xref: /freebsd/sys/x86/isa/atrtc.c (revision eda14cbc264d6969b02f2b1994cef11148e914f1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008 Poul-Henning Kamp
5  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_acpi.h"
36 #include "opt_isa.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/clock.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/kdb.h>
45 #include <sys/kernel.h>
46 #include <sys/module.h>
47 #include <sys/proc.h>
48 #include <sys/rman.h>
49 #include <sys/timeet.h>
50 
51 #include <isa/rtc.h>
52 #ifdef DEV_ISA
53 #include <isa/isareg.h>
54 #include <isa/isavar.h>
55 #endif
56 #include <machine/intr_machdep.h>
57 #include "clock_if.h"
58 #ifdef DEV_ACPI
59 #include <contrib/dev/acpica/include/acpi.h>
60 #include <contrib/dev/acpica/include/accommon.h>
61 #include <dev/acpica/acpivar.h>
62 #include <machine/md_var.h>
63 #endif
64 
65 /*
66  * atrtc_lock protects low-level access to individual hardware registers.
67  * atrtc_time_lock protects the entire sequence of accessing multiple registers
68  * to read or write the date and time.
69  */
70 static struct mtx atrtc_lock;
71 MTX_SYSINIT(atrtc_lock_init, &atrtc_lock, "atrtc", MTX_SPIN);
72 
73 /* Force RTC enabled/disabled. */
74 static int atrtc_enabled = -1;
75 TUNABLE_INT("hw.atrtc.enabled", &atrtc_enabled);
76 
77 struct mtx atrtc_time_lock;
78 MTX_SYSINIT(atrtc_time_lock_init, &atrtc_time_lock, "atrtc_time", MTX_DEF);
79 
80 int	atrtcclock_disable = 0;
81 
82 static	int	rtc_reg = -1;
83 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
84 static	u_char	rtc_statusb = RTCSB_24HR;
85 
86 #ifdef DEV_ACPI
87 #define	_COMPONENT	ACPI_TIMER
88 ACPI_MODULE_NAME("ATRTC")
89 #endif
90 
91 /*
92  * RTC support routines
93  */
94 
95 static inline u_char
96 rtcin_locked(int reg)
97 {
98 
99 	if (rtc_reg != reg) {
100 		inb(0x84);
101 		outb(IO_RTC, reg);
102 		rtc_reg = reg;
103 		inb(0x84);
104 	}
105 	return (inb(IO_RTC + 1));
106 }
107 
108 static inline void
109 rtcout_locked(int reg, u_char val)
110 {
111 
112 	if (rtc_reg != reg) {
113 		inb(0x84);
114 		outb(IO_RTC, reg);
115 		rtc_reg = reg;
116 		inb(0x84);
117 	}
118 	outb(IO_RTC + 1, val);
119 	inb(0x84);
120 }
121 
122 int
123 rtcin(int reg)
124 {
125 	u_char val;
126 
127 	mtx_lock_spin(&atrtc_lock);
128 	val = rtcin_locked(reg);
129 	mtx_unlock_spin(&atrtc_lock);
130 	return (val);
131 }
132 
133 void
134 writertc(int reg, u_char val)
135 {
136 
137 	mtx_lock_spin(&atrtc_lock);
138 	rtcout_locked(reg, val);
139 	mtx_unlock_spin(&atrtc_lock);
140 }
141 
142 static void
143 atrtc_start(void)
144 {
145 
146 	mtx_lock_spin(&atrtc_lock);
147 	rtcout_locked(RTC_STATUSA, rtc_statusa);
148 	rtcout_locked(RTC_STATUSB, RTCSB_24HR);
149 	mtx_unlock_spin(&atrtc_lock);
150 }
151 
152 static void
153 atrtc_rate(unsigned rate)
154 {
155 
156 	rtc_statusa = RTCSA_DIVIDER | rate;
157 	writertc(RTC_STATUSA, rtc_statusa);
158 }
159 
160 static void
161 atrtc_enable_intr(void)
162 {
163 
164 	rtc_statusb |= RTCSB_PINTR;
165 	mtx_lock_spin(&atrtc_lock);
166 	rtcout_locked(RTC_STATUSB, rtc_statusb);
167 	rtcin_locked(RTC_INTR);
168 	mtx_unlock_spin(&atrtc_lock);
169 }
170 
171 static void
172 atrtc_disable_intr(void)
173 {
174 
175 	rtc_statusb &= ~RTCSB_PINTR;
176 	mtx_lock_spin(&atrtc_lock);
177 	rtcout_locked(RTC_STATUSB, rtc_statusb);
178 	rtcin_locked(RTC_INTR);
179 	mtx_unlock_spin(&atrtc_lock);
180 }
181 
182 void
183 atrtc_restore(void)
184 {
185 
186 	/* Restore all of the RTC's "status" (actually, control) registers. */
187 	mtx_lock_spin(&atrtc_lock);
188 	rtcin_locked(RTC_STATUSA);	/* dummy to get rtc_reg set */
189 	rtcout_locked(RTC_STATUSB, RTCSB_24HR);
190 	rtcout_locked(RTC_STATUSA, rtc_statusa);
191 	rtcout_locked(RTC_STATUSB, rtc_statusb);
192 	rtcin_locked(RTC_INTR);
193 	mtx_unlock_spin(&atrtc_lock);
194 }
195 
196 /**********************************************************************
197  * RTC driver for subr_rtc
198  */
199 
200 struct atrtc_softc {
201 	int port_rid, intr_rid;
202 	struct resource *port_res;
203 	struct resource *intr_res;
204 	void *intr_handler;
205 	struct eventtimer et;
206 #ifdef DEV_ACPI
207 	ACPI_HANDLE acpi_handle;
208 #endif
209 };
210 
211 static int
212 rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
213 {
214 
215 	atrtc_rate(max(fls(period + (period >> 1)) - 17, 1));
216 	atrtc_enable_intr();
217 	return (0);
218 }
219 
220 static int
221 rtc_stop(struct eventtimer *et)
222 {
223 
224 	atrtc_disable_intr();
225 	return (0);
226 }
227 
228 /*
229  * This routine receives statistical clock interrupts from the RTC.
230  * As explained above, these occur at 128 interrupts per second.
231  * When profiling, we receive interrupts at a rate of 1024 Hz.
232  *
233  * This does not actually add as much overhead as it sounds, because
234  * when the statistical clock is active, the hardclock driver no longer
235  * needs to keep (inaccurate) statistics on its own.  This decouples
236  * statistics gathering from scheduling interrupts.
237  *
238  * The RTC chip requires that we read status register C (RTC_INTR)
239  * to acknowledge an interrupt, before it will generate the next one.
240  * Under high interrupt load, rtcintr() can be indefinitely delayed and
241  * the clock can tick immediately after the read from RTC_INTR.  In this
242  * case, the mc146818A interrupt signal will not drop for long enough
243  * to register with the 8259 PIC.  If an interrupt is missed, the stat
244  * clock will halt, considerably degrading system performance.  This is
245  * why we use 'while' rather than a more straightforward 'if' below.
246  * Stat clock ticks can still be lost, causing minor loss of accuracy
247  * in the statistics, but the stat clock will no longer stop.
248  */
249 static int
250 rtc_intr(void *arg)
251 {
252 	struct atrtc_softc *sc = (struct atrtc_softc *)arg;
253 	int flag = 0;
254 
255 	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
256 		flag = 1;
257 		if (sc->et.et_active)
258 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
259 	}
260 	return(flag ? FILTER_HANDLED : FILTER_STRAY);
261 }
262 
263 #ifdef DEV_ACPI
264 /*
265  *  ACPI RTC CMOS address space handler
266  */
267 #define	ATRTC_LAST_REG	0x40
268 
269 static void
270 rtcin_region(int reg, void *buf, int len)
271 {
272 	u_char *ptr = buf;
273 
274 	/* Drop lock after each IO as intr and settime have greater priority */
275 	while (len-- > 0)
276 		*ptr++ = rtcin(reg++) & 0xff;
277 }
278 
279 static void
280 rtcout_region(int reg, const void *buf, int len)
281 {
282 	const u_char *ptr = buf;
283 
284 	while (len-- > 0)
285 		writertc(reg++, *ptr++);
286 }
287 
288 static bool
289 atrtc_check_cmos_access(bool is_read, ACPI_PHYSICAL_ADDRESS addr, UINT32 len)
290 {
291 
292 	/* Block address space wrapping on out-of-bound access */
293 	if (addr >= ATRTC_LAST_REG || addr + len > ATRTC_LAST_REG)
294 		return (false);
295 
296 	if (is_read) {
297 		/* Reading 0x0C will muck with interrupts */
298 		if (addr <= RTC_INTR && addr + len > RTC_INTR)
299 			return (false);
300 	} else {
301 		/*
302 		 * Allow single-byte writes to alarm registers and
303 		 * multi-byte writes to addr >= 0x30, else deny.
304 		 */
305 		if (!((len == 1 && (addr == RTC_SECALRM ||
306 				    addr == RTC_MINALRM ||
307 				    addr == RTC_HRSALRM)) ||
308 		      addr >= 0x30))
309 			return (false);
310 	}
311 	return (true);
312 }
313 
314 static ACPI_STATUS
315 atrtc_acpi_cmos_handler(UINT32 func, ACPI_PHYSICAL_ADDRESS addr,
316     UINT32 bitwidth, UINT64 *value, void *context, void *region_context)
317 {
318 	device_t dev = context;
319 	UINT32 bytewidth = howmany(bitwidth, 8);
320 	bool is_read = func == ACPI_READ;
321 
322 	/* ACPICA is very verbose on CMOS handler failures, so we, too */
323 #define	CMOS_HANDLER_ERR(fmt, ...) \
324 	device_printf(dev, "ACPI [SystemCMOS] handler: " fmt, ##__VA_ARGS__)
325 
326 	ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
327 
328 	if (value == NULL) {
329 		CMOS_HANDLER_ERR("NULL parameter\n");
330 		return (AE_BAD_PARAMETER);
331 	}
332 	if (bitwidth == 0 || (bitwidth & 0x07) != 0) {
333 		CMOS_HANDLER_ERR("Invalid bitwidth: %u\n", bitwidth);
334 		return (AE_BAD_PARAMETER);
335 	}
336 	if (!atrtc_check_cmos_access(is_read, addr, bytewidth)) {
337 		CMOS_HANDLER_ERR("%s access rejected: addr=%#04jx, len=%u\n",
338 		    is_read ? "Read" : "Write", (uintmax_t)addr, bytewidth);
339 		return (AE_BAD_PARAMETER);
340 	}
341 
342 	switch (func) {
343 	case ACPI_READ:
344 		rtcin_region(addr, value, bytewidth);
345 		break;
346 	case ACPI_WRITE:
347 		rtcout_region(addr, value, bytewidth);
348 		break;
349 	default:
350 		CMOS_HANDLER_ERR("Invalid function: %u\n", func);
351 		return (AE_BAD_PARAMETER);
352 	}
353 
354 	ACPI_VPRINT(dev, acpi_device_get_parent_softc(dev),
355 	    "ACPI RTC CMOS %s access: addr=%#04x, len=%u, val=%*D\n",
356 	    is_read ? "read" : "write", (unsigned)addr, bytewidth,
357 	    bytewidth, value, " ");
358 
359 	return (AE_OK);
360 }
361 
362 static int
363 atrtc_reg_acpi_cmos_handler(device_t dev)
364 {
365 	struct atrtc_softc *sc = device_get_softc(dev);
366 
367 	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
368 
369 	/* Don't handle address space events if driver is disabled. */
370 	if (acpi_disabled("atrtc"))
371 		return (ENXIO);
372 
373 	sc->acpi_handle = acpi_get_handle(dev);
374 	if (sc->acpi_handle == NULL ||
375 	    ACPI_FAILURE(AcpiInstallAddressSpaceHandler(sc->acpi_handle,
376 	      ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler, NULL, dev))) {
377 		sc->acpi_handle = NULL;
378 		device_printf(dev,
379 		    "Can't register ACPI CMOS address space handler\n");
380 		return (ENXIO);
381         }
382 
383         return (0);
384 }
385 
386 static int
387 atrtc_unreg_acpi_cmos_handler(device_t dev)
388 {
389 	struct atrtc_softc *sc = device_get_softc(dev);
390 
391 	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
392 
393 	if (sc->acpi_handle != NULL)
394 		AcpiRemoveAddressSpaceHandler(sc->acpi_handle,
395 		    ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler);
396 
397 	return (0);
398 }
399 #endif	/* DEV_ACPI */
400 
401 /*
402  * Attach to the ISA PnP descriptors for the timer and realtime clock.
403  */
404 static struct isa_pnp_id atrtc_ids[] = {
405 	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
406 	{ 0 }
407 };
408 
409 static bool
410 atrtc_acpi_disabled(void)
411 {
412 #ifdef DEV_ACPI
413 	uint16_t flags;
414 
415 	if (!acpi_get_fadt_bootflags(&flags))
416 		return (false);
417 	return ((flags & ACPI_FADT_NO_CMOS_RTC) != 0);
418 #else
419 	return (false);
420 #endif
421 }
422 
423 static int
424 atrtc_probe(device_t dev)
425 {
426 	int result;
427 
428 	if ((atrtc_enabled == -1 && atrtc_acpi_disabled()) ||
429 	    (atrtc_enabled == 0))
430 		return (ENXIO);
431 
432 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids);
433 	/* ENOENT means no PnP-ID, device is hinted. */
434 	if (result == ENOENT) {
435 		device_set_desc(dev, "AT realtime clock");
436 		return (BUS_PROBE_LOW_PRIORITY);
437 	}
438 	return (result);
439 }
440 
441 static int
442 atrtc_attach(device_t dev)
443 {
444 	struct atrtc_softc *sc;
445 	rman_res_t s;
446 	int i;
447 
448 	sc = device_get_softc(dev);
449 	sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
450 	    IO_RTC, IO_RTC + 1, 2, RF_ACTIVE);
451 	if (sc->port_res == NULL)
452 		device_printf(dev, "Warning: Couldn't map I/O.\n");
453 	atrtc_start();
454 	clock_register(dev, 1000000);
455 	bzero(&sc->et, sizeof(struct eventtimer));
456 	if (!atrtcclock_disable &&
457 	    (resource_int_value(device_get_name(dev), device_get_unit(dev),
458 	     "clock", &i) != 0 || i != 0)) {
459 		sc->intr_rid = 0;
460 		while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid,
461 		    &s, NULL) == 0 && s != 8)
462 			sc->intr_rid++;
463 		sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
464 		    &sc->intr_rid, 8, 8, 1, RF_ACTIVE);
465 		if (sc->intr_res == NULL) {
466 			device_printf(dev, "Can't map interrupt.\n");
467 			return (0);
468 		} else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
469 		    rtc_intr, NULL, sc, &sc->intr_handler))) {
470 			device_printf(dev, "Can't setup interrupt.\n");
471 			return (0);
472 		} else {
473 			/* Bind IRQ to BSP to avoid live migration. */
474 			bus_bind_intr(dev, sc->intr_res, 0);
475 		}
476 		sc->et.et_name = "RTC";
477 		sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV;
478 		sc->et.et_quality = 0;
479 		sc->et.et_frequency = 32768;
480 		sc->et.et_min_period = 0x00080000;
481 		sc->et.et_max_period = 0x80000000;
482 		sc->et.et_start = rtc_start;
483 		sc->et.et_stop = rtc_stop;
484 		sc->et.et_priv = dev;
485 		et_register(&sc->et);
486 	}
487 	return(0);
488 }
489 
490 static int
491 atrtc_isa_attach(device_t dev)
492 {
493 
494 	return (atrtc_attach(dev));
495 }
496 
497 #ifdef DEV_ACPI
498 static int
499 atrtc_acpi_attach(device_t dev)
500 {
501 	int ret;
502 
503 	ret = atrtc_attach(dev);
504 	if (ret)
505 		return (ret);
506 
507 	(void)atrtc_reg_acpi_cmos_handler(dev);
508 
509 	return (0);
510 }
511 
512 static int
513 atrtc_acpi_detach(device_t dev)
514 {
515 
516 	(void)atrtc_unreg_acpi_cmos_handler(dev);
517 	return (0);
518 }
519 #endif	/* DEV_ACPI */
520 
521 static int
522 atrtc_resume(device_t dev)
523 {
524 
525 	atrtc_restore();
526 	return(0);
527 }
528 
529 static int
530 atrtc_settime(device_t dev __unused, struct timespec *ts)
531 {
532 	struct bcd_clocktime bct;
533 
534 	clock_ts_to_bcd(ts, &bct, false);
535 	clock_dbgprint_bcd(dev, CLOCK_DBG_WRITE, &bct);
536 
537 	mtx_lock(&atrtc_time_lock);
538 	mtx_lock_spin(&atrtc_lock);
539 
540 	/* Disable RTC updates and interrupts.  */
541 	rtcout_locked(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
542 
543 	/* Write all the time registers. */
544 	rtcout_locked(RTC_SEC,   bct.sec);
545 	rtcout_locked(RTC_MIN,   bct.min);
546 	rtcout_locked(RTC_HRS,   bct.hour);
547 	rtcout_locked(RTC_WDAY,  bct.dow + 1);
548 	rtcout_locked(RTC_DAY,   bct.day);
549 	rtcout_locked(RTC_MONTH, bct.mon);
550 	rtcout_locked(RTC_YEAR,  bct.year & 0xff);
551 #ifdef USE_RTC_CENTURY
552 	rtcout_locked(RTC_CENTURY, bct.year >> 8);
553 #endif
554 
555 	/*
556 	 * Re-enable RTC updates and interrupts.
557 	 */
558 	rtcout_locked(RTC_STATUSB, rtc_statusb);
559 	rtcin_locked(RTC_INTR);
560 
561 	mtx_unlock_spin(&atrtc_lock);
562 	mtx_unlock(&atrtc_time_lock);
563 
564 	return (0);
565 }
566 
567 static int
568 atrtc_gettime(device_t dev, struct timespec *ts)
569 {
570 	struct bcd_clocktime bct;
571 
572 	/* Look if we have a RTC present and the time is valid */
573 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) {
574 		device_printf(dev, "WARNING: Battery failure indication\n");
575 		return (EINVAL);
576 	}
577 
578 	/*
579 	 * wait for time update to complete
580 	 * If RTCSA_TUP is zero, we have at least 244us before next update.
581 	 * This is fast enough on most hardware, but a refinement would be
582 	 * to make sure that no more than 240us pass after we start reading,
583 	 * and try again if so.
584 	 */
585 	mtx_lock(&atrtc_time_lock);
586 	while (rtcin(RTC_STATUSA) & RTCSA_TUP)
587 		continue;
588 	mtx_lock_spin(&atrtc_lock);
589 	bct.sec  = rtcin_locked(RTC_SEC);
590 	bct.min  = rtcin_locked(RTC_MIN);
591 	bct.hour = rtcin_locked(RTC_HRS);
592 	bct.day  = rtcin_locked(RTC_DAY);
593 	bct.mon  = rtcin_locked(RTC_MONTH);
594 	bct.year = rtcin_locked(RTC_YEAR);
595 #ifdef USE_RTC_CENTURY
596 	bct.year |= rtcin_locked(RTC_CENTURY) << 8;
597 #endif
598 	mtx_unlock_spin(&atrtc_lock);
599 	mtx_unlock(&atrtc_time_lock);
600 	/* dow is unused in timespec conversion and we have no nsec info. */
601 	bct.dow  = 0;
602 	bct.nsec = 0;
603 	clock_dbgprint_bcd(dev, CLOCK_DBG_READ, &bct);
604 	return (clock_bcd_to_ts(&bct, ts, false));
605 }
606 
607 static device_method_t atrtc_isa_methods[] = {
608 	/* Device interface */
609 	DEVMETHOD(device_probe,		atrtc_probe),
610 	DEVMETHOD(device_attach,	atrtc_isa_attach),
611 	DEVMETHOD(device_detach,	bus_generic_detach),
612 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
613 	DEVMETHOD(device_suspend,	bus_generic_suspend),
614 		/* XXX stop statclock? */
615 	DEVMETHOD(device_resume,	atrtc_resume),
616 
617 	/* clock interface */
618 	DEVMETHOD(clock_gettime,	atrtc_gettime),
619 	DEVMETHOD(clock_settime,	atrtc_settime),
620 
621 	{ 0, 0 }
622 };
623 
624 static driver_t atrtc_isa_driver = {
625 	"atrtc",
626 	atrtc_isa_methods,
627 	sizeof(struct atrtc_softc),
628 };
629 
630 #ifdef DEV_ACPI
631 static device_method_t atrtc_acpi_methods[] = {
632 	/* Device interface */
633 	DEVMETHOD(device_probe,		atrtc_probe),
634 	DEVMETHOD(device_attach,	atrtc_acpi_attach),
635 	DEVMETHOD(device_detach,	atrtc_acpi_detach),
636 		/* XXX stop statclock? */
637 	DEVMETHOD(device_resume,	atrtc_resume),
638 
639 	/* clock interface */
640 	DEVMETHOD(clock_gettime,	atrtc_gettime),
641 	DEVMETHOD(clock_settime,	atrtc_settime),
642 
643 	{ 0, 0 }
644 };
645 
646 static driver_t atrtc_acpi_driver = {
647 	"atrtc",
648 	atrtc_acpi_methods,
649 	sizeof(struct atrtc_softc),
650 };
651 #endif	/* DEV_ACPI */
652 
653 static devclass_t atrtc_devclass;
654 
655 DRIVER_MODULE(atrtc, isa, atrtc_isa_driver, atrtc_devclass, 0, 0);
656 #ifdef DEV_ACPI
657 DRIVER_MODULE(atrtc, acpi, atrtc_acpi_driver, atrtc_devclass, 0, 0);
658 #endif
659 ISA_PNP_INFO(atrtc_ids);
660