1 /*- 2 * Copyright (c) 2003 Peter Wemm. 3 * Copyright (c) 1992 Terrence R. Lambert. 4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * William Jolitz. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_acpi.h" 45 #include "opt_atpic.h" 46 #include "opt_cpu.h" 47 #include "opt_ddb.h" 48 #include "opt_inet.h" 49 #include "opt_isa.h" 50 #include "opt_kdb.h" 51 #include "opt_kstack_pages.h" 52 #include "opt_maxmem.h" 53 #include "opt_mp_watchdog.h" 54 #include "opt_platform.h" 55 #ifdef __i386__ 56 #include "opt_apic.h" 57 #endif 58 59 #include <sys/param.h> 60 #include <sys/proc.h> 61 #include <sys/systm.h> 62 #include <sys/bus.h> 63 #include <sys/cpu.h> 64 #include <sys/domainset.h> 65 #include <sys/kdb.h> 66 #include <sys/kernel.h> 67 #include <sys/ktr.h> 68 #include <sys/lock.h> 69 #include <sys/malloc.h> 70 #include <sys/mutex.h> 71 #include <sys/pcpu.h> 72 #include <sys/rwlock.h> 73 #include <sys/sched.h> 74 #include <sys/smp.h> 75 #include <sys/sysctl.h> 76 77 #include <machine/clock.h> 78 #include <machine/cpu.h> 79 #include <machine/cputypes.h> 80 #include <machine/specialreg.h> 81 #include <machine/md_var.h> 82 #include <machine/mp_watchdog.h> 83 #include <machine/tss.h> 84 #ifdef SMP 85 #include <machine/smp.h> 86 #endif 87 #ifdef CPU_ELAN 88 #include <machine/elan_mmcr.h> 89 #endif 90 #include <x86/acpica_machdep.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_page.h> 96 #include <vm/vm_map.h> 97 #include <vm/vm_object.h> 98 #include <vm/vm_pager.h> 99 #include <vm/vm_param.h> 100 101 #include <isa/isareg.h> 102 103 #include <contrib/dev/acpica/include/acpi.h> 104 105 #define STATE_RUNNING 0x0 106 #define STATE_MWAIT 0x1 107 #define STATE_SLEEPING 0x2 108 109 #ifdef SMP 110 static u_int cpu_reset_proxyid; 111 static volatile u_int cpu_reset_proxy_active; 112 #endif 113 114 char bootmethod[16]; 115 SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0, 116 "System firmware boot method"); 117 118 struct msr_op_arg { 119 u_int msr; 120 int op; 121 uint64_t arg1; 122 }; 123 124 static void 125 x86_msr_op_one(void *argp) 126 { 127 struct msr_op_arg *a; 128 uint64_t v; 129 130 a = argp; 131 switch (a->op) { 132 case MSR_OP_ANDNOT: 133 v = rdmsr(a->msr); 134 v &= ~a->arg1; 135 wrmsr(a->msr, v); 136 break; 137 case MSR_OP_OR: 138 v = rdmsr(a->msr); 139 v |= a->arg1; 140 wrmsr(a->msr, v); 141 break; 142 case MSR_OP_WRITE: 143 wrmsr(a->msr, a->arg1); 144 break; 145 } 146 } 147 148 #define MSR_OP_EXMODE_MASK 0xf0000000 149 #define MSR_OP_OP_MASK 0x000000ff 150 151 void 152 x86_msr_op(u_int msr, u_int op, uint64_t arg1) 153 { 154 struct thread *td; 155 struct msr_op_arg a; 156 u_int exmode; 157 int bound_cpu, i, is_bound; 158 159 a.op = op & MSR_OP_OP_MASK; 160 MPASS(a.op == MSR_OP_ANDNOT || a.op == MSR_OP_OR || 161 a.op == MSR_OP_WRITE); 162 exmode = op & MSR_OP_EXMODE_MASK; 163 MPASS(exmode == MSR_OP_LOCAL || exmode == MSR_OP_SCHED || 164 exmode == MSR_OP_RENDEZVOUS); 165 a.msr = msr; 166 a.arg1 = arg1; 167 switch (exmode) { 168 case MSR_OP_LOCAL: 169 x86_msr_op_one(&a); 170 break; 171 case MSR_OP_SCHED: 172 td = curthread; 173 thread_lock(td); 174 is_bound = sched_is_bound(td); 175 bound_cpu = td->td_oncpu; 176 CPU_FOREACH(i) { 177 sched_bind(td, i); 178 x86_msr_op_one(&a); 179 } 180 if (is_bound) 181 sched_bind(td, bound_cpu); 182 else 183 sched_unbind(td); 184 thread_unlock(td); 185 break; 186 case MSR_OP_RENDEZVOUS: 187 smp_rendezvous(NULL, x86_msr_op_one, NULL, &a); 188 break; 189 } 190 } 191 192 /* 193 * Automatically initialized per CPU errata in cpu_idle_tun below. 194 */ 195 bool mwait_cpustop_broken = false; 196 SYSCTL_BOOL(_machdep, OID_AUTO, mwait_cpustop_broken, CTLFLAG_RDTUN, 197 &mwait_cpustop_broken, 0, 198 "Can not reliably wake MONITOR/MWAIT cpus without interrupts"); 199 200 /* 201 * Flush the D-cache for non-DMA I/O so that the I-cache can 202 * be made coherent later. 203 */ 204 void 205 cpu_flush_dcache(void *ptr, size_t len) 206 { 207 /* Not applicable */ 208 } 209 210 void 211 acpi_cpu_c1(void) 212 { 213 214 __asm __volatile("sti; hlt"); 215 } 216 217 /* 218 * Use mwait to pause execution while waiting for an interrupt or 219 * another thread to signal that there is more work. 220 * 221 * NOTE: Interrupts will cause a wakeup; however, this function does 222 * not enable interrupt handling. The caller is responsible to enable 223 * interrupts. 224 */ 225 void 226 acpi_cpu_idle_mwait(uint32_t mwait_hint) 227 { 228 int *state; 229 uint64_t v; 230 231 /* 232 * A comment in Linux patch claims that 'CPUs run faster with 233 * speculation protection disabled. All CPU threads in a core 234 * must disable speculation protection for it to be 235 * disabled. Disable it while we are idle so the other 236 * hyperthread can run fast.' 237 * 238 * XXXKIB. Software coordination mode should be supported, 239 * but all Intel CPUs provide hardware coordination. 240 */ 241 242 state = &PCPU_PTR(monitorbuf)->idle_state; 243 KASSERT(atomic_load_int(state) == STATE_SLEEPING, 244 ("cpu_mwait_cx: wrong monitorbuf state")); 245 atomic_store_int(state, STATE_MWAIT); 246 if (PCPU_GET(ibpb_set) || hw_ssb_active) { 247 v = rdmsr(MSR_IA32_SPEC_CTRL); 248 wrmsr(MSR_IA32_SPEC_CTRL, v & ~(IA32_SPEC_CTRL_IBRS | 249 IA32_SPEC_CTRL_STIBP | IA32_SPEC_CTRL_SSBD)); 250 } else { 251 v = 0; 252 } 253 cpu_monitor(state, 0, 0); 254 if (atomic_load_int(state) == STATE_MWAIT) 255 cpu_mwait(MWAIT_INTRBREAK, mwait_hint); 256 257 /* 258 * SSB cannot be disabled while we sleep, or rather, if it was 259 * disabled, the sysctl thread will bind to our cpu to tweak 260 * MSR. 261 */ 262 if (v != 0) 263 wrmsr(MSR_IA32_SPEC_CTRL, v); 264 265 /* 266 * We should exit on any event that interrupts mwait, because 267 * that event might be a wanted interrupt. 268 */ 269 atomic_store_int(state, STATE_RUNNING); 270 } 271 272 /* Get current clock frequency for the given cpu id. */ 273 int 274 cpu_est_clockrate(int cpu_id, uint64_t *rate) 275 { 276 uint64_t tsc1, tsc2; 277 uint64_t acnt, mcnt, perf; 278 register_t reg; 279 280 if (pcpu_find(cpu_id) == NULL || rate == NULL) 281 return (EINVAL); 282 #ifdef __i386__ 283 if ((cpu_feature & CPUID_TSC) == 0) 284 return (EOPNOTSUPP); 285 #endif 286 287 /* 288 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist, 289 * DELAY(9) based logic fails. 290 */ 291 if (tsc_is_invariant && !tsc_perf_stat) 292 return (EOPNOTSUPP); 293 294 #ifdef SMP 295 if (smp_cpus > 1) { 296 /* Schedule ourselves on the indicated cpu. */ 297 thread_lock(curthread); 298 sched_bind(curthread, cpu_id); 299 thread_unlock(curthread); 300 } 301 #endif 302 303 /* Calibrate by measuring a short delay. */ 304 reg = intr_disable(); 305 if (tsc_is_invariant) { 306 wrmsr(MSR_MPERF, 0); 307 wrmsr(MSR_APERF, 0); 308 tsc1 = rdtsc(); 309 DELAY(1000); 310 mcnt = rdmsr(MSR_MPERF); 311 acnt = rdmsr(MSR_APERF); 312 tsc2 = rdtsc(); 313 intr_restore(reg); 314 perf = 1000 * acnt / mcnt; 315 *rate = (tsc2 - tsc1) * perf; 316 } else { 317 tsc1 = rdtsc(); 318 DELAY(1000); 319 tsc2 = rdtsc(); 320 intr_restore(reg); 321 *rate = (tsc2 - tsc1) * 1000; 322 } 323 324 #ifdef SMP 325 if (smp_cpus > 1) { 326 thread_lock(curthread); 327 sched_unbind(curthread); 328 thread_unlock(curthread); 329 } 330 #endif 331 332 return (0); 333 } 334 335 /* 336 * Shutdown the CPU as much as possible 337 */ 338 void 339 cpu_halt(void) 340 { 341 for (;;) 342 halt(); 343 } 344 345 static void 346 cpu_reset_real(void) 347 { 348 struct region_descriptor null_idt; 349 int b; 350 351 disable_intr(); 352 #ifdef CPU_ELAN 353 if (elan_mmcr != NULL) 354 elan_mmcr->RESCFG = 1; 355 #endif 356 #ifdef __i386__ 357 if (cpu == CPU_GEODE1100) { 358 /* Attempt Geode's own reset */ 359 outl(0xcf8, 0x80009044ul); 360 outl(0xcfc, 0xf); 361 } 362 #endif 363 #if !defined(BROKEN_KEYBOARD_RESET) 364 /* 365 * Attempt to do a CPU reset via the keyboard controller, 366 * do not turn off GateA20, as any machine that fails 367 * to do the reset here would then end up in no man's land. 368 */ 369 outb(IO_KBD + 4, 0xFE); 370 DELAY(500000); /* wait 0.5 sec to see if that did it */ 371 #endif 372 373 /* 374 * Attempt to force a reset via the Reset Control register at 375 * I/O port 0xcf9. Bit 2 forces a system reset when it 376 * transitions from 0 to 1. Bit 1 selects the type of reset 377 * to attempt: 0 selects a "soft" reset, and 1 selects a 378 * "hard" reset. We try a "hard" reset. The first write sets 379 * bit 1 to select a "hard" reset and clears bit 2. The 380 * second write forces a 0 -> 1 transition in bit 2 to trigger 381 * a reset. 382 */ 383 outb(0xcf9, 0x2); 384 outb(0xcf9, 0x6); 385 DELAY(500000); /* wait 0.5 sec to see if that did it */ 386 387 /* 388 * Attempt to force a reset via the Fast A20 and Init register 389 * at I/O port 0x92. Bit 1 serves as an alternate A20 gate. 390 * Bit 0 asserts INIT# when set to 1. We are careful to only 391 * preserve bit 1 while setting bit 0. We also must clear bit 392 * 0 before setting it if it isn't already clear. 393 */ 394 b = inb(0x92); 395 if (b != 0xff) { 396 if ((b & 0x1) != 0) 397 outb(0x92, b & 0xfe); 398 outb(0x92, b | 0x1); 399 DELAY(500000); /* wait 0.5 sec to see if that did it */ 400 } 401 402 printf("No known reset method worked, attempting CPU shutdown\n"); 403 DELAY(1000000); /* wait 1 sec for printf to complete */ 404 405 /* Wipe the IDT. */ 406 null_idt.rd_limit = 0; 407 null_idt.rd_base = 0; 408 lidt(&null_idt); 409 410 /* "good night, sweet prince .... <THUNK!>" */ 411 breakpoint(); 412 413 /* NOTREACHED */ 414 while(1); 415 } 416 417 #ifdef SMP 418 static void 419 cpu_reset_proxy(void) 420 { 421 422 cpu_reset_proxy_active = 1; 423 while (cpu_reset_proxy_active == 1) 424 ia32_pause(); /* Wait for other cpu to see that we've started */ 425 426 printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); 427 DELAY(1000000); 428 cpu_reset_real(); 429 } 430 #endif 431 432 void 433 cpu_reset(void) 434 { 435 #ifdef SMP 436 struct monitorbuf *mb; 437 cpuset_t map; 438 u_int cnt; 439 440 if (smp_started) { 441 map = all_cpus; 442 CPU_CLR(PCPU_GET(cpuid), &map); 443 CPU_ANDNOT(&map, &stopped_cpus); 444 if (!CPU_EMPTY(&map)) { 445 printf("cpu_reset: Stopping other CPUs\n"); 446 stop_cpus(map); 447 } 448 449 if (PCPU_GET(cpuid) != 0) { 450 cpu_reset_proxyid = PCPU_GET(cpuid); 451 cpustop_restartfunc = cpu_reset_proxy; 452 cpu_reset_proxy_active = 0; 453 printf("cpu_reset: Restarting BSP\n"); 454 455 /* Restart CPU #0. */ 456 CPU_SETOF(0, &started_cpus); 457 mb = &pcpu_find(0)->pc_monitorbuf; 458 atomic_store_int(&mb->stop_state, 459 MONITOR_STOPSTATE_RUNNING); 460 461 cnt = 0; 462 while (cpu_reset_proxy_active == 0 && cnt < 10000000) { 463 ia32_pause(); 464 cnt++; /* Wait for BSP to announce restart */ 465 } 466 if (cpu_reset_proxy_active == 0) { 467 printf("cpu_reset: Failed to restart BSP\n"); 468 } else { 469 cpu_reset_proxy_active = 2; 470 while (1) 471 ia32_pause(); 472 /* NOTREACHED */ 473 } 474 } 475 476 DELAY(1000000); 477 } 478 #endif 479 cpu_reset_real(); 480 /* NOTREACHED */ 481 } 482 483 bool 484 cpu_mwait_usable(void) 485 { 486 487 return ((cpu_feature2 & CPUID2_MON) != 0 && ((cpu_mon_mwait_flags & 488 (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK)) == 489 (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK))); 490 } 491 492 void (*cpu_idle_hook)(sbintime_t) = NULL; /* ACPI idle hook. */ 493 494 int cpu_amdc1e_bug = 0; /* AMD C1E APIC workaround required. */ 495 496 static int idle_mwait = 1; /* Use MONITOR/MWAIT for short idle. */ 497 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait, 498 0, "Use MONITOR/MWAIT for short idle"); 499 500 static void 501 cpu_idle_acpi(sbintime_t sbt) 502 { 503 int *state; 504 505 state = &PCPU_PTR(monitorbuf)->idle_state; 506 atomic_store_int(state, STATE_SLEEPING); 507 508 /* See comments in cpu_idle_hlt(). */ 509 disable_intr(); 510 if (sched_runnable()) 511 enable_intr(); 512 else if (cpu_idle_hook) 513 cpu_idle_hook(sbt); 514 else 515 acpi_cpu_c1(); 516 atomic_store_int(state, STATE_RUNNING); 517 } 518 519 static void 520 cpu_idle_hlt(sbintime_t sbt) 521 { 522 int *state; 523 524 state = &PCPU_PTR(monitorbuf)->idle_state; 525 atomic_store_int(state, STATE_SLEEPING); 526 527 /* 528 * Since we may be in a critical section from cpu_idle(), if 529 * an interrupt fires during that critical section we may have 530 * a pending preemption. If the CPU halts, then that thread 531 * may not execute until a later interrupt awakens the CPU. 532 * To handle this race, check for a runnable thread after 533 * disabling interrupts and immediately return if one is 534 * found. Also, we must absolutely guarentee that hlt is 535 * the next instruction after sti. This ensures that any 536 * interrupt that fires after the call to disable_intr() will 537 * immediately awaken the CPU from hlt. Finally, please note 538 * that on x86 this works fine because of interrupts enabled only 539 * after the instruction following sti takes place, while IF is set 540 * to 1 immediately, allowing hlt instruction to acknowledge the 541 * interrupt. 542 */ 543 disable_intr(); 544 if (sched_runnable()) 545 enable_intr(); 546 else 547 acpi_cpu_c1(); 548 atomic_store_int(state, STATE_RUNNING); 549 } 550 551 static void 552 cpu_idle_mwait(sbintime_t sbt) 553 { 554 int *state; 555 556 state = &PCPU_PTR(monitorbuf)->idle_state; 557 atomic_store_int(state, STATE_MWAIT); 558 559 /* See comments in cpu_idle_hlt(). */ 560 disable_intr(); 561 if (sched_runnable()) { 562 atomic_store_int(state, STATE_RUNNING); 563 enable_intr(); 564 return; 565 } 566 567 cpu_monitor(state, 0, 0); 568 if (atomic_load_int(state) == STATE_MWAIT) 569 __asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0)); 570 else 571 enable_intr(); 572 atomic_store_int(state, STATE_RUNNING); 573 } 574 575 static void 576 cpu_idle_spin(sbintime_t sbt) 577 { 578 int *state; 579 int i; 580 581 state = &PCPU_PTR(monitorbuf)->idle_state; 582 atomic_store_int(state, STATE_RUNNING); 583 584 /* 585 * The sched_runnable() call is racy but as long as there is 586 * a loop missing it one time will have just a little impact if any 587 * (and it is much better than missing the check at all). 588 */ 589 for (i = 0; i < 1000; i++) { 590 if (sched_runnable()) 591 return; 592 cpu_spinwait(); 593 } 594 } 595 596 void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi; 597 598 void 599 cpu_idle(int busy) 600 { 601 uint64_t msr; 602 sbintime_t sbt = -1; 603 604 CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", 605 busy, curcpu); 606 #ifdef MP_WATCHDOG 607 ap_watchdog(PCPU_GET(cpuid)); 608 #endif 609 610 /* If we are busy - try to use fast methods. */ 611 if (busy) { 612 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) { 613 cpu_idle_mwait(busy); 614 goto out; 615 } 616 } 617 618 /* If we have time - switch timers into idle mode. */ 619 if (!busy) { 620 critical_enter(); 621 sbt = cpu_idleclock(); 622 } 623 624 /* Apply AMD APIC timer C1E workaround. */ 625 if (cpu_amdc1e_bug && cpu_disable_c3_sleep) { 626 msr = rdmsr(MSR_AMDK8_IPM); 627 if ((msr & (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)) != 0) 628 wrmsr(MSR_AMDK8_IPM, msr & ~(AMDK8_SMIONCMPHALT | 629 AMDK8_C1EONCMPHALT)); 630 } 631 632 /* Call main idle method. */ 633 cpu_idle_fn(sbt); 634 635 /* Switch timers back into active mode. */ 636 if (!busy) { 637 cpu_activeclock(); 638 critical_exit(); 639 } 640 out: 641 CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", 642 busy, curcpu); 643 } 644 645 static int cpu_idle_apl31_workaround; 646 SYSCTL_INT(_machdep, OID_AUTO, idle_apl31, CTLFLAG_RW, 647 &cpu_idle_apl31_workaround, 0, 648 "Apollo Lake APL31 MWAIT bug workaround"); 649 650 int 651 cpu_idle_wakeup(int cpu) 652 { 653 struct monitorbuf *mb; 654 int *state; 655 656 mb = &pcpu_find(cpu)->pc_monitorbuf; 657 state = &mb->idle_state; 658 switch (atomic_load_int(state)) { 659 case STATE_SLEEPING: 660 return (0); 661 case STATE_MWAIT: 662 atomic_store_int(state, STATE_RUNNING); 663 return (cpu_idle_apl31_workaround ? 0 : 1); 664 case STATE_RUNNING: 665 return (1); 666 default: 667 panic("bad monitor state"); 668 return (1); 669 } 670 } 671 672 /* 673 * Ordered by speed/power consumption. 674 */ 675 static struct { 676 void *id_fn; 677 char *id_name; 678 int id_cpuid2_flag; 679 } idle_tbl[] = { 680 { .id_fn = cpu_idle_spin, .id_name = "spin" }, 681 { .id_fn = cpu_idle_mwait, .id_name = "mwait", 682 .id_cpuid2_flag = CPUID2_MON }, 683 { .id_fn = cpu_idle_hlt, .id_name = "hlt" }, 684 { .id_fn = cpu_idle_acpi, .id_name = "acpi" }, 685 }; 686 687 static int 688 idle_sysctl_available(SYSCTL_HANDLER_ARGS) 689 { 690 char *avail, *p; 691 int error; 692 int i; 693 694 avail = malloc(256, M_TEMP, M_WAITOK); 695 p = avail; 696 for (i = 0; i < nitems(idle_tbl); i++) { 697 if (idle_tbl[i].id_cpuid2_flag != 0 && 698 (cpu_feature2 & idle_tbl[i].id_cpuid2_flag) == 0) 699 continue; 700 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 && 701 cpu_idle_hook == NULL) 702 continue; 703 p += sprintf(p, "%s%s", p != avail ? ", " : "", 704 idle_tbl[i].id_name); 705 } 706 error = sysctl_handle_string(oidp, avail, 0, req); 707 free(avail, M_TEMP); 708 return (error); 709 } 710 711 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, 712 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 713 0, 0, idle_sysctl_available, "A", 714 "list of available idle functions"); 715 716 static bool 717 cpu_idle_selector(const char *new_idle_name) 718 { 719 int i; 720 721 for (i = 0; i < nitems(idle_tbl); i++) { 722 if (idle_tbl[i].id_cpuid2_flag != 0 && 723 (cpu_feature2 & idle_tbl[i].id_cpuid2_flag) == 0) 724 continue; 725 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 && 726 cpu_idle_hook == NULL) 727 continue; 728 if (strcmp(idle_tbl[i].id_name, new_idle_name)) 729 continue; 730 cpu_idle_fn = idle_tbl[i].id_fn; 731 if (bootverbose) 732 printf("CPU idle set to %s\n", idle_tbl[i].id_name); 733 return (true); 734 } 735 return (false); 736 } 737 738 static int 739 cpu_idle_sysctl(SYSCTL_HANDLER_ARGS) 740 { 741 char buf[16], *p; 742 int error, i; 743 744 p = "unknown"; 745 for (i = 0; i < nitems(idle_tbl); i++) { 746 if (idle_tbl[i].id_fn == cpu_idle_fn) { 747 p = idle_tbl[i].id_name; 748 break; 749 } 750 } 751 strncpy(buf, p, sizeof(buf)); 752 error = sysctl_handle_string(oidp, buf, sizeof(buf), req); 753 if (error != 0 || req->newptr == NULL) 754 return (error); 755 return (cpu_idle_selector(buf) ? 0 : EINVAL); 756 } 757 758 SYSCTL_PROC(_machdep, OID_AUTO, idle, 759 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 760 0, 0, cpu_idle_sysctl, "A", 761 "currently selected idle function"); 762 763 static void 764 cpu_idle_tun(void *unused __unused) 765 { 766 char tunvar[16]; 767 768 if (TUNABLE_STR_FETCH("machdep.idle", tunvar, sizeof(tunvar))) 769 cpu_idle_selector(tunvar); 770 else if (cpu_vendor_id == CPU_VENDOR_AMD && 771 CPUID_TO_FAMILY(cpu_id) == 0x17 && CPUID_TO_MODEL(cpu_id) == 0x1) { 772 /* Ryzen erratas 1057, 1109. */ 773 cpu_idle_selector("hlt"); 774 idle_mwait = 0; 775 mwait_cpustop_broken = true; 776 } 777 778 if (cpu_vendor_id == CPU_VENDOR_INTEL && cpu_id == 0x506c9) { 779 /* 780 * Apollo Lake errata APL31 (public errata APL30). 781 * Stores to the armed address range may not trigger 782 * MWAIT to resume execution. OS needs to use 783 * interrupts to wake processors from MWAIT-induced 784 * sleep states. 785 */ 786 cpu_idle_apl31_workaround = 1; 787 mwait_cpustop_broken = true; 788 } 789 TUNABLE_INT_FETCH("machdep.idle_apl31", &cpu_idle_apl31_workaround); 790 } 791 SYSINIT(cpu_idle_tun, SI_SUB_CPU, SI_ORDER_MIDDLE, cpu_idle_tun, NULL); 792 793 static int panic_on_nmi = 0xff; 794 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RWTUN, 795 &panic_on_nmi, 0, 796 "Panic on NMI: 1 = H/W failure; 2 = unknown; 0xff = all"); 797 int nmi_is_broadcast = 1; 798 SYSCTL_INT(_machdep, OID_AUTO, nmi_is_broadcast, CTLFLAG_RWTUN, 799 &nmi_is_broadcast, 0, 800 "Chipset NMI is broadcast"); 801 int (*apei_nmi)(void); 802 803 void 804 nmi_call_kdb(u_int cpu, u_int type, struct trapframe *frame) 805 { 806 bool claimed = false; 807 808 #ifdef DEV_ISA 809 /* machine/parity/power fail/"kitchen sink" faults */ 810 if (isa_nmi(frame->tf_err)) { 811 claimed = true; 812 if ((panic_on_nmi & 1) != 0) 813 panic("NMI indicates hardware failure"); 814 } 815 #endif /* DEV_ISA */ 816 817 /* ACPI Platform Error Interfaces callback. */ 818 if (apei_nmi != NULL && (*apei_nmi)()) 819 claimed = true; 820 821 /* 822 * NMIs can be useful for debugging. They can be hooked up to a 823 * pushbutton, usually on an ISA, PCI, or PCIe card. They can also be 824 * generated by an IPMI BMC, either manually or in response to a 825 * watchdog timeout. For example, see the "power diag" command in 826 * ports/sysutils/ipmitool. They can also be generated by a 827 * hypervisor; see "bhyvectl --inject-nmi". 828 */ 829 830 #ifdef KDB 831 if (!claimed && (panic_on_nmi & 2) != 0) { 832 if (debugger_on_panic) { 833 printf("NMI/cpu%d ... going to debugger\n", cpu); 834 claimed = kdb_trap(type, 0, frame); 835 } 836 } 837 #endif /* KDB */ 838 839 if (!claimed && panic_on_nmi != 0) 840 panic("NMI"); 841 } 842 843 void 844 nmi_handle_intr(u_int type, struct trapframe *frame) 845 { 846 847 #ifdef SMP 848 if (nmi_is_broadcast) { 849 nmi_call_kdb_smp(type, frame); 850 return; 851 } 852 #endif 853 nmi_call_kdb(PCPU_GET(cpuid), type, frame); 854 } 855 856 static int hw_ibrs_active; 857 int hw_ibrs_ibpb_active; 858 int hw_ibrs_disable = 1; 859 860 SYSCTL_INT(_hw, OID_AUTO, ibrs_active, CTLFLAG_RD, &hw_ibrs_active, 0, 861 "Indirect Branch Restricted Speculation active"); 862 863 SYSCTL_NODE(_machdep_mitigations, OID_AUTO, ibrs, 864 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 865 "Indirect Branch Restricted Speculation active"); 866 867 SYSCTL_INT(_machdep_mitigations_ibrs, OID_AUTO, active, CTLFLAG_RD, 868 &hw_ibrs_active, 0, "Indirect Branch Restricted Speculation active"); 869 870 void 871 hw_ibrs_recalculate(bool for_all_cpus) 872 { 873 if ((cpu_ia32_arch_caps & IA32_ARCH_CAP_IBRS_ALL) != 0) { 874 x86_msr_op(MSR_IA32_SPEC_CTRL, (for_all_cpus ? 875 MSR_OP_RENDEZVOUS : MSR_OP_LOCAL) | 876 (hw_ibrs_disable != 0 ? MSR_OP_ANDNOT : MSR_OP_OR), 877 IA32_SPEC_CTRL_IBRS); 878 hw_ibrs_active = hw_ibrs_disable == 0; 879 hw_ibrs_ibpb_active = 0; 880 } else { 881 hw_ibrs_active = hw_ibrs_ibpb_active = (cpu_stdext_feature3 & 882 CPUID_STDEXT3_IBPB) != 0 && !hw_ibrs_disable; 883 } 884 } 885 886 static int 887 hw_ibrs_disable_handler(SYSCTL_HANDLER_ARGS) 888 { 889 int error, val; 890 891 val = hw_ibrs_disable; 892 error = sysctl_handle_int(oidp, &val, 0, req); 893 if (error != 0 || req->newptr == NULL) 894 return (error); 895 hw_ibrs_disable = val != 0; 896 hw_ibrs_recalculate(true); 897 return (0); 898 } 899 SYSCTL_PROC(_hw, OID_AUTO, ibrs_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 900 CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, hw_ibrs_disable_handler, "I", 901 "Disable Indirect Branch Restricted Speculation"); 902 903 SYSCTL_PROC(_machdep_mitigations_ibrs, OID_AUTO, disable, CTLTYPE_INT | 904 CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, 905 hw_ibrs_disable_handler, "I", 906 "Disable Indirect Branch Restricted Speculation"); 907 908 int hw_ssb_active; 909 int hw_ssb_disable; 910 911 SYSCTL_INT(_hw, OID_AUTO, spec_store_bypass_disable_active, CTLFLAG_RD, 912 &hw_ssb_active, 0, 913 "Speculative Store Bypass Disable active"); 914 915 SYSCTL_NODE(_machdep_mitigations, OID_AUTO, ssb, 916 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 917 "Speculative Store Bypass Disable active"); 918 919 SYSCTL_INT(_machdep_mitigations_ssb, OID_AUTO, active, CTLFLAG_RD, 920 &hw_ssb_active, 0, "Speculative Store Bypass Disable active"); 921 922 static void 923 hw_ssb_set(bool enable, bool for_all_cpus) 924 { 925 926 if ((cpu_stdext_feature3 & CPUID_STDEXT3_SSBD) == 0) { 927 hw_ssb_active = 0; 928 return; 929 } 930 hw_ssb_active = enable; 931 x86_msr_op(MSR_IA32_SPEC_CTRL, 932 (enable ? MSR_OP_OR : MSR_OP_ANDNOT) | 933 (for_all_cpus ? MSR_OP_SCHED : MSR_OP_LOCAL), IA32_SPEC_CTRL_SSBD); 934 } 935 936 void 937 hw_ssb_recalculate(bool all_cpus) 938 { 939 940 switch (hw_ssb_disable) { 941 default: 942 hw_ssb_disable = 0; 943 /* FALLTHROUGH */ 944 case 0: /* off */ 945 hw_ssb_set(false, all_cpus); 946 break; 947 case 1: /* on */ 948 hw_ssb_set(true, all_cpus); 949 break; 950 case 2: /* auto */ 951 hw_ssb_set((cpu_ia32_arch_caps & IA32_ARCH_CAP_SSB_NO) != 0 ? 952 false : true, all_cpus); 953 break; 954 } 955 } 956 957 static int 958 hw_ssb_disable_handler(SYSCTL_HANDLER_ARGS) 959 { 960 int error, val; 961 962 val = hw_ssb_disable; 963 error = sysctl_handle_int(oidp, &val, 0, req); 964 if (error != 0 || req->newptr == NULL) 965 return (error); 966 hw_ssb_disable = val; 967 hw_ssb_recalculate(true); 968 return (0); 969 } 970 SYSCTL_PROC(_hw, OID_AUTO, spec_store_bypass_disable, CTLTYPE_INT | 971 CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, 972 hw_ssb_disable_handler, "I", 973 "Speculative Store Bypass Disable (0 - off, 1 - on, 2 - auto)"); 974 975 SYSCTL_PROC(_machdep_mitigations_ssb, OID_AUTO, disable, CTLTYPE_INT | 976 CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, 977 hw_ssb_disable_handler, "I", 978 "Speculative Store Bypass Disable (0 - off, 1 - on, 2 - auto)"); 979 980 int hw_mds_disable; 981 982 /* 983 * Handler for Microarchitectural Data Sampling issues. Really not a 984 * pointer to C function: on amd64 the code must not change any CPU 985 * architectural state except possibly %rflags. Also, it is always 986 * called with interrupts disabled. 987 */ 988 void mds_handler_void(void); 989 void mds_handler_verw(void); 990 void mds_handler_ivb(void); 991 void mds_handler_bdw(void); 992 void mds_handler_skl_sse(void); 993 void mds_handler_skl_avx(void); 994 void mds_handler_skl_avx512(void); 995 void mds_handler_silvermont(void); 996 void (*mds_handler)(void) = mds_handler_void; 997 998 static int 999 sysctl_hw_mds_disable_state_handler(SYSCTL_HANDLER_ARGS) 1000 { 1001 const char *state; 1002 1003 if (mds_handler == mds_handler_void) 1004 state = "inactive"; 1005 else if (mds_handler == mds_handler_verw) 1006 state = "VERW"; 1007 else if (mds_handler == mds_handler_ivb) 1008 state = "software IvyBridge"; 1009 else if (mds_handler == mds_handler_bdw) 1010 state = "software Broadwell"; 1011 else if (mds_handler == mds_handler_skl_sse) 1012 state = "software Skylake SSE"; 1013 else if (mds_handler == mds_handler_skl_avx) 1014 state = "software Skylake AVX"; 1015 else if (mds_handler == mds_handler_skl_avx512) 1016 state = "software Skylake AVX512"; 1017 else if (mds_handler == mds_handler_silvermont) 1018 state = "software Silvermont"; 1019 else 1020 state = "unknown"; 1021 return (SYSCTL_OUT(req, state, strlen(state))); 1022 } 1023 1024 SYSCTL_PROC(_hw, OID_AUTO, mds_disable_state, 1025 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 1026 sysctl_hw_mds_disable_state_handler, "A", 1027 "Microarchitectural Data Sampling Mitigation state"); 1028 1029 SYSCTL_NODE(_machdep_mitigations, OID_AUTO, mds, 1030 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1031 "Microarchitectural Data Sampling Mitigation state"); 1032 1033 SYSCTL_PROC(_machdep_mitigations_mds, OID_AUTO, state, 1034 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 1035 sysctl_hw_mds_disable_state_handler, "A", 1036 "Microarchitectural Data Sampling Mitigation state"); 1037 1038 _Static_assert(__offsetof(struct pcpu, pc_mds_tmp) % 64 == 0, "MDS AVX512"); 1039 1040 void 1041 hw_mds_recalculate(void) 1042 { 1043 struct pcpu *pc; 1044 vm_offset_t b64; 1045 u_long xcr0; 1046 int i; 1047 1048 /* 1049 * Allow user to force VERW variant even if MD_CLEAR is not 1050 * reported. For instance, hypervisor might unknowingly 1051 * filter the cap out. 1052 * For the similar reasons, and for testing, allow to enable 1053 * mitigation even when MDS_NO cap is set. 1054 */ 1055 if (cpu_vendor_id != CPU_VENDOR_INTEL || hw_mds_disable == 0 || 1056 ((cpu_ia32_arch_caps & IA32_ARCH_CAP_MDS_NO) != 0 && 1057 hw_mds_disable == 3)) { 1058 mds_handler = mds_handler_void; 1059 } else if (((cpu_stdext_feature3 & CPUID_STDEXT3_MD_CLEAR) != 0 && 1060 hw_mds_disable == 3) || hw_mds_disable == 1) { 1061 mds_handler = mds_handler_verw; 1062 } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 && 1063 (CPUID_TO_MODEL(cpu_id) == 0x2e || CPUID_TO_MODEL(cpu_id) == 0x1e || 1064 CPUID_TO_MODEL(cpu_id) == 0x1f || CPUID_TO_MODEL(cpu_id) == 0x1a || 1065 CPUID_TO_MODEL(cpu_id) == 0x2f || CPUID_TO_MODEL(cpu_id) == 0x25 || 1066 CPUID_TO_MODEL(cpu_id) == 0x2c || CPUID_TO_MODEL(cpu_id) == 0x2d || 1067 CPUID_TO_MODEL(cpu_id) == 0x2a || CPUID_TO_MODEL(cpu_id) == 0x3e || 1068 CPUID_TO_MODEL(cpu_id) == 0x3a) && 1069 (hw_mds_disable == 2 || hw_mds_disable == 3)) { 1070 /* 1071 * Nehalem, SandyBridge, IvyBridge 1072 */ 1073 CPU_FOREACH(i) { 1074 pc = pcpu_find(i); 1075 if (pc->pc_mds_buf == NULL) { 1076 pc->pc_mds_buf = malloc_domainset(672, M_TEMP, 1077 DOMAINSET_PREF(pc->pc_domain), M_WAITOK); 1078 bzero(pc->pc_mds_buf, 16); 1079 } 1080 } 1081 mds_handler = mds_handler_ivb; 1082 } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 && 1083 (CPUID_TO_MODEL(cpu_id) == 0x3f || CPUID_TO_MODEL(cpu_id) == 0x3c || 1084 CPUID_TO_MODEL(cpu_id) == 0x45 || CPUID_TO_MODEL(cpu_id) == 0x46 || 1085 CPUID_TO_MODEL(cpu_id) == 0x56 || CPUID_TO_MODEL(cpu_id) == 0x4f || 1086 CPUID_TO_MODEL(cpu_id) == 0x47 || CPUID_TO_MODEL(cpu_id) == 0x3d) && 1087 (hw_mds_disable == 2 || hw_mds_disable == 3)) { 1088 /* 1089 * Haswell, Broadwell 1090 */ 1091 CPU_FOREACH(i) { 1092 pc = pcpu_find(i); 1093 if (pc->pc_mds_buf == NULL) { 1094 pc->pc_mds_buf = malloc_domainset(1536, M_TEMP, 1095 DOMAINSET_PREF(pc->pc_domain), M_WAITOK); 1096 bzero(pc->pc_mds_buf, 16); 1097 } 1098 } 1099 mds_handler = mds_handler_bdw; 1100 } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 && 1101 ((CPUID_TO_MODEL(cpu_id) == 0x55 && (cpu_id & 1102 CPUID_STEPPING) <= 5) || 1103 CPUID_TO_MODEL(cpu_id) == 0x4e || CPUID_TO_MODEL(cpu_id) == 0x5e || 1104 (CPUID_TO_MODEL(cpu_id) == 0x8e && (cpu_id & 1105 CPUID_STEPPING) <= 0xb) || 1106 (CPUID_TO_MODEL(cpu_id) == 0x9e && (cpu_id & 1107 CPUID_STEPPING) <= 0xc)) && 1108 (hw_mds_disable == 2 || hw_mds_disable == 3)) { 1109 /* 1110 * Skylake, KabyLake, CoffeeLake, WhiskeyLake, 1111 * CascadeLake 1112 */ 1113 CPU_FOREACH(i) { 1114 pc = pcpu_find(i); 1115 if (pc->pc_mds_buf == NULL) { 1116 pc->pc_mds_buf = malloc_domainset(6 * 1024, 1117 M_TEMP, DOMAINSET_PREF(pc->pc_domain), 1118 M_WAITOK); 1119 b64 = (vm_offset_t)malloc_domainset(64 + 63, 1120 M_TEMP, DOMAINSET_PREF(pc->pc_domain), 1121 M_WAITOK); 1122 pc->pc_mds_buf64 = (void *)roundup2(b64, 64); 1123 bzero(pc->pc_mds_buf64, 64); 1124 } 1125 } 1126 xcr0 = rxcr(0); 1127 if ((xcr0 & XFEATURE_ENABLED_ZMM_HI256) != 0 && 1128 (cpu_stdext_feature & CPUID_STDEXT_AVX512DQ) != 0) 1129 mds_handler = mds_handler_skl_avx512; 1130 else if ((xcr0 & XFEATURE_ENABLED_AVX) != 0 && 1131 (cpu_feature2 & CPUID2_AVX) != 0) 1132 mds_handler = mds_handler_skl_avx; 1133 else 1134 mds_handler = mds_handler_skl_sse; 1135 } else if (CPUID_TO_FAMILY(cpu_id) == 0x6 && 1136 ((CPUID_TO_MODEL(cpu_id) == 0x37 || 1137 CPUID_TO_MODEL(cpu_id) == 0x4a || 1138 CPUID_TO_MODEL(cpu_id) == 0x4c || 1139 CPUID_TO_MODEL(cpu_id) == 0x4d || 1140 CPUID_TO_MODEL(cpu_id) == 0x5a || 1141 CPUID_TO_MODEL(cpu_id) == 0x5d || 1142 CPUID_TO_MODEL(cpu_id) == 0x6e || 1143 CPUID_TO_MODEL(cpu_id) == 0x65 || 1144 CPUID_TO_MODEL(cpu_id) == 0x75 || 1145 CPUID_TO_MODEL(cpu_id) == 0x1c || 1146 CPUID_TO_MODEL(cpu_id) == 0x26 || 1147 CPUID_TO_MODEL(cpu_id) == 0x27 || 1148 CPUID_TO_MODEL(cpu_id) == 0x35 || 1149 CPUID_TO_MODEL(cpu_id) == 0x36 || 1150 CPUID_TO_MODEL(cpu_id) == 0x7a))) { 1151 /* Silvermont, Airmont */ 1152 CPU_FOREACH(i) { 1153 pc = pcpu_find(i); 1154 if (pc->pc_mds_buf == NULL) 1155 pc->pc_mds_buf = malloc(256, M_TEMP, M_WAITOK); 1156 } 1157 mds_handler = mds_handler_silvermont; 1158 } else { 1159 hw_mds_disable = 0; 1160 mds_handler = mds_handler_void; 1161 } 1162 } 1163 1164 static void 1165 hw_mds_recalculate_boot(void *arg __unused) 1166 { 1167 1168 hw_mds_recalculate(); 1169 } 1170 SYSINIT(mds_recalc, SI_SUB_SMP, SI_ORDER_ANY, hw_mds_recalculate_boot, NULL); 1171 1172 static int 1173 sysctl_mds_disable_handler(SYSCTL_HANDLER_ARGS) 1174 { 1175 int error, val; 1176 1177 val = hw_mds_disable; 1178 error = sysctl_handle_int(oidp, &val, 0, req); 1179 if (error != 0 || req->newptr == NULL) 1180 return (error); 1181 if (val < 0 || val > 3) 1182 return (EINVAL); 1183 hw_mds_disable = val; 1184 hw_mds_recalculate(); 1185 return (0); 1186 } 1187 1188 SYSCTL_PROC(_hw, OID_AUTO, mds_disable, CTLTYPE_INT | 1189 CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, 1190 sysctl_mds_disable_handler, "I", 1191 "Microarchitectural Data Sampling Mitigation " 1192 "(0 - off, 1 - on VERW, 2 - on SW, 3 - on AUTO)"); 1193 1194 SYSCTL_PROC(_machdep_mitigations_mds, OID_AUTO, disable, CTLTYPE_INT | 1195 CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, 1196 sysctl_mds_disable_handler, "I", 1197 "Microarchitectural Data Sampling Mitigation " 1198 "(0 - off, 1 - on VERW, 2 - on SW, 3 - on AUTO)"); 1199 1200 /* 1201 * Intel Transactional Memory Asynchronous Abort Mitigation 1202 * CVE-2019-11135 1203 */ 1204 int x86_taa_enable; 1205 int x86_taa_state; 1206 enum { 1207 TAA_NONE = 0, /* No mitigation enabled */ 1208 TAA_TSX_DISABLE = 1, /* Disable TSX via MSR */ 1209 TAA_VERW = 2, /* Use VERW mitigation */ 1210 TAA_AUTO = 3, /* Automatically select the mitigation */ 1211 1212 /* The states below are not selectable by the operator */ 1213 1214 TAA_TAA_UC = 4, /* Mitigation present in microcode */ 1215 TAA_NOT_PRESENT = 5 /* TSX is not present */ 1216 }; 1217 1218 static void 1219 taa_set(bool enable, bool all) 1220 { 1221 1222 x86_msr_op(MSR_IA32_TSX_CTRL, 1223 (enable ? MSR_OP_OR : MSR_OP_ANDNOT) | 1224 (all ? MSR_OP_RENDEZVOUS : MSR_OP_LOCAL), 1225 IA32_TSX_CTRL_RTM_DISABLE | IA32_TSX_CTRL_TSX_CPUID_CLEAR); 1226 } 1227 1228 void 1229 x86_taa_recalculate(void) 1230 { 1231 static int taa_saved_mds_disable = 0; 1232 int taa_need = 0, taa_state = 0; 1233 int mds_disable = 0, need_mds_recalc = 0; 1234 1235 /* Check CPUID.07h.EBX.HLE and RTM for the presence of TSX */ 1236 if ((cpu_stdext_feature & CPUID_STDEXT_HLE) == 0 || 1237 (cpu_stdext_feature & CPUID_STDEXT_RTM) == 0) { 1238 /* TSX is not present */ 1239 x86_taa_state = TAA_NOT_PRESENT; 1240 return; 1241 } 1242 1243 /* Check to see what mitigation options the CPU gives us */ 1244 if (cpu_ia32_arch_caps & IA32_ARCH_CAP_TAA_NO) { 1245 /* CPU is not suseptible to TAA */ 1246 taa_need = TAA_TAA_UC; 1247 } else if (cpu_ia32_arch_caps & IA32_ARCH_CAP_TSX_CTRL) { 1248 /* 1249 * CPU can turn off TSX. This is the next best option 1250 * if TAA_NO hardware mitigation isn't present 1251 */ 1252 taa_need = TAA_TSX_DISABLE; 1253 } else { 1254 /* No TSX/TAA specific remedies are available. */ 1255 if (x86_taa_enable == TAA_TSX_DISABLE) { 1256 if (bootverbose) 1257 printf("TSX control not available\n"); 1258 return; 1259 } else 1260 taa_need = TAA_VERW; 1261 } 1262 1263 /* Can we automatically take action, or are we being forced? */ 1264 if (x86_taa_enable == TAA_AUTO) 1265 taa_state = taa_need; 1266 else 1267 taa_state = x86_taa_enable; 1268 1269 /* No state change, nothing to do */ 1270 if (taa_state == x86_taa_state) { 1271 if (bootverbose) 1272 printf("No TSX change made\n"); 1273 return; 1274 } 1275 1276 /* Does the MSR need to be turned on or off? */ 1277 if (taa_state == TAA_TSX_DISABLE) 1278 taa_set(true, true); 1279 else if (x86_taa_state == TAA_TSX_DISABLE) 1280 taa_set(false, true); 1281 1282 /* Does MDS need to be set to turn on VERW? */ 1283 if (taa_state == TAA_VERW) { 1284 taa_saved_mds_disable = hw_mds_disable; 1285 mds_disable = hw_mds_disable = 1; 1286 need_mds_recalc = 1; 1287 } else if (x86_taa_state == TAA_VERW) { 1288 mds_disable = hw_mds_disable = taa_saved_mds_disable; 1289 need_mds_recalc = 1; 1290 } 1291 if (need_mds_recalc) { 1292 hw_mds_recalculate(); 1293 if (mds_disable != hw_mds_disable) { 1294 if (bootverbose) 1295 printf("Cannot change MDS state for TAA\n"); 1296 /* Don't update our state */ 1297 return; 1298 } 1299 } 1300 1301 x86_taa_state = taa_state; 1302 return; 1303 } 1304 1305 static void 1306 taa_recalculate_boot(void * arg __unused) 1307 { 1308 1309 x86_taa_recalculate(); 1310 } 1311 SYSINIT(taa_recalc, SI_SUB_SMP, SI_ORDER_ANY, taa_recalculate_boot, NULL); 1312 1313 SYSCTL_NODE(_machdep_mitigations, OID_AUTO, taa, 1314 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1315 "TSX Asynchronous Abort Mitigation"); 1316 1317 static int 1318 sysctl_taa_handler(SYSCTL_HANDLER_ARGS) 1319 { 1320 int error, val; 1321 1322 val = x86_taa_enable; 1323 error = sysctl_handle_int(oidp, &val, 0, req); 1324 if (error != 0 || req->newptr == NULL) 1325 return (error); 1326 if (val < TAA_NONE || val > TAA_AUTO) 1327 return (EINVAL); 1328 x86_taa_enable = val; 1329 x86_taa_recalculate(); 1330 return (0); 1331 } 1332 1333 SYSCTL_PROC(_machdep_mitigations_taa, OID_AUTO, enable, CTLTYPE_INT | 1334 CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, 1335 sysctl_taa_handler, "I", 1336 "TAA Mitigation enablement control " 1337 "(0 - off, 1 - disable TSX, 2 - VERW, 3 - on AUTO)"); 1338 1339 static int 1340 sysctl_taa_state_handler(SYSCTL_HANDLER_ARGS) 1341 { 1342 const char *state; 1343 1344 switch (x86_taa_state) { 1345 case TAA_NONE: 1346 state = "inactive"; 1347 break; 1348 case TAA_TSX_DISABLE: 1349 state = "TSX disabled"; 1350 break; 1351 case TAA_VERW: 1352 state = "VERW"; 1353 break; 1354 case TAA_TAA_UC: 1355 state = "Mitigated in microcode"; 1356 break; 1357 case TAA_NOT_PRESENT: 1358 state = "TSX not present"; 1359 break; 1360 default: 1361 state = "unknown"; 1362 } 1363 1364 return (SYSCTL_OUT(req, state, strlen(state))); 1365 } 1366 1367 SYSCTL_PROC(_machdep_mitigations_taa, OID_AUTO, state, 1368 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 1369 sysctl_taa_state_handler, "A", 1370 "TAA Mitigation state"); 1371 1372 int __read_frequently cpu_flush_rsb_ctxsw; 1373 SYSCTL_INT(_machdep_mitigations, OID_AUTO, flush_rsb_ctxsw, 1374 CTLFLAG_RW | CTLFLAG_NOFETCH, &cpu_flush_rsb_ctxsw, 0, 1375 "Flush Return Stack Buffer on context switch"); 1376 1377 SYSCTL_NODE(_machdep_mitigations, OID_AUTO, rngds, 1378 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1379 "MCU Optimization, disable RDSEED mitigation"); 1380 1381 int x86_rngds_mitg_enable = 1; 1382 void 1383 x86_rngds_mitg_recalculate(bool all_cpus) 1384 { 1385 if ((cpu_stdext_feature3 & CPUID_STDEXT3_MCUOPT) == 0) 1386 return; 1387 x86_msr_op(MSR_IA32_MCU_OPT_CTRL, 1388 (x86_rngds_mitg_enable ? MSR_OP_OR : MSR_OP_ANDNOT) | 1389 (all_cpus ? MSR_OP_RENDEZVOUS : MSR_OP_LOCAL), 1390 IA32_RNGDS_MITG_DIS); 1391 } 1392 1393 static int 1394 sysctl_rngds_mitg_enable_handler(SYSCTL_HANDLER_ARGS) 1395 { 1396 int error, val; 1397 1398 val = x86_rngds_mitg_enable; 1399 error = sysctl_handle_int(oidp, &val, 0, req); 1400 if (error != 0 || req->newptr == NULL) 1401 return (error); 1402 x86_rngds_mitg_enable = val; 1403 x86_rngds_mitg_recalculate(true); 1404 return (0); 1405 } 1406 SYSCTL_PROC(_machdep_mitigations_rngds, OID_AUTO, enable, CTLTYPE_INT | 1407 CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0, 1408 sysctl_rngds_mitg_enable_handler, "I", 1409 "MCU Optimization, disabling RDSEED mitigation control " 1410 "(0 - mitigation disabled (RDSEED optimized), 1 - mitigation enabled)"); 1411 1412 static int 1413 sysctl_rngds_state_handler(SYSCTL_HANDLER_ARGS) 1414 { 1415 const char *state; 1416 1417 if ((cpu_stdext_feature3 & CPUID_STDEXT3_MCUOPT) == 0) { 1418 state = "Not applicable"; 1419 } else if (x86_rngds_mitg_enable == 0) { 1420 state = "RDSEED not serialized"; 1421 } else { 1422 state = "Mitigated"; 1423 } 1424 return (SYSCTL_OUT(req, state, strlen(state))); 1425 } 1426 SYSCTL_PROC(_machdep_mitigations_rngds, OID_AUTO, state, 1427 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 1428 sysctl_rngds_state_handler, "A", 1429 "MCU Optimization state"); 1430 1431 /* 1432 * Enable and restore kernel text write permissions. 1433 * Callers must ensure that disable_wp()/restore_wp() are executed 1434 * without rescheduling on the same core. 1435 */ 1436 bool 1437 disable_wp(void) 1438 { 1439 u_int cr0; 1440 1441 cr0 = rcr0(); 1442 if ((cr0 & CR0_WP) == 0) 1443 return (false); 1444 load_cr0(cr0 & ~CR0_WP); 1445 return (true); 1446 } 1447 1448 void 1449 restore_wp(bool old_wp) 1450 { 1451 1452 if (old_wp) 1453 load_cr0(rcr0() | CR0_WP); 1454 } 1455 1456 bool 1457 acpi_get_fadt_bootflags(uint16_t *flagsp) 1458 { 1459 #ifdef DEV_ACPI 1460 ACPI_TABLE_FADT *fadt; 1461 vm_paddr_t physaddr; 1462 1463 physaddr = acpi_find_table(ACPI_SIG_FADT); 1464 if (physaddr == 0) 1465 return (false); 1466 fadt = acpi_map_table(physaddr, ACPI_SIG_FADT); 1467 if (fadt == NULL) 1468 return (false); 1469 *flagsp = fadt->BootFlags; 1470 acpi_unmap_table(fadt); 1471 return (true); 1472 #else 1473 return (false); 1474 #endif 1475 } 1476