xref: /freebsd/sys/x86/isa/clock.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * William Jolitz and Don Ahn.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * Routines to handle clock hardware.
40  */
41 
42 #ifndef __amd64__
43 #include "opt_apic.h"
44 #endif
45 #include "opt_clock.h"
46 #include "opt_kdtrace.h"
47 #include "opt_isa.h"
48 #include "opt_mca.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bus.h>
53 #include <sys/lock.h>
54 #include <sys/kdb.h>
55 #include <sys/mutex.h>
56 #include <sys/proc.h>
57 #include <sys/timetc.h>
58 #include <sys/kernel.h>
59 #include <sys/module.h>
60 #include <sys/sched.h>
61 #include <sys/smp.h>
62 #include <sys/sysctl.h>
63 
64 #include <machine/clock.h>
65 #include <machine/cpu.h>
66 #include <machine/intr_machdep.h>
67 #include <machine/md_var.h>
68 #include <machine/apicvar.h>
69 #include <machine/ppireg.h>
70 #include <machine/timerreg.h>
71 #include <machine/smp.h>
72 
73 #include <isa/rtc.h>
74 #ifdef DEV_ISA
75 #include <isa/isareg.h>
76 #include <isa/isavar.h>
77 #endif
78 
79 #ifdef DEV_MCA
80 #include <i386/bios/mca_machdep.h>
81 #endif
82 
83 #ifdef KDTRACE_HOOKS
84 #include <sys/dtrace_bsd.h>
85 #endif
86 
87 #define	TIMER_DIV(x) ((i8254_freq + (x) / 2) / (x))
88 
89 int	clkintr_pending;
90 #ifndef TIMER_FREQ
91 #define TIMER_FREQ   1193182
92 #endif
93 u_int	i8254_freq = TIMER_FREQ;
94 TUNABLE_INT("hw.i8254.freq", &i8254_freq);
95 int	i8254_max_count;
96 static int i8254_real_max_count;
97 
98 static int lapic_allclocks = 1;
99 TUNABLE_INT("machdep.lapic_allclocks", &lapic_allclocks);
100 
101 struct mtx clock_lock;
102 static	struct intsrc *i8254_intsrc;
103 static	u_int32_t i8254_lastcount;
104 static	u_int32_t i8254_offset;
105 static	int	(*i8254_pending)(struct intsrc *);
106 static	int	i8254_ticked;
107 static	int	using_atrtc_timer;
108 static	enum lapic_clock using_lapic_timer = LAPIC_CLOCK_NONE;
109 
110 /* Values for timerX_state: */
111 #define	RELEASED	0
112 #define	RELEASE_PENDING	1
113 #define	ACQUIRED	2
114 #define	ACQUIRE_PENDING	3
115 
116 static	u_char	timer2_state;
117 
118 static	unsigned i8254_get_timecount(struct timecounter *tc);
119 static	unsigned i8254_simple_get_timecount(struct timecounter *tc);
120 static	void	set_i8254_freq(u_int freq, int intr_freq);
121 
122 static struct timecounter i8254_timecounter = {
123 	i8254_get_timecount,	/* get_timecount */
124 	0,			/* no poll_pps */
125 	~0u,			/* counter_mask */
126 	0,			/* frequency */
127 	"i8254",		/* name */
128 	0			/* quality */
129 };
130 
131 int
132 hardclockintr(struct trapframe *frame)
133 {
134 
135 	timer1clock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
136 	return (FILTER_HANDLED);
137 }
138 
139 int
140 statclockintr(struct trapframe *frame)
141 {
142 
143 	timer2clock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
144 	return (FILTER_HANDLED);
145 }
146 
147 static int
148 clkintr(struct trapframe *frame)
149 {
150 
151 	if (timecounter->tc_get_timecount == i8254_get_timecount) {
152 		mtx_lock_spin(&clock_lock);
153 		if (i8254_ticked)
154 			i8254_ticked = 0;
155 		else {
156 			i8254_offset += i8254_max_count;
157 			i8254_lastcount = 0;
158 		}
159 		clkintr_pending = 0;
160 		mtx_unlock_spin(&clock_lock);
161 	}
162 	KASSERT(using_lapic_timer == LAPIC_CLOCK_NONE,
163 	    ("clk interrupt enabled with lapic timer"));
164 
165 #ifdef KDTRACE_HOOKS
166 	/*
167 	 * If the DTrace hooks are configured and a callback function
168 	 * has been registered, then call it to process the high speed
169 	 * timers.
170 	 */
171 	int cpu = PCPU_GET(cpuid);
172 	if (cyclic_clock_func[cpu] != NULL)
173 		(*cyclic_clock_func[cpu])(frame);
174 #endif
175 
176 #ifdef SMP
177 	if (smp_started)
178 		ipi_all_but_self(IPI_HARDCLOCK);
179 #endif
180 	hardclockintr(frame);
181 
182 #ifdef DEV_MCA
183 	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
184 	if (MCA_system)
185 		outb(0x61, inb(0x61) | 0x80);
186 #endif
187 	return (FILTER_HANDLED);
188 }
189 
190 int
191 timer_spkr_acquire(void)
192 {
193 	int mode;
194 
195 	mode = TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT;
196 
197 	if (timer2_state != RELEASED)
198 		return (-1);
199 	timer2_state = ACQUIRED;
200 
201 	/*
202 	 * This access to the timer registers is as atomic as possible
203 	 * because it is a single instruction.  We could do better if we
204 	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
205 	 * and this is probably good enough for timer2, so we aren't as
206 	 * careful with it as with timer0.
207 	 */
208 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
209 	ppi_spkr_on();		/* enable counter2 output to speaker */
210 	return (0);
211 }
212 
213 int
214 timer_spkr_release(void)
215 {
216 
217 	if (timer2_state != ACQUIRED)
218 		return (-1);
219 	timer2_state = RELEASED;
220 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
221 	ppi_spkr_off();		/* disable counter2 output to speaker */
222 	return (0);
223 }
224 
225 void
226 timer_spkr_setfreq(int freq)
227 {
228 
229 	freq = i8254_freq / freq;
230 	mtx_lock_spin(&clock_lock);
231 	outb(TIMER_CNTR2, freq & 0xff);
232 	outb(TIMER_CNTR2, freq >> 8);
233 	mtx_unlock_spin(&clock_lock);
234 }
235 
236 /*
237  * This routine receives statistical clock interrupts from the RTC.
238  * As explained above, these occur at 128 interrupts per second.
239  * When profiling, we receive interrupts at a rate of 1024 Hz.
240  *
241  * This does not actually add as much overhead as it sounds, because
242  * when the statistical clock is active, the hardclock driver no longer
243  * needs to keep (inaccurate) statistics on its own.  This decouples
244  * statistics gathering from scheduling interrupts.
245  *
246  * The RTC chip requires that we read status register C (RTC_INTR)
247  * to acknowledge an interrupt, before it will generate the next one.
248  * Under high interrupt load, rtcintr() can be indefinitely delayed and
249  * the clock can tick immediately after the read from RTC_INTR.  In this
250  * case, the mc146818A interrupt signal will not drop for long enough
251  * to register with the 8259 PIC.  If an interrupt is missed, the stat
252  * clock will halt, considerably degrading system performance.  This is
253  * why we use 'while' rather than a more straightforward 'if' below.
254  * Stat clock ticks can still be lost, causing minor loss of accuracy
255  * in the statistics, but the stat clock will no longer stop.
256  */
257 static int
258 rtcintr(struct trapframe *frame)
259 {
260 	int flag = 0;
261 
262 	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
263 		flag = 1;
264 #ifdef SMP
265 		if (smp_started)
266 			ipi_all_but_self(IPI_STATCLOCK);
267 #endif
268 		statclockintr(frame);
269 	}
270 	return(flag ? FILTER_HANDLED : FILTER_STRAY);
271 }
272 
273 static int
274 getit(void)
275 {
276 	int high, low;
277 
278 	mtx_lock_spin(&clock_lock);
279 
280 	/* Select timer0 and latch counter value. */
281 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
282 
283 	low = inb(TIMER_CNTR0);
284 	high = inb(TIMER_CNTR0);
285 
286 	mtx_unlock_spin(&clock_lock);
287 	return ((high << 8) | low);
288 }
289 
290 /*
291  * Wait "n" microseconds.
292  * Relies on timer 1 counting down from (i8254_freq / hz)
293  * Note: timer had better have been programmed before this is first used!
294  */
295 void
296 DELAY(int n)
297 {
298 	int delta, prev_tick, tick, ticks_left;
299 
300 #ifdef DELAYDEBUG
301 	int getit_calls = 1;
302 	int n1;
303 	static int state = 0;
304 #endif
305 
306 	if (tsc_freq != 0 && !tsc_is_broken) {
307 		uint64_t start, end, now;
308 
309 		sched_pin();
310 		start = rdtsc();
311 		end = start + (tsc_freq * n) / 1000000;
312 		do {
313 			cpu_spinwait();
314 			now = rdtsc();
315 		} while (now < end || (now > start && end < start));
316 		sched_unpin();
317 		return;
318 	}
319 #ifdef DELAYDEBUG
320 	if (state == 0) {
321 		state = 1;
322 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
323 			DELAY(n1);
324 		state = 2;
325 	}
326 	if (state == 1)
327 		printf("DELAY(%d)...", n);
328 #endif
329 	/*
330 	 * Read the counter first, so that the rest of the setup overhead is
331 	 * counted.  Guess the initial overhead is 20 usec (on most systems it
332 	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
333 	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
334 	 * multiplications and divisions to scale the count take a while).
335 	 *
336 	 * However, if ddb is active then use a fake counter since reading
337 	 * the i8254 counter involves acquiring a lock.  ddb must not do
338 	 * locking for many reasons, but it calls here for at least atkbd
339 	 * input.
340 	 */
341 #ifdef KDB
342 	if (kdb_active)
343 		prev_tick = 1;
344 	else
345 #endif
346 		prev_tick = getit();
347 	n -= 0;			/* XXX actually guess no initial overhead */
348 	/*
349 	 * Calculate (n * (i8254_freq / 1e6)) without using floating point
350 	 * and without any avoidable overflows.
351 	 */
352 	if (n <= 0)
353 		ticks_left = 0;
354 	else if (n < 256)
355 		/*
356 		 * Use fixed point to avoid a slow division by 1000000.
357 		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
358 		 * 2^15 is the first power of 2 that gives exact results
359 		 * for n between 0 and 256.
360 		 */
361 		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
362 	else
363 		/*
364 		 * Don't bother using fixed point, although gcc-2.7.2
365 		 * generates particularly poor code for the long long
366 		 * division, since even the slow way will complete long
367 		 * before the delay is up (unless we're interrupted).
368 		 */
369 		ticks_left = ((u_int)n * (long long)i8254_freq + 999999)
370 			     / 1000000;
371 
372 	while (ticks_left > 0) {
373 #ifdef KDB
374 		if (kdb_active) {
375 			inb(0x84);
376 			tick = prev_tick - 1;
377 			if (tick <= 0)
378 				tick = i8254_max_count;
379 		} else
380 #endif
381 			tick = getit();
382 #ifdef DELAYDEBUG
383 		++getit_calls;
384 #endif
385 		delta = prev_tick - tick;
386 		prev_tick = tick;
387 		if (delta < 0) {
388 			delta += i8254_max_count;
389 			/*
390 			 * Guard against i8254_max_count being wrong.
391 			 * This shouldn't happen in normal operation,
392 			 * but it may happen if set_i8254_freq() is
393 			 * traced.
394 			 */
395 			if (delta < 0)
396 				delta = 0;
397 		}
398 		ticks_left -= delta;
399 	}
400 #ifdef DELAYDEBUG
401 	if (state == 1)
402 		printf(" %d calls to getit() at %d usec each\n",
403 		       getit_calls, (n + 5) / getit_calls);
404 #endif
405 }
406 
407 static void
408 set_i8254_freq(u_int freq, int intr_freq)
409 {
410 	int new_i8254_real_max_count;
411 
412 	i8254_timecounter.tc_frequency = freq;
413 	mtx_lock_spin(&clock_lock);
414 	i8254_freq = freq;
415 	if (using_lapic_timer != LAPIC_CLOCK_NONE)
416 		new_i8254_real_max_count = 0x10000;
417 	else
418 		new_i8254_real_max_count = TIMER_DIV(intr_freq);
419 	if (new_i8254_real_max_count != i8254_real_max_count) {
420 		i8254_real_max_count = new_i8254_real_max_count;
421 		if (i8254_real_max_count == 0x10000)
422 			i8254_max_count = 0xffff;
423 		else
424 			i8254_max_count = i8254_real_max_count;
425 		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
426 		outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
427 		outb(TIMER_CNTR0, i8254_real_max_count >> 8);
428 	}
429 	mtx_unlock_spin(&clock_lock);
430 }
431 
432 static void
433 i8254_restore(void)
434 {
435 
436 	mtx_lock_spin(&clock_lock);
437 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
438 	outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
439 	outb(TIMER_CNTR0, i8254_real_max_count >> 8);
440 	mtx_unlock_spin(&clock_lock);
441 }
442 
443 #ifndef __amd64__
444 /*
445  * Restore all the timers non-atomically (XXX: should be atomically).
446  *
447  * This function is called from pmtimer_resume() to restore all the timers.
448  * This should not be necessary, but there are broken laptops that do not
449  * restore all the timers on resume.
450  * As long as pmtimer is not part of amd64 suport, skip this for the amd64
451  * case.
452  */
453 void
454 timer_restore(void)
455 {
456 
457 	i8254_restore();		/* restore i8254_freq and hz */
458 	atrtc_restore();		/* reenable RTC interrupts */
459 }
460 #endif
461 
462 /* This is separate from startrtclock() so that it can be called early. */
463 void
464 i8254_init(void)
465 {
466 
467 	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE);
468 	set_i8254_freq(i8254_freq, hz);
469 }
470 
471 void
472 startrtclock()
473 {
474 
475 	atrtc_start();
476 
477 	set_i8254_freq(i8254_freq, hz);
478 	tc_init(&i8254_timecounter);
479 
480 	init_TSC();
481 }
482 
483 /*
484  * Start both clocks running.
485  */
486 void
487 cpu_initclocks()
488 {
489 #if defined(__amd64__) || defined(DEV_APIC)
490 	enum lapic_clock tlsca;
491 #endif
492 	int tasc;
493 
494 	/* Initialize RTC. */
495 	atrtc_start();
496 	tasc = atrtc_setup_clock();
497 
498 	/*
499 	 * If the atrtc successfully initialized and the users didn't force
500 	 * otherwise use the LAPIC in order to cater hardclock only, otherwise
501 	 * take in charge all the clock sources.
502 	 */
503 #if defined(__amd64__) || defined(DEV_APIC)
504 	tlsca = (lapic_allclocks == 0 && tasc != 0) ? LAPIC_CLOCK_HARDCLOCK :
505 	    LAPIC_CLOCK_ALL;
506 	using_lapic_timer = lapic_setup_clock(tlsca);
507 #endif
508 	/*
509 	 * If we aren't using the local APIC timer to drive the kernel
510 	 * clocks, setup the interrupt handler for the 8254 timer 0 so
511 	 * that it can drive hardclock().  Otherwise, change the 8254
512 	 * timecounter to user a simpler algorithm.
513 	 */
514 	if (using_lapic_timer == LAPIC_CLOCK_NONE) {
515 		timer1hz = hz;
516 		intr_add_handler("clk", 0, (driver_filter_t *)clkintr, NULL,
517 		    NULL, INTR_TYPE_CLK, NULL);
518 		i8254_intsrc = intr_lookup_source(0);
519 		if (i8254_intsrc != NULL)
520 			i8254_pending =
521 			    i8254_intsrc->is_pic->pic_source_pending;
522 	} else {
523 		i8254_timecounter.tc_get_timecount =
524 		    i8254_simple_get_timecount;
525 		i8254_timecounter.tc_counter_mask = 0xffff;
526 		set_i8254_freq(i8254_freq, hz);
527 	}
528 
529 	/*
530 	 * If the separate statistics clock hasn't been explicility disabled
531 	 * and we aren't already using the local APIC timer to drive the
532 	 * kernel clocks, then setup the RTC to periodically interrupt to
533 	 * drive statclock() and profclock().
534 	 */
535 	if (using_lapic_timer != LAPIC_CLOCK_ALL) {
536 		using_atrtc_timer = tasc;
537 		if (using_atrtc_timer) {
538 			timer2hz = RTC_NOPROFRATE;
539 			/* Enable periodic interrupts from the RTC. */
540 			intr_add_handler("rtc", 8,
541 			    (driver_filter_t *)rtcintr, NULL, NULL,
542 			    INTR_TYPE_CLK, NULL);
543 			atrtc_enable_intr();
544 		} else {
545 			profhz = hz;
546 			if (hz < 128)
547 				stathz = hz;
548 			else
549 				stathz = hz / (hz / 128);
550 			timer2hz = 0;
551 		}
552 	}
553 
554 	init_TSC_tc();
555 }
556 
557 void
558 cpu_startprofclock(void)
559 {
560 
561 	if (using_lapic_timer == LAPIC_CLOCK_ALL || !using_atrtc_timer)
562 		return;
563 	atrtc_rate(RTCSA_PROF);
564 	timer2hz = RTC_PROFRATE;
565 }
566 
567 void
568 cpu_stopprofclock(void)
569 {
570 
571 	if (using_lapic_timer == LAPIC_CLOCK_ALL || !using_atrtc_timer)
572 		return;
573 	atrtc_rate(RTCSA_NOPROF);
574 	timer2hz = RTC_NOPROFRATE;
575 }
576 
577 static int
578 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
579 {
580 	int error;
581 	u_int freq;
582 
583 	/*
584 	 * Use `i8254' instead of `timer' in external names because `timer'
585 	 * is is too generic.  Should use it everywhere.
586 	 */
587 	freq = i8254_freq;
588 	error = sysctl_handle_int(oidp, &freq, 0, req);
589 	if (error == 0 && req->newptr != NULL)
590 		set_i8254_freq(freq, hz);
591 	return (error);
592 }
593 
594 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
595     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
596 
597 static unsigned
598 i8254_simple_get_timecount(struct timecounter *tc)
599 {
600 
601 	return (i8254_max_count - getit());
602 }
603 
604 static unsigned
605 i8254_get_timecount(struct timecounter *tc)
606 {
607 	register_t flags;
608 	u_int count;
609 	u_int high, low;
610 
611 #ifdef __amd64__
612 	flags = read_rflags();
613 #else
614 	flags = read_eflags();
615 #endif
616 	mtx_lock_spin(&clock_lock);
617 
618 	/* Select timer0 and latch counter value. */
619 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
620 
621 	low = inb(TIMER_CNTR0);
622 	high = inb(TIMER_CNTR0);
623 	count = i8254_max_count - ((high << 8) | low);
624 	if (count < i8254_lastcount ||
625 	    (!i8254_ticked && (clkintr_pending ||
626 	    ((count < 20 || (!(flags & PSL_I) &&
627 	    count < i8254_max_count / 2u)) &&
628 	    i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
629 		i8254_ticked = 1;
630 		i8254_offset += i8254_max_count;
631 	}
632 	i8254_lastcount = count;
633 	count += i8254_offset;
634 	mtx_unlock_spin(&clock_lock);
635 	return (count);
636 }
637 
638 #ifdef DEV_ISA
639 /*
640  * Attach to the ISA PnP descriptors for the timer
641  */
642 static struct isa_pnp_id attimer_ids[] = {
643 	{ 0x0001d041 /* PNP0100 */, "AT timer" },
644 	{ 0 }
645 };
646 
647 static int
648 attimer_probe(device_t dev)
649 {
650 	int result;
651 
652 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids);
653 	if (result <= 0)
654 		device_quiet(dev);
655 	return(result);
656 }
657 
658 static int
659 attimer_attach(device_t dev)
660 {
661 	return(0);
662 }
663 
664 static int
665 attimer_resume(device_t dev)
666 {
667 
668 	i8254_restore();
669 	return (0);
670 }
671 
672 static device_method_t attimer_methods[] = {
673 	/* Device interface */
674 	DEVMETHOD(device_probe,		attimer_probe),
675 	DEVMETHOD(device_attach,	attimer_attach),
676 	DEVMETHOD(device_detach,	bus_generic_detach),
677 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
678 	DEVMETHOD(device_suspend,	bus_generic_suspend),
679 	DEVMETHOD(device_resume,	attimer_resume),
680 	{ 0, 0 }
681 };
682 
683 static driver_t attimer_driver = {
684 	"attimer",
685 	attimer_methods,
686 	1,		/* no softc */
687 };
688 
689 static devclass_t attimer_devclass;
690 
691 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
692 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
693 
694 #endif /* DEV_ISA */
695