputypes.h>
50 #include <machine/md_var.h>
51 #include <machine/specialreg.h>
52 #include <x86/vmware.h>
53 #include <dev/acpica/acpi_hpet.h>
54 #include <contrib/dev/acpica/include/acpi.h>
55 
56 #include "cpufreq_if.h"
57 
58 uint64_t	tsc_freq;
59 int		tsc_is_invariant;
60 int		tsc_perf_stat;
61 
62 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
63 
64 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
65     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
66 
67 #ifdef SMP
68 int	smp_tsc;
69 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
70     "Indicates whether the TSC is safe to use in SMP mode");
71 
72 int	smp_tsc_adjust = 0;
73 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
74     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
75 #endif
76 
77 static int	tsc_shift = 1;
78 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
79     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
80 
81 static int	tsc_disabled;
82 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
83     "Disable x86 Time Stamp Counter");
84 
85 static int	tsc_skip_calibration;
86 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
87     &tsc_skip_calibration, 0,
88     "Disable TSC frequency calibration");
89 
90 static void tsc_freq_changed(void *arg, const struct cf_level *level,
91     int status);
92 static void tsc_freq_changing(void *arg, const struct cf_level *level,
93     int *status);
94 static unsigned tsc_get_timecount(struct timecounter *tc);
95 static inline unsigned tsc_get_timecount_low(struct timecounter *tc);
96 static unsigned tsc_get_timecount_lfence(struct timecounter *tc);
97 static unsigned tsc_get_timecount_low_lfence(struct timecounter *tc);
98 static unsigned tsc_get_timecount_mfence(struct timecounter *tc);
99 static unsigned tsc_get_timecount_low_mfence(struct timecounter *tc);
100 static void tsc_levels_changed(void *arg, int unit);
101 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
102     struct timecounter *tc);
103 #ifdef COMPAT_FREEBSD32
104 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
105     struct timecounter *tc);
106 #endif
107 
108 static struct timecounter tsc_timecounter = {
109 	.tc_get_timecount =		tsc_get_timecount,
110 	.tc_counter_mask =		~0u,
111 	.tc_name =			"TSC",
112 	.tc_quality =			800,	/* adjusted in code */
113 	.tc_fill_vdso_timehands = 	x86_tsc_vdso_timehands,
114 #ifdef COMPAT_FREEBSD32
115 	.tc_fill_vdso_timehands32 = 	x86_tsc_vdso_timehands32,
116 #endif
117 };
118 
119 static void
120 tsc_freq_vmware(void)
121 {
122 	u_int regs[4];
123 
124 	if (hv_high >= 0x40000010) {
125 		do_cpuid(0x40000010, regs);
126 		tsc_freq = regs[0] * 1000;
127 	} else {
128 		vmware_hvcall(VMW_HVCMD_GETHZ, regs);
129 		if (regs[1] != UINT_MAX)
130 			tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
131 	}
132 	tsc_is_invariant = 1;
133 }
134 
135 /*
136  * Calculate TSC frequency using information from the CPUID leaf 0x15
137  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15
138  * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor
139  * Frequency Information'.  Leaf 0x16 is described in the SDM as
140  * informational only, but if 0x15 did not work, and TSC calibration
141  * is disabled, it is the best we can get at all.  It should still be
142  * an improvement over the parsing of the CPU model name in
143  * tsc_freq_intel(), when available.
144  */
145 static bool
146 tsc_freq_cpuid(uint64_t *res)
147 {
148 	u_int regs[4];
149 
150 	if (cpu_high < 0x15)
151 		return (false);
152 	do_cpuid(0x15, regs);
153 	if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
154 		*res = (uint64_t)regs[2] * regs[1] / regs[0];
155 		return (true);
156 	}
157 
158 	if (cpu_high < 0x16)
159 		return (false);
160 	do_cpuid(0x16, regs);
161 	if (regs[0] != 0) {
162 		*res = (uint64_t)regs[0] * 1000000;
163 		return (true);
164 	}
165 
166 	return (false);
167 }
168 
169 static void
170 tsc_freq_intel(void)
171 {
172 	char brand[48];
173 	u_int regs[4];
174 	uint64_t freq;
175 	char *p;
176 	u_int i;
177 
178 	/*
179 	 * Intel Processor Identification and the CPUID Instruction
180 	 * Application Note 485.
181 	 * http://www.intel.com/assets/pdf/appnote/241618.pdf
182 	 */
183 	if (cpu_exthigh >= 0x80000004) {
184 		p = brand;
185 		for (i = 0x80000002; i < 0x80000005; i++) {
186 			do_cpuid(i, regs);
187 			memcpy(p, regs, sizeof(regs));
188 			p += sizeof(regs);
189 		}
190 		p = NULL;
191 		for (i = 0; i < sizeof(brand) - 1; i++)
192 			if (brand[i] == 'H' && brand[i + 1] == 'z')
193 				p = brand + i;
194 		if (p != NULL) {
195 			p -= 5;
196 			switch (p[4]) {
197 			case 'M':
198 				i = 1;
199 				break;
200 			case 'G':
201 				i = 1000;
202 				break;
203 			case 'T':
204 				i = 1000000;
205 				break;
206 			default:
207 				return;
208 			}
209 #define	C2D(c)	((c) - '0')
210 			if (p[1] == '.') {
211 				freq = C2D(p[0]) * 1000;
212 				freq += C2D(p[2]) * 100;
213 				freq += C2D(p[3]) * 10;
214 				freq *= i * 1000;
215 			} else {
216 				freq = C2D(p[0]) * 1000;
217 				freq += C2D(p[1]) * 100;
218 				freq += C2D(p[2]) * 10;
219 				freq += C2D(p[3]);
220 				freq *= i * 1000000;
221 			}
222 #undef C2D
223 			tsc_freq = freq;
224 		}
225 	}
226 }
227 
228 static void
229 probe_tsc_freq(void)
230 {
231 	uint64_t tmp_freq, tsc1, tsc2;
232 	int no_cpuid_override;
233 
234 	if (cpu_power_ecx & CPUID_PERF_STAT) {
235 		/*
236 		 * XXX Some emulators expose host CPUID without actual support
237 		 * for these MSRs.  We must test whether they really work.
238 		 */
239 		wrmsr(MSR_MPERF, 0);
240 		wrmsr(MSR_APERF, 0);
241 		DELAY(10);
242 		if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
243 			tsc_perf_stat = 1;
244 	}
245 
246 	if (vm_guest == VM_GUEST_VMWARE) {
247 		tsc_freq_vmware();
248 		return;
249 	}
250 
251 	switch (cpu_vendor_id) {
252 	case CPU_VENDOR_AMD:
253 	case CPU_VENDOR_HYGON:
254 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
255 		    (vm_guest == VM_GUEST_NO &&
256 		    CPUID_TO_FAMILY(cpu_id) >= 0x10))
257 			tsc_is_invariant = 1;
258 		if (cpu_feature & CPUID_SSE2) {
259 			tsc_timecounter.tc_get_timecount =
260 			    tsc_get_timecount_mfence;
261 		}
262 		break;
263 	case CPU_VENDOR_INTEL:
264 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
265 		    (vm_guest == VM_GUEST_NO &&
266 		    ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
267 		    CPUID_TO_MODEL(cpu_id) >= 0xe) ||
268 		    (CPUID_TO_FAMILY(cpu_id) == 0xf &&
269 		    CPUID_TO_MODEL(cpu_id) >= 0x3))))
270 			tsc_is_invariant = 1;
271 		if (cpu_feature & CPUID_SSE2) {
272 			tsc_timecounter.tc_get_timecount =
273 			    tsc_get_timecount_lfence;
274 		}
275 		break;
276 	case CPU_VENDOR_CENTAUR:
277 		if (vm_guest == VM_GUEST_NO &&
278 		    CPUID_TO_FAMILY(cpu_id) == 0x6 &&
279 		    CPUID_TO_MODEL(cpu_id) >= 0xf &&
280 		    (rdmsr(0x1203) & 0x100000000ULL) == 0)
281 			tsc_is_invariant = 1;
282 		if (cpu_feature & CPUID_SSE2) {
283 			tsc_timecounter.tc_get_timecount =
284 			    tsc_get_timecount_lfence;
285 		}
286 		break;
287 	}
288 
289 	if (tsc_skip_calibration) {
290 		if (tsc_freq_cpuid(&tmp_freq))
291 			tsc_freq = tmp_freq;
292 		else if (cpu_vendor_id == CPU_VENDOR_INTEL)
293 			tsc_freq_intel();
294 		if (tsc_freq == 0)
295 			tsc_disabled = 1;
296 	} else {
297 		if (bootverbose)
298 			printf("Calibrating TSC clock ... ");
299 		tsc1 = rdtsc();
300 		DELAY(1000000);
301 		tsc2 = rdtsc();
302 		tsc_freq = tsc2 - tsc1;
303 
304 		/*
305 		 * If the difference between calibrated frequency and
306 		 * the frequency reported by CPUID 0x15/0x16 leafs
307 		 * differ significantly, this probably means that
308 		 * calibration is bogus.  It happens on machines
309 		 * without 8254 timer.  The BIOS rarely properly
310 		 * reports it in FADT boot flags, so just compare the
311 		 * frequencies directly.
312 		 */
313 		if (tsc_freq_cpuid(&tmp_freq) && qabs(tsc_freq - tmp_freq) >
314 		    uqmin(tsc_freq, tmp_freq)) {
315 			no_cpuid_override = 0;
316 			TUNABLE_INT_FETCH("machdep.disable_tsc_cpuid_override",
317 			    &no_cpuid_override);
318 			if (!no_cpuid_override) {
319 				if (bootverbose) {
320 					printf(
321 	"TSC clock: calibration freq %ju Hz, CPUID freq %ju Hz%s\n",
322 					    (uintmax_t)tsc_freq,
323 					    (uintmax_t)tmp_freq,
324 					    no_cpuid_override ? "" :
325 					    ", doing CPUID override");
326 				}
327 				tsc_freq = tmp_freq;
328 			}
329 		}
330 	}
331 	if (bootverbose)
332 		printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
333 }
334 
335 void
336 init_TSC(void)
337 {
338 
339 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
340 		return;
341 
342 #ifdef __i386__
343 	/* The TSC is known to be broken on certain CPUs. */
344 	switch (cpu_vendor_id) {
345 	case CPU_VENDOR_AMD:
346 		switch (cpu_id & 0xFF0) {
347 		case 0x500:
348 			/* K5 Model 0 */
349 			return;
350 		}
351 		break;
352 	case CPU_VENDOR_CENTAUR:
353 		switch (cpu_id & 0xff0) {
354 		case 0x540:
355 			/*
356 			 * http://www.centtech.com/c6_data_sheet.pdf
357 			 *
358 			 * I-12 RDTSC may return incoherent values in EDX:EAX
359 			 * I-13 RDTSC hangs when certain event counters are used
360 			 */
361 			return;
362 		}
363 		break;
364 	case CPU_VENDOR_NSC:
365 		switch (cpu_id & 0xff0) {
366 		case 0x540:
367 			if ((cpu_id & CPUID_STEPPING) == 0)
368 				return;
369 			break;
370 		}
371 		break;
372 	}
373 #endif
374 
375 	probe_tsc_freq();
376 
377 	/*
378 	 * Inform CPU accounting about our boot-time clock rate.  This will
379 	 * be updated if someone loads a cpufreq driver after boot that
380 	 * discovers a new max frequency.
381 	 */
382 	if (tsc_freq != 0)
383 		set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
384 
385 	if (tsc_is_invariant)
386 		return;
387 
388 	/* Register to find out about changes in CPU frequency. */
389 	tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
390 	    tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
391 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
392 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
393 	tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
394 	    tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
395 }
396 
397 #ifdef SMP
398 
399 /*
400  * RDTSC is not a serializing instruction, and does not drain
401  * instruction stream, so we need to drain the stream before executing
402  * it.  It could be fixed by use of RDTSCP, except the instruction is
403  * not available everywhere.
404  *
405  * Use CPUID for draining in the boot-time SMP constistency test.  The
406  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
407  * and VIA) when SSE2 is present, and nothing on older machines which
408  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
409  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
410  *
411  * Do not use do_cpuid(), since we do not need CPUID results, which
412  * have to be written into memory with do_cpuid().
413  */
414 #define	TSC_READ(x)							\
415 static void								\
416 tsc_read_##x(void *arg)							\
417 {									\
418 	uint64_t *tsc = arg;						\
419 	u_int cpu = PCPU_GET(cpuid);					\
420 									\
421 	__asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");	\
422 	tsc[cpu * 3 + x] = rdtsc();					\
423 }
424 TSC_READ(0)
425 TSC_READ(1)
426 TSC_READ(2)
427 #undef TSC_READ
428 
429 #define	N	1000
430 
431 static void
432 comp_smp_tsc(void *arg)
433 {
434 	uint64_t *tsc;
435 	int64_t d1, d2;
436 	u_int cpu = PCPU_GET(cpuid);
437 	u_int i, j, size;
438 
439 	size = (mp_maxid + 1) * 3;
440 	for (i = 0, tsc = arg; i < N; i++, tsc += size)
441 		CPU_FOREACH(j) {
442 			if (j == cpu)
443 				continue;
444 			d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
445 			d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
446 			if (d1 <= 0 || d2 <= 0) {
447 				smp_tsc = 0;
448 				return;
449 			}
450 		}
451 }
452 
453 static void
454 adj_smp_tsc(void *arg)
455 {
456 	uint64_t *tsc;
457 	int64_t d, min, max;
458 	u_int cpu = PCPU_GET(cpuid);
459 	u_int first, i, size;
460 
461 	first = CPU_FIRST();
462 	if (cpu == first)
463 		return;
464 	min = INT64_MIN;
465 	max = INT64_MAX;
466 	size = (mp_maxid + 1) * 3;
467 	for (i = 0, tsc = arg; i < N; i++, tsc += size) {
468 		d = tsc[first * 3] - tsc[cpu * 3 + 1];
469 		if (d > min)
470 			min = d;
471 		d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
472 		if (d > min)
473 			min = d;
474 		d = tsc[first * 3 + 1] - tsc[cpu * 3];
475 		if (d < max)
476 			max = d;
477 		d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
478 		if (d < max)
479 			max = d;
480 	}
481 	if (min > max)
482 		return;
483 	d = min / 2 + max / 2;
484 	__asm __volatile (
485 		"movl $0x10, %%ecx\n\t"
486 		"rdmsr\n\t"
487 		"addl %%edi, %%eax\n\t"
488 		"adcl %%esi, %%edx\n\t"
489 		"wrmsr\n"
490 		: /* No output */
491 		: "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
492 		: "ax", "cx", "dx", "cc"
493 	);
494 }
495 
496 static int
497 test_tsc(int adj_max_count)
498 {
499 	uint64_t *data, *tsc;
500 	u_int i, size, adj;
501 
502 	if ((!smp_tsc && !tsc_is_invariant) || vm_guest)
503 		return (-100);
504 	size = (mp_maxid + 1) * 3;
505 	data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
506 	adj = 0;
507 retry:
508 	for (i = 0, tsc = data; i < N; i++, tsc += size)
509 		smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
510 	smp_tsc = 1;	/* XXX */
511 	smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
512 	    smp_no_rendezvous_barrier, data);
513 	if (!smp_tsc && adj < adj_max_count) {
514 		adj++;
515 		smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
516 		    smp_no_rendezvous_barrier, data);
517 		goto retry;
518 	}
519 	free(data, M_TEMP);
520 	if (bootverbose)
521 		printf("SMP: %sed TSC synchronization test%s\n",
522 		    smp_tsc ? "pass" : "fail",
523 		    adj > 0 ? " after adjustment" : "");
524 	if (smp_tsc && tsc_is_invariant) {
525 		switch (cpu_vendor_id) {
526 		case CPU_VENDOR_AMD:
527 		case CPU_VENDOR_HYGON:
528 			/*
529 			 * Processor Programming Reference (PPR) for AMD
530 			 * Family 17h states that the TSC uses a common
531 			 * reference for all sockets, cores and threads.
532 			 */
533 			if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
534 				return (1000);
535 			/*
536 			 * Starting with Family 15h processors, TSC clock
537 			 * source is in the north bridge.  Check whether
538 			 * we have a single-socket/multi-core platform.
539 			 * XXX Need more work for complex cases.
540 			 */
541 			if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
542 			    (amd_feature2 & AMDID2_CMP) == 0 ||
543 			    smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
544 				break;
545 			return (1000);
546 		case CPU_VENDOR_INTEL:
547 			/*
548 			 * XXX Assume Intel platforms have synchronized TSCs.
549 			 */
550 			return (1000);
551 		}
552 		return (800);
553 	}
554 	return (-100);
555 }
556 
557 #undef N
558 
559 #endif /* SMP */
560 
561 static void
562 init_TSC_tc(void)
563 {
564 	uint64_t max_freq;
565 	int shift;
566 
567 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
568 		return;
569 
570 	/*
571 	 * Limit timecounter frequency to fit in an int and prevent it from
572 	 * overflowing too fast.
573 	 */
574 	max_freq = UINT_MAX;
575 
576 	/*
577 	 * We can not use the TSC if we support APM.  Precise timekeeping
578 	 * on an APM'ed machine is at best a fools pursuit, since
579 	 * any and all of the time spent in various SMM code can't
580 	 * be reliably accounted for.  Reading the RTC is your only
581 	 * source of reliable time info.  The i8254 loses too, of course,
582 	 * but we need to have some kind of time...
583 	 * We don't know at this point whether APM is going to be used
584 	 * or not, nor when it might be activated.  Play it safe.
585 	 */
586 	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
587 		tsc_timecounter.tc_quality = -1000;
588 		if (bootverbose)
589 			printf("TSC timecounter disabled: APM enabled.\n");
590 		goto init;
591 	}
592 
593 	/*
594 	 * Intel CPUs without a C-state invariant TSC can stop the TSC
595 	 * in either C2 or C3.  Disable use of C2 and C3 while using
596 	 * the TSC as the timecounter.  The timecounter can be changed
597 	 * to enable C2 and C3.
598 	 *
599 	 * Note that the TSC is used as the cputicker for computing
600 	 * thread runtime regardless of the timecounter setting, so
601 	 * using an alternate timecounter and enabling C2 or C3 can
602 	 * result incorrect runtimes for kernel idle threads (but not
603 	 * for any non-idle threads).
604 	 */
605 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
606 	    (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
607 		tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
608 		if (bootverbose)
609 			printf("TSC timecounter disables C2 and C3.\n");
610 	}
611 
612 	/*
613 	 * We can not use the TSC in SMP mode unless the TSCs on all CPUs
614 	 * are synchronized.  If the user is sure that the system has
615 	 * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
616 	 * non-zero value.  The TSC seems unreliable in virtualized SMP
617 	 * environments, so it is set to a negative quality in those cases.
618 	 */
619 #ifdef SMP
620 	if (mp_ncpus > 1)
621 		tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
622 	else
623 #endif /* SMP */
624 	if (tsc_is_invariant)
625 		tsc_timecounter.tc_quality = 1000;
626 	max_freq >>= tsc_shift;
627 
628 init:
629 	for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
630 		;
631 	if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
632 		if (cpu_vendor_id == CPU_VENDOR_AMD ||
633 		    cpu_vendor_id == CPU_VENDOR_HYGON) {
634 			tsc_timecounter.tc_get_timecount = shift > 0 ?
635 			    tsc_get_timecount_low_mfence :
636 			    tsc_get_timecount_mfence;
637 		} else {
638 			tsc_timecounter.tc_get_timecount = shift > 0 ?
639 			    tsc_get_timecount_low_lfence :
640 			    tsc_get_timecount_lfence;
641 		}
642 	} else {
643 		tsc_timecounter.tc_get_timecount = shift > 0 ?
644 		    tsc_get_timecount_low : tsc_get_timecount;
645 	}
646 	if (shift > 0) {
647 		tsc_timecounter.tc_name = "TSC-low";
648 		if (bootverbose)
649 			printf("TSC timecounter discards lower %d bit(s)\n",
650 			    shift);
651 	}
652 	if (tsc_freq != 0) {
653 		tsc_timecounter.tc_frequency = tsc_freq >> shift;
654 		tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
655 		tc_init(&tsc_timecounter);
656 	}
657 }
658 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
659 
660 void
661 resume_TSC(void)
662 {
663 #ifdef SMP
664 	int quality;
665 
666 	/* If TSC was not good on boot, it is unlikely to become good now. */
667 	if (tsc_timecounter.tc_quality < 0)
668 		return;
669 	/* Nothing to do with UP. */
670 	if (mp_ncpus < 2)
671 		return;
672 
673 	/*
674 	 * If TSC was good, a single synchronization should be enough,
675 	 * but honour smp_tsc_adjust if it's set.
676 	 */
677 	quality = test_tsc(MAX(smp_tsc_adjust, 1));
678 	if (quality != tsc_timecounter.tc_quality) {
679 		printf("TSC timecounter quality changed: %d -> %d\n",
680 		    tsc_timecounter.tc_quality, quality);
681 		tsc_timecounter.tc_quality = quality;
682 	}
683 #endif /* SMP */
684 }
685 
686 /*
687  * When cpufreq levels change, find out about the (new) max frequency.  We
688  * use this to update CPU accounting in case it got a lower estimate at boot.
689  */
690 static void
691 tsc_levels_changed(void *arg, int unit)
692 {
693 	device_t cf_dev;
694 	struct cf_level *levels;
695 	int count, error;
696 	uint64_t max_freq;
697 
698 	/* Only use values from the first CPU, assuming all are equal. */
699 	if (unit != 0)
700 		return;
701 
702 	/* Find the appropriate cpufreq device instance. */
703 	cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
704 	if (cf_dev == NULL) {
705 		printf("tsc_levels_changed() called but no cpufreq device?\n");
706 		return;
707 	}
708 
709 	/* Get settings from the device and find the max frequency. */
710 	count = 64;
711 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
712 	if (levels == NULL)
713 		return;
714 	error = CPUFREQ_LEVELS(cf_dev, levels, &count);
715 	if (error == 0 && count != 0) {
716 		max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
717 		set_cputicker(rdtsc, max_freq, 1);
718 	} else
719 		printf("tsc_levels_changed: no max freq found\n");
720 	free(levels, M_TEMP);
721 }
722 
723 /*
724  * If the TSC timecounter is in use, veto the pending change.  It may be
725  * possible in the future to handle a dynamically-changing timecounter rate.
726  */
727 static void
728 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
729 {
730 
731 	if (*status != 0 || timecounter != &tsc_timecounter)
732 		return;
733 
734 	printf("timecounter TSC must not be in use when "
735 	    "changing frequencies; change denied\n");
736 	*status = EBUSY;
737 }
738 
739 /* Update TSC freq with the value indicated by the caller. */
740 static void
741 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
742 {
743 	uint64_t freq;
744 
745 	/* If there was an error during the transition, don't do anything. */
746 	if (tsc_disabled || status != 0)
747 		return;
748 
749 	/* Total setting for this level gives the new frequency in MHz. */
750 	freq = (uint64_t)level->total_set.freq * 1000000;
751 	atomic_store_rel_64(&tsc_freq, freq);
752 	tsc_timecounter.tc_frequency =
753 	    freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
754 }
755 
756 static int
757 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
758 {
759 	int error;
760 	uint64_t freq;
761 
762 	freq = atomic_load_acq_64(&tsc_freq);
763 	if (freq == 0)
764 		return (EOPNOTSUPP);
765 	error = sysctl_handle_64(oidp, &freq, 0, req);
766 	if (error == 0 && req->newptr != NULL) {
767 		atomic_store_rel_64(&tsc_freq, freq);
768 		atomic_store_rel_64(&tsc_timecounter.tc_frequency,
769 		    freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
770 	}
771 	return (error);
772 }
773 
774 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq,
775     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
776     0, 0, sysctl_machdep_tsc_freq, "QU",
777     "Time Stamp Counter frequency");
778 
779 static u_int
780 tsc_get_timecount(struct timecounter *tc __unused)
781 {
782 
783 	return (rdtsc32());
784 }
785 
786 static inline u_int
787 tsc_get_timecount_low(struct timecounter *tc)
788 {
789 	uint32_t rv;
790 
791 	__asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
792 	    : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
793 	return (rv);
794 }
795 
796 static u_int
797 tsc_get_timecount_lfence(struct timecounter *tc __unused)
798 {
799 
800 	lfence();
801 	return (rdtsc32());
802 }
803 
804 static u_int
805 tsc_get_timecount_low_lfence(struct timecounter *tc)
806 {
807 
808 	lfence();
809 	return (tsc_get_timecount_low(tc));
810 }
811 
812 static u_int
813 tsc_get_timecount_mfence(struct timecounter *tc __unused)
814 {
815 
816 	mfence();
817 	return (rdtsc32());
818 }
819 
820 static u_int
821 tsc_get_timecount_low_mfence(struct timecounter *tc)
822 {
823 
824 	mfence();
825 	return (tsc_get_timecount_low(tc));
826 }
827 
828 static uint32_t
829 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
830 {
831 
832 	vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
833 	vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
834 	vdso_th->th_x86_hpet_idx = 0xffffffff;
835 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
836 	return (1);
837 }
838 
839 #ifdef COMPAT_FREEBSD32
840 static uint32_t
841 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
842     struct timecounter *tc)
843 {
844 
845 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
846 	vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
847 	vdso_th32->th_x86_hpet_idx = 0xffffffff;
848 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
849 	return (1);
850 }
851 #endif
852