1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2008 Poul-Henning Kamp 5 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_acpi.h" 36 #include "opt_isa.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bus.h> 41 #include <sys/clock.h> 42 #include <sys/lock.h> 43 #include <sys/mutex.h> 44 #include <sys/kdb.h> 45 #include <sys/kernel.h> 46 #include <sys/module.h> 47 #include <sys/proc.h> 48 #include <sys/rman.h> 49 #include <sys/timeet.h> 50 51 #include <isa/rtc.h> 52 #ifdef DEV_ISA 53 #include <isa/isareg.h> 54 #include <isa/isavar.h> 55 #endif 56 #include <machine/intr_machdep.h> 57 #include "clock_if.h" 58 #ifdef DEV_ACPI 59 #include <contrib/dev/acpica/include/acpi.h> 60 #include <contrib/dev/acpica/include/accommon.h> 61 #include <dev/acpica/acpivar.h> 62 #include <machine/md_var.h> 63 #endif 64 65 /* tunable to detect a power loss of the rtc */ 66 static bool atrtc_power_lost = false; 67 SYSCTL_BOOL(_machdep, OID_AUTO, atrtc_power_lost, CTLFLAG_RD, &atrtc_power_lost, 68 false, "RTC lost power on last power cycle (probably caused by an emtpy cmos battery)"); 69 70 /* 71 * atrtc_lock protects low-level access to individual hardware registers. 72 * atrtc_time_lock protects the entire sequence of accessing multiple registers 73 * to read or write the date and time. 74 */ 75 static struct mtx atrtc_lock; 76 MTX_SYSINIT(atrtc_lock_init, &atrtc_lock, "atrtc", MTX_SPIN); 77 78 /* Force RTC enabled/disabled. */ 79 static int atrtc_enabled = -1; 80 TUNABLE_INT("hw.atrtc.enabled", &atrtc_enabled); 81 82 struct mtx atrtc_time_lock; 83 MTX_SYSINIT(atrtc_time_lock_init, &atrtc_time_lock, "atrtc_time", MTX_DEF); 84 85 int atrtcclock_disable = 0; 86 87 static int rtc_century = 0; 88 static int rtc_reg = -1; 89 static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF; 90 static u_char rtc_statusb = RTCSB_24HR; 91 92 #ifdef DEV_ACPI 93 #define _COMPONENT ACPI_TIMER 94 ACPI_MODULE_NAME("ATRTC") 95 #endif 96 97 /* 98 * RTC support routines 99 */ 100 101 static inline u_char 102 rtcin_locked(int reg) 103 { 104 105 if (rtc_reg != reg) { 106 inb(0x84); 107 outb(IO_RTC, reg); 108 rtc_reg = reg; 109 inb(0x84); 110 } 111 return (inb(IO_RTC + 1)); 112 } 113 114 static inline void 115 rtcout_locked(int reg, u_char val) 116 { 117 118 if (rtc_reg != reg) { 119 inb(0x84); 120 outb(IO_RTC, reg); 121 rtc_reg = reg; 122 inb(0x84); 123 } 124 outb(IO_RTC + 1, val); 125 inb(0x84); 126 } 127 128 int 129 rtcin(int reg) 130 { 131 u_char val; 132 133 mtx_lock_spin(&atrtc_lock); 134 val = rtcin_locked(reg); 135 mtx_unlock_spin(&atrtc_lock); 136 return (val); 137 } 138 139 void 140 writertc(int reg, u_char val) 141 { 142 143 mtx_lock_spin(&atrtc_lock); 144 rtcout_locked(reg, val); 145 mtx_unlock_spin(&atrtc_lock); 146 } 147 148 static void 149 atrtc_start(void) 150 { 151 152 mtx_lock_spin(&atrtc_lock); 153 rtcout_locked(RTC_STATUSA, rtc_statusa); 154 rtcout_locked(RTC_STATUSB, RTCSB_24HR); 155 mtx_unlock_spin(&atrtc_lock); 156 } 157 158 static void 159 atrtc_rate(unsigned rate) 160 { 161 162 rtc_statusa = RTCSA_DIVIDER | rate; 163 writertc(RTC_STATUSA, rtc_statusa); 164 } 165 166 static void 167 atrtc_enable_intr(void) 168 { 169 170 rtc_statusb |= RTCSB_PINTR; 171 mtx_lock_spin(&atrtc_lock); 172 rtcout_locked(RTC_STATUSB, rtc_statusb); 173 rtcin_locked(RTC_INTR); 174 mtx_unlock_spin(&atrtc_lock); 175 } 176 177 static void 178 atrtc_disable_intr(void) 179 { 180 181 rtc_statusb &= ~RTCSB_PINTR; 182 mtx_lock_spin(&atrtc_lock); 183 rtcout_locked(RTC_STATUSB, rtc_statusb); 184 rtcin_locked(RTC_INTR); 185 mtx_unlock_spin(&atrtc_lock); 186 } 187 188 void 189 atrtc_restore(void) 190 { 191 192 /* Restore all of the RTC's "status" (actually, control) registers. */ 193 mtx_lock_spin(&atrtc_lock); 194 rtcin_locked(RTC_STATUSA); /* dummy to get rtc_reg set */ 195 rtcout_locked(RTC_STATUSB, RTCSB_24HR); 196 rtcout_locked(RTC_STATUSA, rtc_statusa); 197 rtcout_locked(RTC_STATUSB, rtc_statusb); 198 rtcin_locked(RTC_INTR); 199 mtx_unlock_spin(&atrtc_lock); 200 } 201 202 /********************************************************************** 203 * RTC driver for subr_rtc 204 */ 205 206 struct atrtc_softc { 207 int port_rid, intr_rid; 208 struct resource *port_res; 209 struct resource *intr_res; 210 void *intr_handler; 211 struct eventtimer et; 212 #ifdef DEV_ACPI 213 ACPI_HANDLE acpi_handle; 214 #endif 215 }; 216 217 static int 218 rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period) 219 { 220 221 atrtc_rate(max(fls(period + (period >> 1)) - 17, 1)); 222 atrtc_enable_intr(); 223 return (0); 224 } 225 226 static int 227 rtc_stop(struct eventtimer *et) 228 { 229 230 atrtc_disable_intr(); 231 return (0); 232 } 233 234 /* 235 * This routine receives statistical clock interrupts from the RTC. 236 * As explained above, these occur at 128 interrupts per second. 237 * When profiling, we receive interrupts at a rate of 1024 Hz. 238 * 239 * This does not actually add as much overhead as it sounds, because 240 * when the statistical clock is active, the hardclock driver no longer 241 * needs to keep (inaccurate) statistics on its own. This decouples 242 * statistics gathering from scheduling interrupts. 243 * 244 * The RTC chip requires that we read status register C (RTC_INTR) 245 * to acknowledge an interrupt, before it will generate the next one. 246 * Under high interrupt load, rtcintr() can be indefinitely delayed and 247 * the clock can tick immediately after the read from RTC_INTR. In this 248 * case, the mc146818A interrupt signal will not drop for long enough 249 * to register with the 8259 PIC. If an interrupt is missed, the stat 250 * clock will halt, considerably degrading system performance. This is 251 * why we use 'while' rather than a more straightforward 'if' below. 252 * Stat clock ticks can still be lost, causing minor loss of accuracy 253 * in the statistics, but the stat clock will no longer stop. 254 */ 255 static int 256 rtc_intr(void *arg) 257 { 258 struct atrtc_softc *sc = (struct atrtc_softc *)arg; 259 int flag = 0; 260 261 while (rtcin(RTC_INTR) & RTCIR_PERIOD) { 262 flag = 1; 263 if (sc->et.et_active) 264 sc->et.et_event_cb(&sc->et, sc->et.et_arg); 265 } 266 return(flag ? FILTER_HANDLED : FILTER_STRAY); 267 } 268 269 #ifdef DEV_ACPI 270 /* 271 * ACPI RTC CMOS address space handler 272 */ 273 #define ATRTC_LAST_REG 0x40 274 275 static void 276 rtcin_region(int reg, void *buf, int len) 277 { 278 u_char *ptr = buf; 279 280 /* Drop lock after each IO as intr and settime have greater priority */ 281 while (len-- > 0) 282 *ptr++ = rtcin(reg++) & 0xff; 283 } 284 285 static void 286 rtcout_region(int reg, const void *buf, int len) 287 { 288 const u_char *ptr = buf; 289 290 while (len-- > 0) 291 writertc(reg++, *ptr++); 292 } 293 294 static bool 295 atrtc_check_cmos_access(bool is_read, ACPI_PHYSICAL_ADDRESS addr, UINT32 len) 296 { 297 298 /* Block address space wrapping on out-of-bound access */ 299 if (addr >= ATRTC_LAST_REG || addr + len > ATRTC_LAST_REG) 300 return (false); 301 302 if (is_read) { 303 /* Reading 0x0C will muck with interrupts */ 304 if (addr <= RTC_INTR && addr + len > RTC_INTR) 305 return (false); 306 } else { 307 /* 308 * Allow single-byte writes to alarm registers and 309 * multi-byte writes to addr >= 0x30, else deny. 310 */ 311 if (!((len == 1 && (addr == RTC_SECALRM || 312 addr == RTC_MINALRM || 313 addr == RTC_HRSALRM)) || 314 addr >= 0x30)) 315 return (false); 316 } 317 return (true); 318 } 319 320 static ACPI_STATUS 321 atrtc_acpi_cmos_handler(UINT32 func, ACPI_PHYSICAL_ADDRESS addr, 322 UINT32 bitwidth, UINT64 *value, void *context, void *region_context) 323 { 324 device_t dev = context; 325 UINT32 bytewidth = howmany(bitwidth, 8); 326 bool is_read = func == ACPI_READ; 327 328 /* ACPICA is very verbose on CMOS handler failures, so we, too */ 329 #define CMOS_HANDLER_ERR(fmt, ...) \ 330 device_printf(dev, "ACPI [SystemCMOS] handler: " fmt, ##__VA_ARGS__) 331 332 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 333 334 if (value == NULL) { 335 CMOS_HANDLER_ERR("NULL parameter\n"); 336 return (AE_BAD_PARAMETER); 337 } 338 if (bitwidth == 0 || (bitwidth & 0x07) != 0) { 339 CMOS_HANDLER_ERR("Invalid bitwidth: %u\n", bitwidth); 340 return (AE_BAD_PARAMETER); 341 } 342 if (!atrtc_check_cmos_access(is_read, addr, bytewidth)) { 343 CMOS_HANDLER_ERR("%s access rejected: addr=%#04jx, len=%u\n", 344 is_read ? "Read" : "Write", (uintmax_t)addr, bytewidth); 345 return (AE_BAD_PARAMETER); 346 } 347 348 switch (func) { 349 case ACPI_READ: 350 rtcin_region(addr, value, bytewidth); 351 break; 352 case ACPI_WRITE: 353 rtcout_region(addr, value, bytewidth); 354 break; 355 default: 356 CMOS_HANDLER_ERR("Invalid function: %u\n", func); 357 return (AE_BAD_PARAMETER); 358 } 359 360 ACPI_VPRINT(dev, acpi_device_get_parent_softc(dev), 361 "ACPI RTC CMOS %s access: addr=%#04x, len=%u, val=%*D\n", 362 is_read ? "read" : "write", (unsigned)addr, bytewidth, 363 bytewidth, value, " "); 364 365 return (AE_OK); 366 } 367 368 static int 369 atrtc_reg_acpi_cmos_handler(device_t dev) 370 { 371 struct atrtc_softc *sc = device_get_softc(dev); 372 373 ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__); 374 375 /* Don't handle address space events if driver is disabled. */ 376 if (acpi_disabled("atrtc")) 377 return (ENXIO); 378 379 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sc->acpi_handle))) { 380 return (ENXIO); 381 } 382 383 if (sc->acpi_handle == NULL || 384 ACPI_FAILURE(AcpiInstallAddressSpaceHandler(sc->acpi_handle, 385 ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler, NULL, dev))) { 386 sc->acpi_handle = NULL; 387 device_printf(dev, 388 "Can't register ACPI CMOS address space handler\n"); 389 return (ENXIO); 390 } 391 392 return (0); 393 } 394 395 static int 396 atrtc_unreg_acpi_cmos_handler(device_t dev) 397 { 398 struct atrtc_softc *sc = device_get_softc(dev); 399 400 ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__); 401 402 if (sc->acpi_handle != NULL) 403 AcpiRemoveAddressSpaceHandler(sc->acpi_handle, 404 ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler); 405 406 return (0); 407 } 408 #endif /* DEV_ACPI */ 409 410 /* 411 * Attach to the ISA PnP descriptors for the timer and realtime clock. 412 */ 413 static struct isa_pnp_id atrtc_ids[] = { 414 { 0x000bd041 /* PNP0B00 */, "AT realtime clock" }, 415 { 0 } 416 }; 417 418 static bool 419 atrtc_acpi_disabled(void) 420 { 421 #ifdef DEV_ACPI 422 uint16_t flags; 423 424 if (!acpi_get_fadt_bootflags(&flags)) 425 return (false); 426 return ((flags & ACPI_FADT_NO_CMOS_RTC) != 0); 427 #else 428 return (false); 429 #endif 430 } 431 432 static int 433 rtc_acpi_century_get(void) 434 { 435 #ifdef DEV_ACPI 436 ACPI_TABLE_FADT *fadt; 437 vm_paddr_t physaddr; 438 int century; 439 440 physaddr = acpi_find_table(ACPI_SIG_FADT); 441 if (physaddr == 0) 442 return (0); 443 444 fadt = acpi_map_table(physaddr, ACPI_SIG_FADT); 445 if (fadt == NULL) 446 return (0); 447 448 century = fadt->Century; 449 acpi_unmap_table(fadt); 450 451 return (century); 452 #else 453 return (0); 454 #endif 455 } 456 457 static int 458 atrtc_probe(device_t dev) 459 { 460 int result; 461 462 if ((atrtc_enabled == -1 && atrtc_acpi_disabled()) || 463 (atrtc_enabled == 0)) 464 return (ENXIO); 465 466 result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids); 467 /* ENOENT means no PnP-ID, device is hinted. */ 468 if (result == ENOENT) { 469 device_set_desc(dev, "AT realtime clock"); 470 return (BUS_PROBE_LOW_PRIORITY); 471 } 472 rtc_century = rtc_acpi_century_get(); 473 return (result); 474 } 475 476 static int 477 atrtc_attach(device_t dev) 478 { 479 struct atrtc_softc *sc; 480 rman_res_t s; 481 int i; 482 483 sc = device_get_softc(dev); 484 sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid, 485 IO_RTC, IO_RTC + 1, 2, RF_ACTIVE); 486 if (sc->port_res == NULL) 487 device_printf(dev, "Warning: Couldn't map I/O.\n"); 488 atrtc_start(); 489 clock_register(dev, 1000000); 490 bzero(&sc->et, sizeof(struct eventtimer)); 491 if (!atrtcclock_disable && 492 (resource_int_value(device_get_name(dev), device_get_unit(dev), 493 "clock", &i) != 0 || i != 0)) { 494 sc->intr_rid = 0; 495 while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid, 496 &s, NULL) == 0 && s != 8) 497 sc->intr_rid++; 498 sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ, 499 &sc->intr_rid, 8, 8, 1, RF_ACTIVE); 500 if (sc->intr_res == NULL) { 501 device_printf(dev, "Can't map interrupt.\n"); 502 return (0); 503 } else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK, 504 rtc_intr, NULL, sc, &sc->intr_handler))) { 505 device_printf(dev, "Can't setup interrupt.\n"); 506 return (0); 507 } else { 508 /* Bind IRQ to BSP to avoid live migration. */ 509 bus_bind_intr(dev, sc->intr_res, 0); 510 } 511 sc->et.et_name = "RTC"; 512 sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV; 513 sc->et.et_quality = 0; 514 sc->et.et_frequency = 32768; 515 sc->et.et_min_period = 0x00080000; 516 sc->et.et_max_period = 0x80000000; 517 sc->et.et_start = rtc_start; 518 sc->et.et_stop = rtc_stop; 519 sc->et.et_priv = dev; 520 et_register(&sc->et); 521 } 522 return(0); 523 } 524 525 static int 526 atrtc_isa_attach(device_t dev) 527 { 528 529 return (atrtc_attach(dev)); 530 } 531 532 #ifdef DEV_ACPI 533 static int 534 atrtc_acpi_attach(device_t dev) 535 { 536 int ret; 537 538 ret = atrtc_attach(dev); 539 if (ret) 540 return (ret); 541 542 (void)atrtc_reg_acpi_cmos_handler(dev); 543 544 return (0); 545 } 546 547 static int 548 atrtc_acpi_detach(device_t dev) 549 { 550 551 (void)atrtc_unreg_acpi_cmos_handler(dev); 552 return (0); 553 } 554 #endif /* DEV_ACPI */ 555 556 static int 557 atrtc_resume(device_t dev) 558 { 559 560 atrtc_restore(); 561 return(0); 562 } 563 564 static int 565 atrtc_settime(device_t dev __unused, struct timespec *ts) 566 { 567 struct bcd_clocktime bct; 568 569 clock_ts_to_bcd(ts, &bct, false); 570 clock_dbgprint_bcd(dev, CLOCK_DBG_WRITE, &bct); 571 572 mtx_lock(&atrtc_time_lock); 573 mtx_lock_spin(&atrtc_lock); 574 575 /* Disable RTC updates and interrupts. */ 576 rtcout_locked(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR); 577 578 /* Write all the time registers. */ 579 rtcout_locked(RTC_SEC, bct.sec); 580 rtcout_locked(RTC_MIN, bct.min); 581 rtcout_locked(RTC_HRS, bct.hour); 582 rtcout_locked(RTC_WDAY, bct.dow + 1); 583 rtcout_locked(RTC_DAY, bct.day); 584 rtcout_locked(RTC_MONTH, bct.mon); 585 rtcout_locked(RTC_YEAR, bct.year & 0xff); 586 if (rtc_century) 587 rtcout_locked(rtc_century, bct.year >> 8); 588 589 /* 590 * Re-enable RTC updates and interrupts. 591 */ 592 rtcout_locked(RTC_STATUSB, rtc_statusb); 593 rtcin_locked(RTC_INTR); 594 595 mtx_unlock_spin(&atrtc_lock); 596 mtx_unlock(&atrtc_time_lock); 597 598 return (0); 599 } 600 601 static int 602 atrtc_gettime(device_t dev, struct timespec *ts) 603 { 604 struct bcd_clocktime bct; 605 606 /* Look if we have a RTC present and the time is valid */ 607 if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) { 608 atrtc_power_lost = true; 609 device_printf(dev, "WARNING: Battery failure indication\n"); 610 return (EINVAL); 611 } 612 613 /* 614 * wait for time update to complete 615 * If RTCSA_TUP is zero, we have at least 244us before next update. 616 * This is fast enough on most hardware, but a refinement would be 617 * to make sure that no more than 240us pass after we start reading, 618 * and try again if so. 619 */ 620 mtx_lock(&atrtc_time_lock); 621 while (rtcin(RTC_STATUSA) & RTCSA_TUP) 622 continue; 623 mtx_lock_spin(&atrtc_lock); 624 bct.sec = rtcin_locked(RTC_SEC); 625 bct.min = rtcin_locked(RTC_MIN); 626 bct.hour = rtcin_locked(RTC_HRS); 627 bct.day = rtcin_locked(RTC_DAY); 628 bct.mon = rtcin_locked(RTC_MONTH); 629 bct.year = rtcin_locked(RTC_YEAR); 630 if (rtc_century) 631 bct.year |= rtcin_locked(rtc_century) << 8; 632 mtx_unlock_spin(&atrtc_lock); 633 mtx_unlock(&atrtc_time_lock); 634 /* dow is unused in timespec conversion and we have no nsec info. */ 635 bct.dow = 0; 636 bct.nsec = 0; 637 clock_dbgprint_bcd(dev, CLOCK_DBG_READ, &bct); 638 return (clock_bcd_to_ts(&bct, ts, false)); 639 } 640 641 static device_method_t atrtc_isa_methods[] = { 642 /* Device interface */ 643 DEVMETHOD(device_probe, atrtc_probe), 644 DEVMETHOD(device_attach, atrtc_isa_attach), 645 DEVMETHOD(device_detach, bus_generic_detach), 646 DEVMETHOD(device_shutdown, bus_generic_shutdown), 647 DEVMETHOD(device_suspend, bus_generic_suspend), 648 /* XXX stop statclock? */ 649 DEVMETHOD(device_resume, atrtc_resume), 650 651 /* clock interface */ 652 DEVMETHOD(clock_gettime, atrtc_gettime), 653 DEVMETHOD(clock_settime, atrtc_settime), 654 { 0, 0 } 655 }; 656 657 static driver_t atrtc_isa_driver = { 658 "atrtc", 659 atrtc_isa_methods, 660 sizeof(struct atrtc_softc), 661 }; 662 663 #ifdef DEV_ACPI 664 static device_method_t atrtc_acpi_methods[] = { 665 /* Device interface */ 666 DEVMETHOD(device_probe, atrtc_probe), 667 DEVMETHOD(device_attach, atrtc_acpi_attach), 668 DEVMETHOD(device_detach, atrtc_acpi_detach), 669 /* XXX stop statclock? */ 670 DEVMETHOD(device_resume, atrtc_resume), 671 672 /* clock interface */ 673 DEVMETHOD(clock_gettime, atrtc_gettime), 674 DEVMETHOD(clock_settime, atrtc_settime), 675 { 0, 0 } 676 }; 677 678 static driver_t atrtc_acpi_driver = { 679 "atrtc", 680 atrtc_acpi_methods, 681 sizeof(struct atrtc_softc), 682 }; 683 #endif /* DEV_ACPI */ 684 685 DRIVER_MODULE(atrtc, isa, atrtc_isa_driver, 0, 0); 686 #ifdef DEV_ACPI 687 DRIVER_MODULE(atrtc, acpi, atrtc_acpi_driver, 0, 0); 688 #endif 689 ISA_PNP_INFO(atrtc_ids); 690