xref: /freebsd/sys/x86/isa/clock.c (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 The Regents of the University of California.
5  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz and Don Ahn.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 /*
42  * Routines to handle clock hardware.
43  */
44 
45 #include "opt_clock.h"
46 #include "opt_isa.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/lock.h>
52 #include <sys/kdb.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/kernel.h>
56 #include <sys/module.h>
57 #include <sys/rman.h>
58 #include <sys/sched.h>
59 #include <sys/smp.h>
60 #include <sys/sysctl.h>
61 #include <sys/timeet.h>
62 #include <sys/timetc.h>
63 
64 #include <machine/clock.h>
65 #include <machine/cpu.h>
66 #include <machine/intr_machdep.h>
67 #include <machine/ppireg.h>
68 #include <machine/timerreg.h>
69 #include <x86/apicvar.h>
70 #include <x86/init.h>
71 
72 #include <isa/rtc.h>
73 #ifdef DEV_ISA
74 #include <isa/isareg.h>
75 #include <isa/isavar.h>
76 #endif
77 
78 int	clkintr_pending;
79 #ifndef TIMER_FREQ
80 #define TIMER_FREQ   1193182
81 #endif
82 u_int	i8254_freq = TIMER_FREQ;
83 TUNABLE_INT("hw.i8254.freq", &i8254_freq);
84 int	i8254_max_count;
85 static int i8254_timecounter = 1;
86 
87 static	struct mtx clock_lock;
88 static	struct intsrc *i8254_intsrc;
89 static	uint16_t i8254_lastcount;
90 static	uint16_t i8254_offset;
91 static	int	(*i8254_pending)(struct intsrc *);
92 static	int	i8254_ticked;
93 
94 struct attimer_softc {
95 	int intr_en;
96 	int port_rid, intr_rid;
97 	struct resource *port_res;
98 	struct resource *intr_res;
99 	void *intr_handler;
100 	struct timecounter tc;
101 	struct eventtimer et;
102 	int		mode;
103 #define	MODE_STOP	0
104 #define	MODE_PERIODIC	1
105 #define	MODE_ONESHOT	2
106 	uint32_t	period;
107 };
108 static struct attimer_softc *attimer_sc = NULL;
109 
110 static int timer0_period = -2;
111 static int timer0_mode = 0xffff;
112 static int timer0_last = 0xffff;
113 
114 /* Values for timerX_state: */
115 #define	RELEASED	0
116 #define	RELEASE_PENDING	1
117 #define	ACQUIRED	2
118 #define	ACQUIRE_PENDING	3
119 
120 static	u_char	timer2_state;
121 
122 static	unsigned i8254_get_timecount(struct timecounter *tc);
123 static	void	set_i8254_freq(int mode, uint32_t period);
124 
125 void
126 clock_init(void)
127 {
128 	/* Init the clock lock */
129 	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE);
130 	/* Init the clock in order to use DELAY */
131 	init_ops.early_clock_source_init();
132 }
133 
134 static int
135 clkintr(void *arg)
136 {
137 	struct attimer_softc *sc = (struct attimer_softc *)arg;
138 
139 	if (i8254_timecounter && sc->period != 0) {
140 		mtx_lock_spin(&clock_lock);
141 		if (i8254_ticked)
142 			i8254_ticked = 0;
143 		else {
144 			i8254_offset += i8254_max_count;
145 			i8254_lastcount = 0;
146 		}
147 		clkintr_pending = 0;
148 		mtx_unlock_spin(&clock_lock);
149 	}
150 
151 	if (sc->et.et_active && sc->mode != MODE_STOP)
152 		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
153 
154 	return (FILTER_HANDLED);
155 }
156 
157 int
158 timer_spkr_acquire(void)
159 {
160 	int mode;
161 
162 	mode = TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT;
163 
164 	if (timer2_state != RELEASED)
165 		return (-1);
166 	timer2_state = ACQUIRED;
167 
168 	/*
169 	 * This access to the timer registers is as atomic as possible
170 	 * because it is a single instruction.  We could do better if we
171 	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
172 	 * and this is probably good enough for timer2, so we aren't as
173 	 * careful with it as with timer0.
174 	 */
175 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
176 
177 	ppi_spkr_on();		/* enable counter2 output to speaker */
178 	return (0);
179 }
180 
181 int
182 timer_spkr_release(void)
183 {
184 
185 	if (timer2_state != ACQUIRED)
186 		return (-1);
187 	timer2_state = RELEASED;
188 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
189 
190 	ppi_spkr_off();		/* disable counter2 output to speaker */
191 	return (0);
192 }
193 
194 void
195 timer_spkr_setfreq(int freq)
196 {
197 
198 	freq = i8254_freq / freq;
199 	mtx_lock_spin(&clock_lock);
200 	outb(TIMER_CNTR2, freq & 0xff);
201 	outb(TIMER_CNTR2, freq >> 8);
202 	mtx_unlock_spin(&clock_lock);
203 }
204 
205 static int
206 getit(void)
207 {
208 	int high, low;
209 
210 	mtx_lock_spin(&clock_lock);
211 
212 	/* Select timer0 and latch counter value. */
213 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
214 
215 	low = inb(TIMER_CNTR0);
216 	high = inb(TIMER_CNTR0);
217 
218 	mtx_unlock_spin(&clock_lock);
219 	return ((high << 8) | low);
220 }
221 
222 /*
223  * Wait "n" microseconds.
224  * Relies on timer 1 counting down from (i8254_freq / hz)
225  * Note: timer had better have been programmed before this is first used!
226  */
227 void
228 i8254_delay(int n)
229 {
230 	int delta, prev_tick, tick, ticks_left;
231 #ifdef DELAYDEBUG
232 	int getit_calls = 1;
233 	int n1;
234 	static int state = 0;
235 
236 	if (state == 0) {
237 		state = 1;
238 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
239 			DELAY(n1);
240 		state = 2;
241 	}
242 	if (state == 1)
243 		printf("DELAY(%d)...", n);
244 #endif
245 	/*
246 	 * Read the counter first, so that the rest of the setup overhead is
247 	 * counted.  Guess the initial overhead is 20 usec (on most systems it
248 	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
249 	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
250 	 * multiplications and divisions to scale the count take a while).
251 	 *
252 	 * However, if ddb is active then use a fake counter since reading
253 	 * the i8254 counter involves acquiring a lock.  ddb must not do
254 	 * locking for many reasons, but it calls here for at least atkbd
255 	 * input.
256 	 */
257 #ifdef KDB
258 	if (kdb_active)
259 		prev_tick = 1;
260 	else
261 #endif
262 		prev_tick = getit();
263 	n -= 0;			/* XXX actually guess no initial overhead */
264 	/*
265 	 * Calculate (n * (i8254_freq / 1e6)) without using floating point
266 	 * and without any avoidable overflows.
267 	 */
268 	if (n <= 0)
269 		ticks_left = 0;
270 	else if (n < 256)
271 		/*
272 		 * Use fixed point to avoid a slow division by 1000000.
273 		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
274 		 * 2^15 is the first power of 2 that gives exact results
275 		 * for n between 0 and 256.
276 		 */
277 		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
278 	else
279 		/*
280 		 * Don't bother using fixed point, although gcc-2.7.2
281 		 * generates particularly poor code for the long long
282 		 * division, since even the slow way will complete long
283 		 * before the delay is up (unless we're interrupted).
284 		 */
285 		ticks_left = ((u_int)n * (long long)i8254_freq + 999999)
286 			     / 1000000;
287 
288 	while (ticks_left > 0) {
289 #ifdef KDB
290 		if (kdb_active) {
291 			inb(0x84);
292 			tick = prev_tick - 1;
293 			if (tick <= 0)
294 				tick = i8254_max_count;
295 		} else
296 #endif
297 			tick = getit();
298 #ifdef DELAYDEBUG
299 		++getit_calls;
300 #endif
301 		delta = prev_tick - tick;
302 		prev_tick = tick;
303 		if (delta < 0) {
304 			delta += i8254_max_count;
305 			/*
306 			 * Guard against i8254_max_count being wrong.
307 			 * This shouldn't happen in normal operation,
308 			 * but it may happen if set_i8254_freq() is
309 			 * traced.
310 			 */
311 			if (delta < 0)
312 				delta = 0;
313 		}
314 		ticks_left -= delta;
315 	}
316 #ifdef DELAYDEBUG
317 	if (state == 1)
318 		printf(" %d calls to getit() at %d usec each\n",
319 		       getit_calls, (n + 5) / getit_calls);
320 #endif
321 }
322 
323 static void
324 set_i8254_freq(int mode, uint32_t period)
325 {
326 	int new_count, new_mode;
327 
328 	mtx_lock_spin(&clock_lock);
329 	if (mode == MODE_STOP) {
330 		if (i8254_timecounter) {
331 			mode = MODE_PERIODIC;
332 			new_count = 0x10000;
333 		} else
334 			new_count = -1;
335 	} else {
336 		new_count = min(((uint64_t)i8254_freq * period +
337 		    0x80000000LLU) >> 32, 0x10000);
338 	}
339 	if (new_count == timer0_period)
340 		goto out;
341 	i8254_max_count = ((new_count & ~0xffff) != 0) ? 0xffff : new_count;
342 	timer0_period = (mode == MODE_PERIODIC) ? new_count : -1;
343 	switch (mode) {
344 	case MODE_STOP:
345 		new_mode = TIMER_SEL0 | TIMER_INTTC | TIMER_16BIT;
346 		outb(TIMER_MODE, new_mode);
347 		outb(TIMER_CNTR0, 0);
348 		outb(TIMER_CNTR0, 0);
349 		break;
350 	case MODE_PERIODIC:
351 		new_mode = TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT;
352 		outb(TIMER_MODE, new_mode);
353 		outb(TIMER_CNTR0, new_count & 0xff);
354 		outb(TIMER_CNTR0, new_count >> 8);
355 		break;
356 	case MODE_ONESHOT:
357 		if (new_count < 256 && timer0_last < 256) {
358 			new_mode = TIMER_SEL0 | TIMER_INTTC | TIMER_LSB;
359 			if (new_mode != timer0_mode)
360 				outb(TIMER_MODE, new_mode);
361 			outb(TIMER_CNTR0, new_count & 0xff);
362 			break;
363 		}
364 		new_mode = TIMER_SEL0 | TIMER_INTTC | TIMER_16BIT;
365 		if (new_mode != timer0_mode)
366 			outb(TIMER_MODE, new_mode);
367 		outb(TIMER_CNTR0, new_count & 0xff);
368 		outb(TIMER_CNTR0, new_count >> 8);
369 		break;
370 	default:
371 		panic("set_i8254_freq: unknown operational mode");
372 	}
373 	timer0_mode = new_mode;
374 	timer0_last = new_count;
375 out:
376 	mtx_unlock_spin(&clock_lock);
377 }
378 
379 static void
380 i8254_restore(void)
381 {
382 
383 	timer0_period = -2;
384 	timer0_mode = 0xffff;
385 	timer0_last = 0xffff;
386 	if (attimer_sc != NULL)
387 		set_i8254_freq(attimer_sc->mode, attimer_sc->period);
388 	else
389 		set_i8254_freq(MODE_STOP, 0);
390 }
391 
392 /* This is separate from startrtclock() so that it can be called early. */
393 void
394 i8254_init(void)
395 {
396 
397 	set_i8254_freq(MODE_STOP, 0);
398 }
399 
400 void
401 startrtclock()
402 {
403 
404 	init_TSC();
405 }
406 
407 void
408 cpu_initclocks(void)
409 {
410 #ifdef EARLY_AP_STARTUP
411 	struct thread *td;
412 	int i;
413 
414 	td = curthread;
415 
416 	tsc_calibrate();
417 	lapic_calibrate_timer();
418 	cpu_initclocks_bsp();
419 	CPU_FOREACH(i) {
420 		if (i == 0)
421 			continue;
422 		thread_lock(td);
423 		sched_bind(td, i);
424 		thread_unlock(td);
425 		cpu_initclocks_ap();
426 	}
427 	thread_lock(td);
428 	if (sched_is_bound(td))
429 		sched_unbind(td);
430 	thread_unlock(td);
431 #else
432 	tsc_calibrate();
433 	lapic_calibrate_timer();
434 	cpu_initclocks_bsp();
435 #endif
436 }
437 
438 static int
439 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
440 {
441 	int error;
442 	u_int freq;
443 
444 	/*
445 	 * Use `i8254' instead of `timer' in external names because `timer'
446 	 * is too generic.  Should use it everywhere.
447 	 */
448 	freq = i8254_freq;
449 	error = sysctl_handle_int(oidp, &freq, 0, req);
450 	if (error == 0 && req->newptr != NULL) {
451 		i8254_freq = freq;
452 		if (attimer_sc != NULL) {
453 			set_i8254_freq(attimer_sc->mode, attimer_sc->period);
454 			attimer_sc->tc.tc_frequency = freq;
455 		} else {
456 			set_i8254_freq(MODE_STOP, 0);
457 		}
458 	}
459 	return (error);
460 }
461 
462 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq,
463     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
464     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU",
465     "i8254 timer frequency");
466 
467 static unsigned
468 i8254_get_timecount(struct timecounter *tc)
469 {
470 	device_t dev = (device_t)tc->tc_priv;
471 	struct attimer_softc *sc = device_get_softc(dev);
472 	register_t flags;
473 	uint16_t count;
474 	u_int high, low;
475 
476 	if (sc->period == 0)
477 		return (i8254_max_count - getit());
478 
479 #ifdef __amd64__
480 	flags = read_rflags();
481 #else
482 	flags = read_eflags();
483 #endif
484 	mtx_lock_spin(&clock_lock);
485 
486 	/* Select timer0 and latch counter value. */
487 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
488 
489 	low = inb(TIMER_CNTR0);
490 	high = inb(TIMER_CNTR0);
491 	count = i8254_max_count - ((high << 8) | low);
492 	if (count < i8254_lastcount ||
493 	    (!i8254_ticked && (clkintr_pending ||
494 	    ((count < 20 || (!(flags & PSL_I) &&
495 	    count < i8254_max_count / 2u)) &&
496 	    i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
497 		i8254_ticked = 1;
498 		i8254_offset += i8254_max_count;
499 	}
500 	i8254_lastcount = count;
501 	count += i8254_offset;
502 	mtx_unlock_spin(&clock_lock);
503 	return (count);
504 }
505 
506 static int
507 attimer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
508 {
509 	device_t dev = (device_t)et->et_priv;
510 	struct attimer_softc *sc = device_get_softc(dev);
511 
512 	if (period != 0) {
513 		sc->mode = MODE_PERIODIC;
514 		sc->period = period;
515 	} else {
516 		sc->mode = MODE_ONESHOT;
517 		sc->period = first;
518 	}
519 	if (!sc->intr_en) {
520 		i8254_intsrc->is_pic->pic_enable_source(i8254_intsrc);
521 		sc->intr_en = 1;
522 	}
523 	set_i8254_freq(sc->mode, sc->period);
524 	return (0);
525 }
526 
527 static int
528 attimer_stop(struct eventtimer *et)
529 {
530 	device_t dev = (device_t)et->et_priv;
531 	struct attimer_softc *sc = device_get_softc(dev);
532 
533 	sc->mode = MODE_STOP;
534 	sc->period = 0;
535 	set_i8254_freq(sc->mode, sc->period);
536 	return (0);
537 }
538 
539 #ifdef DEV_ISA
540 /*
541  * Attach to the ISA PnP descriptors for the timer
542  */
543 static struct isa_pnp_id attimer_ids[] = {
544 	{ 0x0001d041 /* PNP0100 */, "AT timer" },
545 	{ 0 }
546 };
547 
548 static int
549 attimer_probe(device_t dev)
550 {
551 	int result;
552 
553 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids);
554 	/* ENOENT means no PnP-ID, device is hinted. */
555 	if (result == ENOENT) {
556 		device_set_desc(dev, "AT timer");
557 		return (BUS_PROBE_LOW_PRIORITY);
558 	}
559 	return (result);
560 }
561 
562 static int
563 attimer_attach(device_t dev)
564 {
565 	struct attimer_softc *sc;
566 	rman_res_t s;
567 	int i;
568 
569 	attimer_sc = sc = device_get_softc(dev);
570 	bzero(sc, sizeof(struct attimer_softc));
571 	if (!(sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT,
572 	    &sc->port_rid, IO_TIMER1, IO_TIMER1 + 3, 4, RF_ACTIVE)))
573 		device_printf(dev,"Warning: Couldn't map I/O.\n");
574 	i8254_intsrc = intr_lookup_source(0);
575 	if (i8254_intsrc != NULL)
576 		i8254_pending = i8254_intsrc->is_pic->pic_source_pending;
577 	resource_int_value(device_get_name(dev), device_get_unit(dev),
578 	    "timecounter", &i8254_timecounter);
579 	set_i8254_freq(MODE_STOP, 0);
580 	if (i8254_timecounter) {
581 		sc->tc.tc_get_timecount = i8254_get_timecount;
582 		sc->tc.tc_counter_mask = 0xffff;
583 		sc->tc.tc_frequency = i8254_freq;
584 		sc->tc.tc_name = "i8254";
585 		sc->tc.tc_quality = 0;
586 		sc->tc.tc_priv = dev;
587 		tc_init(&sc->tc);
588 	}
589 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
590 	    "clock", &i) != 0 || i != 0) {
591 	    	sc->intr_rid = 0;
592 		while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid,
593 		    &s, NULL) == 0 && s != 0)
594 			sc->intr_rid++;
595 		if (!(sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
596 		    &sc->intr_rid, 0, 0, 1, RF_ACTIVE))) {
597 			device_printf(dev,"Can't map interrupt.\n");
598 			return (0);
599 		}
600 		/* Dirty hack, to make bus_setup_intr to not enable source. */
601 		i8254_intsrc->is_handlers++;
602 		if ((bus_setup_intr(dev, sc->intr_res,
603 		    INTR_MPSAFE | INTR_TYPE_CLK,
604 		    (driver_filter_t *)clkintr, NULL,
605 		    sc, &sc->intr_handler))) {
606 			device_printf(dev, "Can't setup interrupt.\n");
607 			i8254_intsrc->is_handlers--;
608 			return (0);
609 		}
610 		i8254_intsrc->is_handlers--;
611 		i8254_intsrc->is_pic->pic_enable_intr(i8254_intsrc);
612 		sc->et.et_name = "i8254";
613 		sc->et.et_flags = ET_FLAGS_PERIODIC;
614 		if (!i8254_timecounter)
615 			sc->et.et_flags |= ET_FLAGS_ONESHOT;
616 		sc->et.et_quality = 100;
617 		sc->et.et_frequency = i8254_freq;
618 		sc->et.et_min_period = (0x0002LLU << 32) / i8254_freq;
619 		sc->et.et_max_period = (0xfffeLLU << 32) / i8254_freq;
620 		sc->et.et_start = attimer_start;
621 		sc->et.et_stop = attimer_stop;
622 		sc->et.et_priv = dev;
623 		et_register(&sc->et);
624 	}
625 	return(0);
626 }
627 
628 static int
629 attimer_resume(device_t dev)
630 {
631 
632 	i8254_restore();
633 	return (0);
634 }
635 
636 static device_method_t attimer_methods[] = {
637 	/* Device interface */
638 	DEVMETHOD(device_probe,		attimer_probe),
639 	DEVMETHOD(device_attach,	attimer_attach),
640 	DEVMETHOD(device_detach,	bus_generic_detach),
641 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
642 	DEVMETHOD(device_suspend,	bus_generic_suspend),
643 	DEVMETHOD(device_resume,	attimer_resume),
644 	{ 0, 0 }
645 };
646 
647 static driver_t attimer_driver = {
648 	"attimer",
649 	attimer_methods,
650 	sizeof(struct attimer_softc),
651 };
652 
653 static devclass_t attimer_devclass;
654 
655 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
656 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
657 ISA_PNP_INFO(attimer_ids);
658 
659 #endif /* DEV_ISA */
660