xref: /freebsd/sys/x86/x86/cpu_machdep.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*-
2  * Copyright (c) 2003 Peter Wemm.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_atpic.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_inet.h"
48 #include "opt_isa.h"
49 #include "opt_kdb.h"
50 #include "opt_kstack_pages.h"
51 #include "opt_maxmem.h"
52 #include "opt_mp_watchdog.h"
53 #include "opt_platform.h"
54 #ifdef __i386__
55 #include "opt_apic.h"
56 #endif
57 
58 #include <sys/param.h>
59 #include <sys/proc.h>
60 #include <sys/systm.h>
61 #include <sys/bus.h>
62 #include <sys/cpu.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/ktr.h>
66 #include <sys/lock.h>
67 #include <sys/malloc.h>
68 #include <sys/mutex.h>
69 #include <sys/pcpu.h>
70 #include <sys/rwlock.h>
71 #include <sys/sched.h>
72 #ifdef SMP
73 #include <sys/smp.h>
74 #endif
75 #include <sys/sysctl.h>
76 
77 #include <machine/clock.h>
78 #include <machine/cpu.h>
79 #include <machine/cputypes.h>
80 #include <machine/specialreg.h>
81 #include <machine/md_var.h>
82 #include <machine/mp_watchdog.h>
83 #include <machine/tss.h>
84 #ifdef SMP
85 #include <machine/smp.h>
86 #endif
87 #ifdef CPU_ELAN
88 #include <machine/elan_mmcr.h>
89 #endif
90 #include <x86/acpica_machdep.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_param.h>
100 
101 #include <isa/isareg.h>
102 
103 #define	STATE_RUNNING	0x0
104 #define	STATE_MWAIT	0x1
105 #define	STATE_SLEEPING	0x2
106 
107 #ifdef SMP
108 static u_int	cpu_reset_proxyid;
109 static volatile u_int	cpu_reset_proxy_active;
110 #endif
111 
112 
113 /*
114  * Machine dependent boot() routine
115  *
116  * I haven't seen anything to put here yet
117  * Possibly some stuff might be grafted back here from boot()
118  */
119 void
120 cpu_boot(int howto)
121 {
122 }
123 
124 /*
125  * Flush the D-cache for non-DMA I/O so that the I-cache can
126  * be made coherent later.
127  */
128 void
129 cpu_flush_dcache(void *ptr, size_t len)
130 {
131 	/* Not applicable */
132 }
133 
134 void
135 acpi_cpu_c1(void)
136 {
137 
138 	__asm __volatile("sti; hlt");
139 }
140 
141 /*
142  * Use mwait to pause execution while waiting for an interrupt or
143  * another thread to signal that there is more work.
144  *
145  * NOTE: Interrupts will cause a wakeup; however, this function does
146  * not enable interrupt handling. The caller is responsible to enable
147  * interrupts.
148  */
149 void
150 acpi_cpu_idle_mwait(uint32_t mwait_hint)
151 {
152 	int *state;
153 
154 	/*
155 	 * A comment in Linux patch claims that 'CPUs run faster with
156 	 * speculation protection disabled. All CPU threads in a core
157 	 * must disable speculation protection for it to be
158 	 * disabled. Disable it while we are idle so the other
159 	 * hyperthread can run fast.'
160 	 *
161 	 * XXXKIB.  Software coordination mode should be supported,
162 	 * but all Intel CPUs provide hardware coordination.
163 	 */
164 
165 	state = (int *)PCPU_PTR(monitorbuf);
166 	KASSERT(atomic_load_int(state) == STATE_SLEEPING,
167 	    ("cpu_mwait_cx: wrong monitorbuf state"));
168 	atomic_store_int(state, STATE_MWAIT);
169 	handle_ibrs_entry();
170 	cpu_monitor(state, 0, 0);
171 	if (atomic_load_int(state) == STATE_MWAIT)
172 		cpu_mwait(MWAIT_INTRBREAK, mwait_hint);
173 	handle_ibrs_exit();
174 
175 	/*
176 	 * We should exit on any event that interrupts mwait, because
177 	 * that event might be a wanted interrupt.
178 	 */
179 	atomic_store_int(state, STATE_RUNNING);
180 }
181 
182 /* Get current clock frequency for the given cpu id. */
183 int
184 cpu_est_clockrate(int cpu_id, uint64_t *rate)
185 {
186 	uint64_t tsc1, tsc2;
187 	uint64_t acnt, mcnt, perf;
188 	register_t reg;
189 
190 	if (pcpu_find(cpu_id) == NULL || rate == NULL)
191 		return (EINVAL);
192 #ifdef __i386__
193 	if ((cpu_feature & CPUID_TSC) == 0)
194 		return (EOPNOTSUPP);
195 #endif
196 
197 	/*
198 	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
199 	 * DELAY(9) based logic fails.
200 	 */
201 	if (tsc_is_invariant && !tsc_perf_stat)
202 		return (EOPNOTSUPP);
203 
204 #ifdef SMP
205 	if (smp_cpus > 1) {
206 		/* Schedule ourselves on the indicated cpu. */
207 		thread_lock(curthread);
208 		sched_bind(curthread, cpu_id);
209 		thread_unlock(curthread);
210 	}
211 #endif
212 
213 	/* Calibrate by measuring a short delay. */
214 	reg = intr_disable();
215 	if (tsc_is_invariant) {
216 		wrmsr(MSR_MPERF, 0);
217 		wrmsr(MSR_APERF, 0);
218 		tsc1 = rdtsc();
219 		DELAY(1000);
220 		mcnt = rdmsr(MSR_MPERF);
221 		acnt = rdmsr(MSR_APERF);
222 		tsc2 = rdtsc();
223 		intr_restore(reg);
224 		perf = 1000 * acnt / mcnt;
225 		*rate = (tsc2 - tsc1) * perf;
226 	} else {
227 		tsc1 = rdtsc();
228 		DELAY(1000);
229 		tsc2 = rdtsc();
230 		intr_restore(reg);
231 		*rate = (tsc2 - tsc1) * 1000;
232 	}
233 
234 #ifdef SMP
235 	if (smp_cpus > 1) {
236 		thread_lock(curthread);
237 		sched_unbind(curthread);
238 		thread_unlock(curthread);
239 	}
240 #endif
241 
242 	return (0);
243 }
244 
245 /*
246  * Shutdown the CPU as much as possible
247  */
248 void
249 cpu_halt(void)
250 {
251 	for (;;)
252 		halt();
253 }
254 
255 static void
256 cpu_reset_real(void)
257 {
258 	struct region_descriptor null_idt;
259 	int b;
260 
261 	disable_intr();
262 #ifdef CPU_ELAN
263 	if (elan_mmcr != NULL)
264 		elan_mmcr->RESCFG = 1;
265 #endif
266 #ifdef __i386__
267 	if (cpu == CPU_GEODE1100) {
268 		/* Attempt Geode's own reset */
269 		outl(0xcf8, 0x80009044ul);
270 		outl(0xcfc, 0xf);
271 	}
272 #endif
273 #if !defined(BROKEN_KEYBOARD_RESET)
274 	/*
275 	 * Attempt to do a CPU reset via the keyboard controller,
276 	 * do not turn off GateA20, as any machine that fails
277 	 * to do the reset here would then end up in no man's land.
278 	 */
279 	outb(IO_KBD + 4, 0xFE);
280 	DELAY(500000);	/* wait 0.5 sec to see if that did it */
281 #endif
282 
283 	/*
284 	 * Attempt to force a reset via the Reset Control register at
285 	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
286 	 * transitions from 0 to 1.  Bit 1 selects the type of reset
287 	 * to attempt: 0 selects a "soft" reset, and 1 selects a
288 	 * "hard" reset.  We try a "hard" reset.  The first write sets
289 	 * bit 1 to select a "hard" reset and clears bit 2.  The
290 	 * second write forces a 0 -> 1 transition in bit 2 to trigger
291 	 * a reset.
292 	 */
293 	outb(0xcf9, 0x2);
294 	outb(0xcf9, 0x6);
295 	DELAY(500000);  /* wait 0.5 sec to see if that did it */
296 
297 	/*
298 	 * Attempt to force a reset via the Fast A20 and Init register
299 	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
300 	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
301 	 * preserve bit 1 while setting bit 0.  We also must clear bit
302 	 * 0 before setting it if it isn't already clear.
303 	 */
304 	b = inb(0x92);
305 	if (b != 0xff) {
306 		if ((b & 0x1) != 0)
307 			outb(0x92, b & 0xfe);
308 		outb(0x92, b | 0x1);
309 		DELAY(500000);  /* wait 0.5 sec to see if that did it */
310 	}
311 
312 	printf("No known reset method worked, attempting CPU shutdown\n");
313 	DELAY(1000000); /* wait 1 sec for printf to complete */
314 
315 	/* Wipe the IDT. */
316 	null_idt.rd_limit = 0;
317 	null_idt.rd_base = 0;
318 	lidt(&null_idt);
319 
320 	/* "good night, sweet prince .... <THUNK!>" */
321 	breakpoint();
322 
323 	/* NOTREACHED */
324 	while(1);
325 }
326 
327 #ifdef SMP
328 static void
329 cpu_reset_proxy(void)
330 {
331 
332 	cpu_reset_proxy_active = 1;
333 	while (cpu_reset_proxy_active == 1)
334 		ia32_pause(); /* Wait for other cpu to see that we've started */
335 
336 	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
337 	DELAY(1000000);
338 	cpu_reset_real();
339 }
340 #endif
341 
342 void
343 cpu_reset(void)
344 {
345 #ifdef SMP
346 	cpuset_t map;
347 	u_int cnt;
348 
349 	if (smp_started) {
350 		map = all_cpus;
351 		CPU_CLR(PCPU_GET(cpuid), &map);
352 		CPU_NAND(&map, &stopped_cpus);
353 		if (!CPU_EMPTY(&map)) {
354 			printf("cpu_reset: Stopping other CPUs\n");
355 			stop_cpus(map);
356 		}
357 
358 		if (PCPU_GET(cpuid) != 0) {
359 			cpu_reset_proxyid = PCPU_GET(cpuid);
360 			cpustop_restartfunc = cpu_reset_proxy;
361 			cpu_reset_proxy_active = 0;
362 			printf("cpu_reset: Restarting BSP\n");
363 
364 			/* Restart CPU #0. */
365 			CPU_SETOF(0, &started_cpus);
366 			wmb();
367 
368 			cnt = 0;
369 			while (cpu_reset_proxy_active == 0 && cnt < 10000000) {
370 				ia32_pause();
371 				cnt++;	/* Wait for BSP to announce restart */
372 			}
373 			if (cpu_reset_proxy_active == 0) {
374 				printf("cpu_reset: Failed to restart BSP\n");
375 			} else {
376 				cpu_reset_proxy_active = 2;
377 				while (1)
378 					ia32_pause();
379 				/* NOTREACHED */
380 			}
381 		}
382 
383 		DELAY(1000000);
384 	}
385 #endif
386 	cpu_reset_real();
387 	/* NOTREACHED */
388 }
389 
390 bool
391 cpu_mwait_usable(void)
392 {
393 
394 	return ((cpu_feature2 & CPUID2_MON) != 0 && ((cpu_mon_mwait_flags &
395 	    (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK)) ==
396 	    (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK)));
397 }
398 
399 void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
400 static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
401 static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
402 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait,
403     0, "Use MONITOR/MWAIT for short idle");
404 
405 static void
406 cpu_idle_acpi(sbintime_t sbt)
407 {
408 	int *state;
409 
410 	state = (int *)PCPU_PTR(monitorbuf);
411 	atomic_store_int(state, STATE_SLEEPING);
412 
413 	/* See comments in cpu_idle_hlt(). */
414 	disable_intr();
415 	if (sched_runnable())
416 		enable_intr();
417 	else if (cpu_idle_hook)
418 		cpu_idle_hook(sbt);
419 	else
420 		acpi_cpu_c1();
421 	atomic_store_int(state, STATE_RUNNING);
422 }
423 
424 static void
425 cpu_idle_hlt(sbintime_t sbt)
426 {
427 	int *state;
428 
429 	state = (int *)PCPU_PTR(monitorbuf);
430 	atomic_store_int(state, STATE_SLEEPING);
431 
432 	/*
433 	 * Since we may be in a critical section from cpu_idle(), if
434 	 * an interrupt fires during that critical section we may have
435 	 * a pending preemption.  If the CPU halts, then that thread
436 	 * may not execute until a later interrupt awakens the CPU.
437 	 * To handle this race, check for a runnable thread after
438 	 * disabling interrupts and immediately return if one is
439 	 * found.  Also, we must absolutely guarentee that hlt is
440 	 * the next instruction after sti.  This ensures that any
441 	 * interrupt that fires after the call to disable_intr() will
442 	 * immediately awaken the CPU from hlt.  Finally, please note
443 	 * that on x86 this works fine because of interrupts enabled only
444 	 * after the instruction following sti takes place, while IF is set
445 	 * to 1 immediately, allowing hlt instruction to acknowledge the
446 	 * interrupt.
447 	 */
448 	disable_intr();
449 	if (sched_runnable())
450 		enable_intr();
451 	else
452 		acpi_cpu_c1();
453 	atomic_store_int(state, STATE_RUNNING);
454 }
455 
456 static void
457 cpu_idle_mwait(sbintime_t sbt)
458 {
459 	int *state;
460 
461 	state = (int *)PCPU_PTR(monitorbuf);
462 	atomic_store_int(state, STATE_MWAIT);
463 
464 	/* See comments in cpu_idle_hlt(). */
465 	disable_intr();
466 	if (sched_runnable()) {
467 		atomic_store_int(state, STATE_RUNNING);
468 		enable_intr();
469 		return;
470 	}
471 
472 	cpu_monitor(state, 0, 0);
473 	if (atomic_load_int(state) == STATE_MWAIT)
474 		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
475 	else
476 		enable_intr();
477 	atomic_store_int(state, STATE_RUNNING);
478 }
479 
480 static void
481 cpu_idle_spin(sbintime_t sbt)
482 {
483 	int *state;
484 	int i;
485 
486 	state = (int *)PCPU_PTR(monitorbuf);
487 	atomic_store_int(state, STATE_RUNNING);
488 
489 	/*
490 	 * The sched_runnable() call is racy but as long as there is
491 	 * a loop missing it one time will have just a little impact if any
492 	 * (and it is much better than missing the check at all).
493 	 */
494 	for (i = 0; i < 1000; i++) {
495 		if (sched_runnable())
496 			return;
497 		cpu_spinwait();
498 	}
499 }
500 
501 /*
502  * C1E renders the local APIC timer dead, so we disable it by
503  * reading the Interrupt Pending Message register and clearing
504  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
505  *
506  * Reference:
507  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
508  *   #32559 revision 3.00+
509  */
510 #define	MSR_AMDK8_IPM		0xc0010055
511 #define	AMDK8_SMIONCMPHALT	(1ULL << 27)
512 #define	AMDK8_C1EONCMPHALT	(1ULL << 28)
513 #define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
514 
515 void
516 cpu_probe_amdc1e(void)
517 {
518 
519 	/*
520 	 * Detect the presence of C1E capability mostly on latest
521 	 * dual-cores (or future) k8 family.
522 	 */
523 	if (cpu_vendor_id == CPU_VENDOR_AMD &&
524 	    (cpu_id & 0x00000f00) == 0x00000f00 &&
525 	    (cpu_id & 0x0fff0000) >=  0x00040000) {
526 		cpu_ident_amdc1e = 1;
527 	}
528 }
529 
530 void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
531 
532 void
533 cpu_idle(int busy)
534 {
535 	uint64_t msr;
536 	sbintime_t sbt = -1;
537 
538 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
539 	    busy, curcpu);
540 #ifdef MP_WATCHDOG
541 	ap_watchdog(PCPU_GET(cpuid));
542 #endif
543 
544 	/* If we are busy - try to use fast methods. */
545 	if (busy) {
546 		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
547 			cpu_idle_mwait(busy);
548 			goto out;
549 		}
550 	}
551 
552 	/* If we have time - switch timers into idle mode. */
553 	if (!busy) {
554 		critical_enter();
555 		sbt = cpu_idleclock();
556 	}
557 
558 	/* Apply AMD APIC timer C1E workaround. */
559 	if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
560 		msr = rdmsr(MSR_AMDK8_IPM);
561 		if (msr & AMDK8_CMPHALT)
562 			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
563 	}
564 
565 	/* Call main idle method. */
566 	cpu_idle_fn(sbt);
567 
568 	/* Switch timers back into active mode. */
569 	if (!busy) {
570 		cpu_activeclock();
571 		critical_exit();
572 	}
573 out:
574 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
575 	    busy, curcpu);
576 }
577 
578 static int cpu_idle_apl31_workaround;
579 SYSCTL_INT(_machdep, OID_AUTO, idle_apl31, CTLFLAG_RW,
580     &cpu_idle_apl31_workaround, 0,
581     "Apollo Lake APL31 MWAIT bug workaround");
582 
583 int
584 cpu_idle_wakeup(int cpu)
585 {
586 	int *state;
587 
588 	state = (int *)pcpu_find(cpu)->pc_monitorbuf;
589 	switch (atomic_load_int(state)) {
590 	case STATE_SLEEPING:
591 		return (0);
592 	case STATE_MWAIT:
593 		atomic_store_int(state, STATE_RUNNING);
594 		return (cpu_idle_apl31_workaround ? 0 : 1);
595 	case STATE_RUNNING:
596 		return (1);
597 	default:
598 		panic("bad monitor state");
599 		return (1);
600 	}
601 }
602 
603 /*
604  * Ordered by speed/power consumption.
605  */
606 static struct {
607 	void	*id_fn;
608 	char	*id_name;
609 	int	id_cpuid2_flag;
610 } idle_tbl[] = {
611 	{ .id_fn = cpu_idle_spin, .id_name = "spin" },
612 	{ .id_fn = cpu_idle_mwait, .id_name = "mwait",
613 	    .id_cpuid2_flag = CPUID2_MON },
614 	{ .id_fn = cpu_idle_hlt, .id_name = "hlt" },
615 	{ .id_fn = cpu_idle_acpi, .id_name = "acpi" },
616 };
617 
618 static int
619 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
620 {
621 	char *avail, *p;
622 	int error;
623 	int i;
624 
625 	avail = malloc(256, M_TEMP, M_WAITOK);
626 	p = avail;
627 	for (i = 0; i < nitems(idle_tbl); i++) {
628 		if (idle_tbl[i].id_cpuid2_flag != 0 &&
629 		    (cpu_feature2 & idle_tbl[i].id_cpuid2_flag) == 0)
630 			continue;
631 		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
632 		    cpu_idle_hook == NULL)
633 			continue;
634 		p += sprintf(p, "%s%s", p != avail ? ", " : "",
635 		    idle_tbl[i].id_name);
636 	}
637 	error = sysctl_handle_string(oidp, avail, 0, req);
638 	free(avail, M_TEMP);
639 	return (error);
640 }
641 
642 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
643     0, 0, idle_sysctl_available, "A", "list of available idle functions");
644 
645 static bool
646 cpu_idle_selector(const char *new_idle_name)
647 {
648 	int i;
649 
650 	for (i = 0; i < nitems(idle_tbl); i++) {
651 		if (idle_tbl[i].id_cpuid2_flag != 0 &&
652 		    (cpu_feature2 & idle_tbl[i].id_cpuid2_flag) == 0)
653 			continue;
654 		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
655 		    cpu_idle_hook == NULL)
656 			continue;
657 		if (strcmp(idle_tbl[i].id_name, new_idle_name))
658 			continue;
659 		cpu_idle_fn = idle_tbl[i].id_fn;
660 		if (bootverbose)
661 			printf("CPU idle set to %s\n", idle_tbl[i].id_name);
662 		return (true);
663 	}
664 	return (false);
665 }
666 
667 static int
668 cpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
669 {
670 	char buf[16], *p;
671 	int error, i;
672 
673 	p = "unknown";
674 	for (i = 0; i < nitems(idle_tbl); i++) {
675 		if (idle_tbl[i].id_fn == cpu_idle_fn) {
676 			p = idle_tbl[i].id_name;
677 			break;
678 		}
679 	}
680 	strncpy(buf, p, sizeof(buf));
681 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
682 	if (error != 0 || req->newptr == NULL)
683 		return (error);
684 	return (cpu_idle_selector(buf) ? 0 : EINVAL);
685 }
686 
687 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
688     cpu_idle_sysctl, "A", "currently selected idle function");
689 
690 static void
691 cpu_idle_tun(void *unused __unused)
692 {
693 	char tunvar[16];
694 
695 	if (TUNABLE_STR_FETCH("machdep.idle", tunvar, sizeof(tunvar)))
696 		cpu_idle_selector(tunvar);
697 	if (cpu_vendor_id == CPU_VENDOR_INTEL && cpu_id == 0x506c9) {
698 		/*
699 		 * Apollo Lake errata APL31 (public errata APL30).
700 		 * Stores to the armed address range may not trigger
701 		 * MWAIT to resume execution.  OS needs to use
702 		 * interrupts to wake processors from MWAIT-induced
703 		 * sleep states.
704 		 */
705 		cpu_idle_apl31_workaround = 1;
706 	}
707 	TUNABLE_INT_FETCH("machdep.idle_apl31", &cpu_idle_apl31_workaround);
708 }
709 SYSINIT(cpu_idle_tun, SI_SUB_CPU, SI_ORDER_MIDDLE, cpu_idle_tun, NULL);
710 
711 static int panic_on_nmi = 1;
712 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RWTUN,
713     &panic_on_nmi, 0,
714     "Panic on NMI");
715 int nmi_is_broadcast = 1;
716 SYSCTL_INT(_machdep, OID_AUTO, nmi_is_broadcast, CTLFLAG_RWTUN,
717     &nmi_is_broadcast, 0,
718     "Chipset NMI is broadcast");
719 #ifdef KDB
720 int kdb_on_nmi = 1;
721 SYSCTL_INT(_machdep, OID_AUTO, kdb_on_nmi, CTLFLAG_RWTUN,
722     &kdb_on_nmi, 0,
723     "Go to KDB on NMI");
724 #endif
725 
726 #ifdef DEV_ISA
727 void
728 nmi_call_kdb(u_int cpu, u_int type, struct trapframe *frame)
729 {
730 
731 	/* machine/parity/power fail/"kitchen sink" faults */
732 	if (isa_nmi(frame->tf_err) == 0) {
733 #ifdef KDB
734 		/*
735 		 * NMI can be hooked up to a pushbutton for debugging.
736 		 */
737 		if (kdb_on_nmi) {
738 			printf("NMI/cpu%d ... going to debugger\n", cpu);
739 			kdb_trap(type, 0, frame);
740 		}
741 #endif /* KDB */
742 	} else if (panic_on_nmi) {
743 		panic("NMI indicates hardware failure");
744 	}
745 }
746 #endif
747 
748 void
749 nmi_handle_intr(u_int type, struct trapframe *frame)
750 {
751 
752 #ifdef DEV_ISA
753 #ifdef SMP
754 	if (nmi_is_broadcast) {
755 		nmi_call_kdb_smp(type, frame);
756 		return;
757 	}
758 #endif
759 	nmi_call_kdb(PCPU_GET(cpuid), type, frame);
760 #endif
761 }
762 
763 int hw_ibrs_active;
764 int hw_ibrs_disable = 1;
765 
766 SYSCTL_INT(_hw, OID_AUTO, ibrs_active, CTLFLAG_RD, &hw_ibrs_active, 0,
767     "Indirect Branch Restricted Speculation active");
768 
769 void
770 hw_ibrs_recalculate(void)
771 {
772 	uint64_t v;
773 
774 	if ((cpu_ia32_arch_caps & IA32_ARCH_CAP_IBRS_ALL) != 0) {
775 		if (hw_ibrs_disable) {
776 			v= rdmsr(MSR_IA32_SPEC_CTRL);
777 			v &= ~(uint64_t)IA32_SPEC_CTRL_IBRS;
778 			wrmsr(MSR_IA32_SPEC_CTRL, v);
779 		} else {
780 			v= rdmsr(MSR_IA32_SPEC_CTRL);
781 			v |= IA32_SPEC_CTRL_IBRS;
782 			wrmsr(MSR_IA32_SPEC_CTRL, v);
783 		}
784 		return;
785 	}
786 	hw_ibrs_active = (cpu_stdext_feature3 & CPUID_STDEXT3_IBPB) != 0 &&
787 	    !hw_ibrs_disable;
788 }
789 
790 static int
791 hw_ibrs_disable_handler(SYSCTL_HANDLER_ARGS)
792 {
793 	int error, val;
794 
795 	val = hw_ibrs_disable;
796 	error = sysctl_handle_int(oidp, &val, 0, req);
797 	if (error != 0 || req->newptr == NULL)
798 		return (error);
799 	hw_ibrs_disable = val != 0;
800 	hw_ibrs_recalculate();
801 	return (0);
802 }
803 SYSCTL_PROC(_hw, OID_AUTO, ibrs_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
804     CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, hw_ibrs_disable_handler, "I",
805     "Disable Indirect Branch Restricted Speculation");
806 
807 /*
808  * Enable and restore kernel text write permissions.
809  * Callers must ensure that disable_wp()/restore_wp() are executed
810  * without rescheduling on the same core.
811  */
812 bool
813 disable_wp(void)
814 {
815 	u_int cr0;
816 
817 	cr0 = rcr0();
818 	if ((cr0 & CR0_WP) == 0)
819 		return (false);
820 	load_cr0(cr0 & ~CR0_WP);
821 	return (true);
822 }
823 
824 void
825 restore_wp(bool old_wp)
826 {
827 
828 	if (old_wp)
829 		load_cr0(rcr0() | CR0_WP);
830 }
831 
832