1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2008 Poul-Henning Kamp 5 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_acpi.h" 36 #include "opt_isa.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bus.h> 41 #include <sys/clock.h> 42 #include <sys/lock.h> 43 #include <sys/mutex.h> 44 #include <sys/kdb.h> 45 #include <sys/kernel.h> 46 #include <sys/module.h> 47 #include <sys/proc.h> 48 #include <sys/rman.h> 49 #include <sys/timeet.h> 50 51 #include <isa/rtc.h> 52 #ifdef DEV_ISA 53 #include <isa/isareg.h> 54 #include <isa/isavar.h> 55 #endif 56 #include <machine/intr_machdep.h> 57 #include "clock_if.h" 58 #ifdef DEV_ACPI 59 #include <contrib/dev/acpica/include/acpi.h> 60 #include <contrib/dev/acpica/include/accommon.h> 61 #include <dev/acpica/acpivar.h> 62 #include <machine/md_var.h> 63 #endif 64 65 /* 66 * atrtc_lock protects low-level access to individual hardware registers. 67 * atrtc_time_lock protects the entire sequence of accessing multiple registers 68 * to read or write the date and time. 69 */ 70 static struct mtx atrtc_lock; 71 MTX_SYSINIT(atrtc_lock_init, &atrtc_lock, "atrtc", MTX_SPIN); 72 73 /* Force RTC enabled/disabled. */ 74 static int atrtc_enabled = -1; 75 TUNABLE_INT("hw.atrtc.enabled", &atrtc_enabled); 76 77 struct mtx atrtc_time_lock; 78 MTX_SYSINIT(atrtc_time_lock_init, &atrtc_time_lock, "atrtc_time", MTX_DEF); 79 80 int atrtcclock_disable = 0; 81 82 static int rtc_century = 0; 83 static int rtc_reg = -1; 84 static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF; 85 static u_char rtc_statusb = RTCSB_24HR; 86 87 #ifdef DEV_ACPI 88 #define _COMPONENT ACPI_TIMER 89 ACPI_MODULE_NAME("ATRTC") 90 #endif 91 92 /* 93 * RTC support routines 94 */ 95 96 static inline u_char 97 rtcin_locked(int reg) 98 { 99 100 if (rtc_reg != reg) { 101 inb(0x84); 102 outb(IO_RTC, reg); 103 rtc_reg = reg; 104 inb(0x84); 105 } 106 return (inb(IO_RTC + 1)); 107 } 108 109 static inline void 110 rtcout_locked(int reg, u_char val) 111 { 112 113 if (rtc_reg != reg) { 114 inb(0x84); 115 outb(IO_RTC, reg); 116 rtc_reg = reg; 117 inb(0x84); 118 } 119 outb(IO_RTC + 1, val); 120 inb(0x84); 121 } 122 123 int 124 rtcin(int reg) 125 { 126 u_char val; 127 128 mtx_lock_spin(&atrtc_lock); 129 val = rtcin_locked(reg); 130 mtx_unlock_spin(&atrtc_lock); 131 return (val); 132 } 133 134 void 135 writertc(int reg, u_char val) 136 { 137 138 mtx_lock_spin(&atrtc_lock); 139 rtcout_locked(reg, val); 140 mtx_unlock_spin(&atrtc_lock); 141 } 142 143 static void 144 atrtc_start(void) 145 { 146 147 mtx_lock_spin(&atrtc_lock); 148 rtcout_locked(RTC_STATUSA, rtc_statusa); 149 rtcout_locked(RTC_STATUSB, RTCSB_24HR); 150 mtx_unlock_spin(&atrtc_lock); 151 } 152 153 static void 154 atrtc_rate(unsigned rate) 155 { 156 157 rtc_statusa = RTCSA_DIVIDER | rate; 158 writertc(RTC_STATUSA, rtc_statusa); 159 } 160 161 static void 162 atrtc_enable_intr(void) 163 { 164 165 rtc_statusb |= RTCSB_PINTR; 166 mtx_lock_spin(&atrtc_lock); 167 rtcout_locked(RTC_STATUSB, rtc_statusb); 168 rtcin_locked(RTC_INTR); 169 mtx_unlock_spin(&atrtc_lock); 170 } 171 172 static void 173 atrtc_disable_intr(void) 174 { 175 176 rtc_statusb &= ~RTCSB_PINTR; 177 mtx_lock_spin(&atrtc_lock); 178 rtcout_locked(RTC_STATUSB, rtc_statusb); 179 rtcin_locked(RTC_INTR); 180 mtx_unlock_spin(&atrtc_lock); 181 } 182 183 void 184 atrtc_restore(void) 185 { 186 187 /* Restore all of the RTC's "status" (actually, control) registers. */ 188 mtx_lock_spin(&atrtc_lock); 189 rtcin_locked(RTC_STATUSA); /* dummy to get rtc_reg set */ 190 rtcout_locked(RTC_STATUSB, RTCSB_24HR); 191 rtcout_locked(RTC_STATUSA, rtc_statusa); 192 rtcout_locked(RTC_STATUSB, rtc_statusb); 193 rtcin_locked(RTC_INTR); 194 mtx_unlock_spin(&atrtc_lock); 195 } 196 197 /********************************************************************** 198 * RTC driver for subr_rtc 199 */ 200 201 struct atrtc_softc { 202 int port_rid, intr_rid; 203 struct resource *port_res; 204 struct resource *intr_res; 205 void *intr_handler; 206 struct eventtimer et; 207 #ifdef DEV_ACPI 208 ACPI_HANDLE acpi_handle; 209 #endif 210 }; 211 212 static int 213 rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period) 214 { 215 216 atrtc_rate(max(fls(period + (period >> 1)) - 17, 1)); 217 atrtc_enable_intr(); 218 return (0); 219 } 220 221 static int 222 rtc_stop(struct eventtimer *et) 223 { 224 225 atrtc_disable_intr(); 226 return (0); 227 } 228 229 /* 230 * This routine receives statistical clock interrupts from the RTC. 231 * As explained above, these occur at 128 interrupts per second. 232 * When profiling, we receive interrupts at a rate of 1024 Hz. 233 * 234 * This does not actually add as much overhead as it sounds, because 235 * when the statistical clock is active, the hardclock driver no longer 236 * needs to keep (inaccurate) statistics on its own. This decouples 237 * statistics gathering from scheduling interrupts. 238 * 239 * The RTC chip requires that we read status register C (RTC_INTR) 240 * to acknowledge an interrupt, before it will generate the next one. 241 * Under high interrupt load, rtcintr() can be indefinitely delayed and 242 * the clock can tick immediately after the read from RTC_INTR. In this 243 * case, the mc146818A interrupt signal will not drop for long enough 244 * to register with the 8259 PIC. If an interrupt is missed, the stat 245 * clock will halt, considerably degrading system performance. This is 246 * why we use 'while' rather than a more straightforward 'if' below. 247 * Stat clock ticks can still be lost, causing minor loss of accuracy 248 * in the statistics, but the stat clock will no longer stop. 249 */ 250 static int 251 rtc_intr(void *arg) 252 { 253 struct atrtc_softc *sc = (struct atrtc_softc *)arg; 254 int flag = 0; 255 256 while (rtcin(RTC_INTR) & RTCIR_PERIOD) { 257 flag = 1; 258 if (sc->et.et_active) 259 sc->et.et_event_cb(&sc->et, sc->et.et_arg); 260 } 261 return(flag ? FILTER_HANDLED : FILTER_STRAY); 262 } 263 264 #ifdef DEV_ACPI 265 /* 266 * ACPI RTC CMOS address space handler 267 */ 268 #define ATRTC_LAST_REG 0x40 269 270 static void 271 rtcin_region(int reg, void *buf, int len) 272 { 273 u_char *ptr = buf; 274 275 /* Drop lock after each IO as intr and settime have greater priority */ 276 while (len-- > 0) 277 *ptr++ = rtcin(reg++) & 0xff; 278 } 279 280 static void 281 rtcout_region(int reg, const void *buf, int len) 282 { 283 const u_char *ptr = buf; 284 285 while (len-- > 0) 286 writertc(reg++, *ptr++); 287 } 288 289 static bool 290 atrtc_check_cmos_access(bool is_read, ACPI_PHYSICAL_ADDRESS addr, UINT32 len) 291 { 292 293 /* Block address space wrapping on out-of-bound access */ 294 if (addr >= ATRTC_LAST_REG || addr + len > ATRTC_LAST_REG) 295 return (false); 296 297 if (is_read) { 298 /* Reading 0x0C will muck with interrupts */ 299 if (addr <= RTC_INTR && addr + len > RTC_INTR) 300 return (false); 301 } else { 302 /* 303 * Allow single-byte writes to alarm registers and 304 * multi-byte writes to addr >= 0x30, else deny. 305 */ 306 if (!((len == 1 && (addr == RTC_SECALRM || 307 addr == RTC_MINALRM || 308 addr == RTC_HRSALRM)) || 309 addr >= 0x30)) 310 return (false); 311 } 312 return (true); 313 } 314 315 static ACPI_STATUS 316 atrtc_acpi_cmos_handler(UINT32 func, ACPI_PHYSICAL_ADDRESS addr, 317 UINT32 bitwidth, UINT64 *value, void *context, void *region_context) 318 { 319 device_t dev = context; 320 UINT32 bytewidth = howmany(bitwidth, 8); 321 bool is_read = func == ACPI_READ; 322 323 /* ACPICA is very verbose on CMOS handler failures, so we, too */ 324 #define CMOS_HANDLER_ERR(fmt, ...) \ 325 device_printf(dev, "ACPI [SystemCMOS] handler: " fmt, ##__VA_ARGS__) 326 327 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 328 329 if (value == NULL) { 330 CMOS_HANDLER_ERR("NULL parameter\n"); 331 return (AE_BAD_PARAMETER); 332 } 333 if (bitwidth == 0 || (bitwidth & 0x07) != 0) { 334 CMOS_HANDLER_ERR("Invalid bitwidth: %u\n", bitwidth); 335 return (AE_BAD_PARAMETER); 336 } 337 if (!atrtc_check_cmos_access(is_read, addr, bytewidth)) { 338 CMOS_HANDLER_ERR("%s access rejected: addr=%#04jx, len=%u\n", 339 is_read ? "Read" : "Write", (uintmax_t)addr, bytewidth); 340 return (AE_BAD_PARAMETER); 341 } 342 343 switch (func) { 344 case ACPI_READ: 345 rtcin_region(addr, value, bytewidth); 346 break; 347 case ACPI_WRITE: 348 rtcout_region(addr, value, bytewidth); 349 break; 350 default: 351 CMOS_HANDLER_ERR("Invalid function: %u\n", func); 352 return (AE_BAD_PARAMETER); 353 } 354 355 ACPI_VPRINT(dev, acpi_device_get_parent_softc(dev), 356 "ACPI RTC CMOS %s access: addr=%#04x, len=%u, val=%*D\n", 357 is_read ? "read" : "write", (unsigned)addr, bytewidth, 358 bytewidth, value, " "); 359 360 return (AE_OK); 361 } 362 363 static int 364 atrtc_reg_acpi_cmos_handler(device_t dev) 365 { 366 struct atrtc_softc *sc = device_get_softc(dev); 367 368 ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__); 369 370 /* Don't handle address space events if driver is disabled. */ 371 if (acpi_disabled("atrtc")) 372 return (ENXIO); 373 374 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sc->acpi_handle))) { 375 return (ENXIO); 376 } 377 378 if (sc->acpi_handle == NULL || 379 ACPI_FAILURE(AcpiInstallAddressSpaceHandler(sc->acpi_handle, 380 ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler, NULL, dev))) { 381 sc->acpi_handle = NULL; 382 device_printf(dev, 383 "Can't register ACPI CMOS address space handler\n"); 384 return (ENXIO); 385 } 386 387 return (0); 388 } 389 390 static int 391 atrtc_unreg_acpi_cmos_handler(device_t dev) 392 { 393 struct atrtc_softc *sc = device_get_softc(dev); 394 395 ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__); 396 397 if (sc->acpi_handle != NULL) 398 AcpiRemoveAddressSpaceHandler(sc->acpi_handle, 399 ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler); 400 401 return (0); 402 } 403 #endif /* DEV_ACPI */ 404 405 /* 406 * Attach to the ISA PnP descriptors for the timer and realtime clock. 407 */ 408 static struct isa_pnp_id atrtc_ids[] = { 409 { 0x000bd041 /* PNP0B00 */, "AT realtime clock" }, 410 { 0 } 411 }; 412 413 static bool 414 atrtc_acpi_disabled(void) 415 { 416 #ifdef DEV_ACPI 417 uint16_t flags; 418 419 if (!acpi_get_fadt_bootflags(&flags)) 420 return (false); 421 return ((flags & ACPI_FADT_NO_CMOS_RTC) != 0); 422 #else 423 return (false); 424 #endif 425 } 426 427 static int 428 rtc_acpi_century_get(void) 429 { 430 #ifdef DEV_ACPI 431 ACPI_TABLE_FADT *fadt; 432 vm_paddr_t physaddr; 433 int century; 434 435 physaddr = acpi_find_table(ACPI_SIG_FADT); 436 if (physaddr == 0) 437 return (0); 438 439 fadt = acpi_map_table(physaddr, ACPI_SIG_FADT); 440 if (fadt == NULL) 441 return (0); 442 443 century = fadt->Century; 444 acpi_unmap_table(fadt); 445 446 return (century); 447 #else 448 return (0); 449 #endif 450 } 451 452 static int 453 atrtc_probe(device_t dev) 454 { 455 int result; 456 457 if ((atrtc_enabled == -1 && atrtc_acpi_disabled()) || 458 (atrtc_enabled == 0)) 459 return (ENXIO); 460 461 result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids); 462 /* ENOENT means no PnP-ID, device is hinted. */ 463 if (result == ENOENT) { 464 device_set_desc(dev, "AT realtime clock"); 465 return (BUS_PROBE_LOW_PRIORITY); 466 } 467 rtc_century = rtc_acpi_century_get(); 468 return (result); 469 } 470 471 static int 472 atrtc_attach(device_t dev) 473 { 474 struct atrtc_softc *sc; 475 rman_res_t s; 476 int i; 477 478 sc = device_get_softc(dev); 479 sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid, 480 IO_RTC, IO_RTC + 1, 2, RF_ACTIVE); 481 if (sc->port_res == NULL) 482 device_printf(dev, "Warning: Couldn't map I/O.\n"); 483 atrtc_start(); 484 clock_register(dev, 1000000); 485 bzero(&sc->et, sizeof(struct eventtimer)); 486 if (!atrtcclock_disable && 487 (resource_int_value(device_get_name(dev), device_get_unit(dev), 488 "clock", &i) != 0 || i != 0)) { 489 sc->intr_rid = 0; 490 while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid, 491 &s, NULL) == 0 && s != 8) 492 sc->intr_rid++; 493 sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ, 494 &sc->intr_rid, 8, 8, 1, RF_ACTIVE); 495 if (sc->intr_res == NULL) { 496 device_printf(dev, "Can't map interrupt.\n"); 497 return (0); 498 } else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK, 499 rtc_intr, NULL, sc, &sc->intr_handler))) { 500 device_printf(dev, "Can't setup interrupt.\n"); 501 return (0); 502 } else { 503 /* Bind IRQ to BSP to avoid live migration. */ 504 bus_bind_intr(dev, sc->intr_res, 0); 505 } 506 sc->et.et_name = "RTC"; 507 sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV; 508 sc->et.et_quality = 0; 509 sc->et.et_frequency = 32768; 510 sc->et.et_min_period = 0x00080000; 511 sc->et.et_max_period = 0x80000000; 512 sc->et.et_start = rtc_start; 513 sc->et.et_stop = rtc_stop; 514 sc->et.et_priv = dev; 515 et_register(&sc->et); 516 } 517 return(0); 518 } 519 520 static int 521 atrtc_isa_attach(device_t dev) 522 { 523 524 return (atrtc_attach(dev)); 525 } 526 527 #ifdef DEV_ACPI 528 static int 529 atrtc_acpi_attach(device_t dev) 530 { 531 int ret; 532 533 ret = atrtc_attach(dev); 534 if (ret) 535 return (ret); 536 537 (void)atrtc_reg_acpi_cmos_handler(dev); 538 539 return (0); 540 } 541 542 static int 543 atrtc_acpi_detach(device_t dev) 544 { 545 546 (void)atrtc_unreg_acpi_cmos_handler(dev); 547 return (0); 548 } 549 #endif /* DEV_ACPI */ 550 551 static int 552 atrtc_resume(device_t dev) 553 { 554 555 atrtc_restore(); 556 return(0); 557 } 558 559 static int 560 atrtc_settime(device_t dev __unused, struct timespec *ts) 561 { 562 struct bcd_clocktime bct; 563 564 clock_ts_to_bcd(ts, &bct, false); 565 clock_dbgprint_bcd(dev, CLOCK_DBG_WRITE, &bct); 566 567 mtx_lock(&atrtc_time_lock); 568 mtx_lock_spin(&atrtc_lock); 569 570 /* Disable RTC updates and interrupts. */ 571 rtcout_locked(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR); 572 573 /* Write all the time registers. */ 574 rtcout_locked(RTC_SEC, bct.sec); 575 rtcout_locked(RTC_MIN, bct.min); 576 rtcout_locked(RTC_HRS, bct.hour); 577 rtcout_locked(RTC_WDAY, bct.dow + 1); 578 rtcout_locked(RTC_DAY, bct.day); 579 rtcout_locked(RTC_MONTH, bct.mon); 580 rtcout_locked(RTC_YEAR, bct.year & 0xff); 581 if (rtc_century) 582 rtcout_locked(rtc_century, bct.year >> 8); 583 584 /* 585 * Re-enable RTC updates and interrupts. 586 */ 587 rtcout_locked(RTC_STATUSB, rtc_statusb); 588 rtcin_locked(RTC_INTR); 589 590 mtx_unlock_spin(&atrtc_lock); 591 mtx_unlock(&atrtc_time_lock); 592 593 return (0); 594 } 595 596 static int 597 atrtc_gettime(device_t dev, struct timespec *ts) 598 { 599 struct bcd_clocktime bct; 600 601 /* Look if we have a RTC present and the time is valid */ 602 if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) { 603 device_printf(dev, "WARNING: Battery failure indication\n"); 604 return (EINVAL); 605 } 606 607 /* 608 * wait for time update to complete 609 * If RTCSA_TUP is zero, we have at least 244us before next update. 610 * This is fast enough on most hardware, but a refinement would be 611 * to make sure that no more than 240us pass after we start reading, 612 * and try again if so. 613 */ 614 mtx_lock(&atrtc_time_lock); 615 while (rtcin(RTC_STATUSA) & RTCSA_TUP) 616 continue; 617 mtx_lock_spin(&atrtc_lock); 618 bct.sec = rtcin_locked(RTC_SEC); 619 bct.min = rtcin_locked(RTC_MIN); 620 bct.hour = rtcin_locked(RTC_HRS); 621 bct.day = rtcin_locked(RTC_DAY); 622 bct.mon = rtcin_locked(RTC_MONTH); 623 bct.year = rtcin_locked(RTC_YEAR); 624 if (rtc_century) 625 bct.year |= rtcin_locked(rtc_century) << 8; 626 mtx_unlock_spin(&atrtc_lock); 627 mtx_unlock(&atrtc_time_lock); 628 /* dow is unused in timespec conversion and we have no nsec info. */ 629 bct.dow = 0; 630 bct.nsec = 0; 631 clock_dbgprint_bcd(dev, CLOCK_DBG_READ, &bct); 632 return (clock_bcd_to_ts(&bct, ts, false)); 633 } 634 635 static device_method_t atrtc_isa_methods[] = { 636 /* Device interface */ 637 DEVMETHOD(device_probe, atrtc_probe), 638 DEVMETHOD(device_attach, atrtc_isa_attach), 639 DEVMETHOD(device_detach, bus_generic_detach), 640 DEVMETHOD(device_shutdown, bus_generic_shutdown), 641 DEVMETHOD(device_suspend, bus_generic_suspend), 642 /* XXX stop statclock? */ 643 DEVMETHOD(device_resume, atrtc_resume), 644 645 /* clock interface */ 646 DEVMETHOD(clock_gettime, atrtc_gettime), 647 DEVMETHOD(clock_settime, atrtc_settime), 648 { 0, 0 } 649 }; 650 651 static driver_t atrtc_isa_driver = { 652 "atrtc", 653 atrtc_isa_methods, 654 sizeof(struct atrtc_softc), 655 }; 656 657 #ifdef DEV_ACPI 658 static device_method_t atrtc_acpi_methods[] = { 659 /* Device interface */ 660 DEVMETHOD(device_probe, atrtc_probe), 661 DEVMETHOD(device_attach, atrtc_acpi_attach), 662 DEVMETHOD(device_detach, atrtc_acpi_detach), 663 /* XXX stop statclock? */ 664 DEVMETHOD(device_resume, atrtc_resume), 665 666 /* clock interface */ 667 DEVMETHOD(clock_gettime, atrtc_gettime), 668 DEVMETHOD(clock_settime, atrtc_settime), 669 { 0, 0 } 670 }; 671 672 static driver_t atrtc_acpi_driver = { 673 "atrtc", 674 atrtc_acpi_methods, 675 sizeof(struct atrtc_softc), 676 }; 677 #endif /* DEV_ACPI */ 678 679 DRIVER_MODULE(atrtc, isa, atrtc_isa_driver, 0, 0); 680 #ifdef DEV_ACPI 681 DRIVER_MODULE(atrtc, acpi, atrtc_acpi_driver, 0, 0); 682 #endif 683 ISA_PNP_INFO(atrtc_ids); 684