xref: /freebsd/sys/x86/isa/atrtc.c (revision 0e33efe4e4b5d24e2d416938af8bc6e6e4160ec8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008 Poul-Henning Kamp
5  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_acpi.h"
36 #include "opt_isa.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/clock.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/kdb.h>
45 #include <sys/kernel.h>
46 #include <sys/module.h>
47 #include <sys/proc.h>
48 #include <sys/rman.h>
49 #include <sys/timeet.h>
50 
51 #include <isa/rtc.h>
52 #ifdef DEV_ISA
53 #include <isa/isareg.h>
54 #include <isa/isavar.h>
55 #endif
56 #include <machine/intr_machdep.h>
57 #include "clock_if.h"
58 
59 #ifdef DEV_ACPI
60 #include <contrib/dev/acpica/include/acpi.h>
61 #endif
62 
63 /*
64  * atrtc_lock protects low-level access to individual hardware registers.
65  * atrtc_time_lock protects the entire sequence of accessing multiple registers
66  * to read or write the date and time.
67  */
68 static struct mtx atrtc_lock;
69 MTX_SYSINIT(atrtc_lock_init, &atrtc_lock, "atrtc", MTX_SPIN);
70 
71 /* Force RTC enabled/disabled. */
72 static int atrtc_enabled = -1;
73 TUNABLE_INT("hw.atrtc.enabled", &atrtc_enabled);
74 
75 struct mtx atrtc_time_lock;
76 MTX_SYSINIT(atrtc_time_lock_init, &atrtc_time_lock, "atrtc_time", MTX_DEF);
77 
78 int	atrtcclock_disable = 0;
79 
80 static	int	rtc_reg = -1;
81 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
82 static	u_char	rtc_statusb = RTCSB_24HR;
83 
84 /*
85  * RTC support routines
86  */
87 
88 static inline u_char
89 rtcin_locked(int reg)
90 {
91 
92 	if (rtc_reg != reg) {
93 		inb(0x84);
94 		outb(IO_RTC, reg);
95 		rtc_reg = reg;
96 		inb(0x84);
97 	}
98 	return (inb(IO_RTC + 1));
99 }
100 
101 static inline void
102 rtcout_locked(int reg, u_char val)
103 {
104 
105 	if (rtc_reg != reg) {
106 		inb(0x84);
107 		outb(IO_RTC, reg);
108 		rtc_reg = reg;
109 		inb(0x84);
110 	}
111 	outb(IO_RTC + 1, val);
112 	inb(0x84);
113 }
114 
115 int
116 rtcin(int reg)
117 {
118 	u_char val;
119 
120 	mtx_lock_spin(&atrtc_lock);
121 	val = rtcin_locked(reg);
122 	mtx_unlock_spin(&atrtc_lock);
123 	return (val);
124 }
125 
126 void
127 writertc(int reg, u_char val)
128 {
129 
130 	mtx_lock_spin(&atrtc_lock);
131 	rtcout_locked(reg, val);
132 	mtx_unlock_spin(&atrtc_lock);
133 }
134 
135 static void
136 atrtc_start(void)
137 {
138 
139 	mtx_lock_spin(&atrtc_lock);
140 	rtcout_locked(RTC_STATUSA, rtc_statusa);
141 	rtcout_locked(RTC_STATUSB, RTCSB_24HR);
142 	mtx_unlock_spin(&atrtc_lock);
143 }
144 
145 static void
146 atrtc_rate(unsigned rate)
147 {
148 
149 	rtc_statusa = RTCSA_DIVIDER | rate;
150 	writertc(RTC_STATUSA, rtc_statusa);
151 }
152 
153 static void
154 atrtc_enable_intr(void)
155 {
156 
157 	rtc_statusb |= RTCSB_PINTR;
158 	mtx_lock_spin(&atrtc_lock);
159 	rtcout_locked(RTC_STATUSB, rtc_statusb);
160 	rtcin_locked(RTC_INTR);
161 	mtx_unlock_spin(&atrtc_lock);
162 }
163 
164 static void
165 atrtc_disable_intr(void)
166 {
167 
168 	rtc_statusb &= ~RTCSB_PINTR;
169 	mtx_lock_spin(&atrtc_lock);
170 	rtcout_locked(RTC_STATUSB, rtc_statusb);
171 	rtcin_locked(RTC_INTR);
172 	mtx_unlock_spin(&atrtc_lock);
173 }
174 
175 void
176 atrtc_restore(void)
177 {
178 
179 	/* Restore all of the RTC's "status" (actually, control) registers. */
180 	mtx_lock_spin(&atrtc_lock);
181 	rtcin_locked(RTC_STATUSA);	/* dummy to get rtc_reg set */
182 	rtcout_locked(RTC_STATUSB, RTCSB_24HR);
183 	rtcout_locked(RTC_STATUSA, rtc_statusa);
184 	rtcout_locked(RTC_STATUSB, rtc_statusb);
185 	rtcin_locked(RTC_INTR);
186 	mtx_unlock_spin(&atrtc_lock);
187 }
188 
189 /**********************************************************************
190  * RTC driver for subr_rtc
191  */
192 
193 struct atrtc_softc {
194 	int port_rid, intr_rid;
195 	struct resource *port_res;
196 	struct resource *intr_res;
197 	void *intr_handler;
198 	struct eventtimer et;
199 };
200 
201 static int
202 rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
203 {
204 
205 	atrtc_rate(max(fls(period + (period >> 1)) - 17, 1));
206 	atrtc_enable_intr();
207 	return (0);
208 }
209 
210 static int
211 rtc_stop(struct eventtimer *et)
212 {
213 
214 	atrtc_disable_intr();
215 	return (0);
216 }
217 
218 /*
219  * This routine receives statistical clock interrupts from the RTC.
220  * As explained above, these occur at 128 interrupts per second.
221  * When profiling, we receive interrupts at a rate of 1024 Hz.
222  *
223  * This does not actually add as much overhead as it sounds, because
224  * when the statistical clock is active, the hardclock driver no longer
225  * needs to keep (inaccurate) statistics on its own.  This decouples
226  * statistics gathering from scheduling interrupts.
227  *
228  * The RTC chip requires that we read status register C (RTC_INTR)
229  * to acknowledge an interrupt, before it will generate the next one.
230  * Under high interrupt load, rtcintr() can be indefinitely delayed and
231  * the clock can tick immediately after the read from RTC_INTR.  In this
232  * case, the mc146818A interrupt signal will not drop for long enough
233  * to register with the 8259 PIC.  If an interrupt is missed, the stat
234  * clock will halt, considerably degrading system performance.  This is
235  * why we use 'while' rather than a more straightforward 'if' below.
236  * Stat clock ticks can still be lost, causing minor loss of accuracy
237  * in the statistics, but the stat clock will no longer stop.
238  */
239 static int
240 rtc_intr(void *arg)
241 {
242 	struct atrtc_softc *sc = (struct atrtc_softc *)arg;
243 	int flag = 0;
244 
245 	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
246 		flag = 1;
247 		if (sc->et.et_active)
248 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
249 	}
250 	return(flag ? FILTER_HANDLED : FILTER_STRAY);
251 }
252 
253 /*
254  * Attach to the ISA PnP descriptors for the timer and realtime clock.
255  */
256 static struct isa_pnp_id atrtc_ids[] = {
257 	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
258 	{ 0 }
259 };
260 
261 static bool
262 atrtc_acpi_disabled(void)
263 {
264 #ifdef DEV_ACPI
265 	ACPI_TABLE_FADT *fadt;
266 	vm_paddr_t physaddr;
267 	uint16_t flags;
268 
269 	physaddr = acpi_find_table(ACPI_SIG_FADT);
270 	if (physaddr == 0)
271 		return (false);
272 
273 	fadt = acpi_map_table(physaddr, ACPI_SIG_FADT);
274 	if (fadt == NULL) {
275 		printf("at_rtc: unable to map FADT ACPI table\n");
276 		return (false);
277 	}
278 
279 	flags = fadt->BootFlags;
280 	acpi_unmap_table(fadt);
281 
282 	if (flags & ACPI_FADT_NO_CMOS_RTC)
283 		return (true);
284 #endif
285 
286 	return (false);
287 }
288 
289 static int
290 atrtc_probe(device_t dev)
291 {
292 	int result;
293 
294 	if ((atrtc_enabled == -1 && atrtc_acpi_disabled()) ||
295 	    (atrtc_enabled == 0))
296 		return (ENXIO);
297 
298 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids);
299 	/* ENOENT means no PnP-ID, device is hinted. */
300 	if (result == ENOENT) {
301 		device_set_desc(dev, "AT realtime clock");
302 		return (BUS_PROBE_LOW_PRIORITY);
303 	}
304 	return (result);
305 }
306 
307 static int
308 atrtc_attach(device_t dev)
309 {
310 	struct atrtc_softc *sc;
311 	rman_res_t s;
312 	int i;
313 
314 	sc = device_get_softc(dev);
315 	sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
316 	    IO_RTC, IO_RTC + 1, 2, RF_ACTIVE);
317 	if (sc->port_res == NULL)
318 		device_printf(dev, "Warning: Couldn't map I/O.\n");
319 	atrtc_start();
320 	clock_register(dev, 1000000);
321 	bzero(&sc->et, sizeof(struct eventtimer));
322 	if (!atrtcclock_disable &&
323 	    (resource_int_value(device_get_name(dev), device_get_unit(dev),
324 	     "clock", &i) != 0 || i != 0)) {
325 		sc->intr_rid = 0;
326 		while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid,
327 		    &s, NULL) == 0 && s != 8)
328 			sc->intr_rid++;
329 		sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
330 		    &sc->intr_rid, 8, 8, 1, RF_ACTIVE);
331 		if (sc->intr_res == NULL) {
332 			device_printf(dev, "Can't map interrupt.\n");
333 			return (0);
334 		} else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
335 		    rtc_intr, NULL, sc, &sc->intr_handler))) {
336 			device_printf(dev, "Can't setup interrupt.\n");
337 			return (0);
338 		} else {
339 			/* Bind IRQ to BSP to avoid live migration. */
340 			bus_bind_intr(dev, sc->intr_res, 0);
341 		}
342 		sc->et.et_name = "RTC";
343 		sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV;
344 		sc->et.et_quality = 0;
345 		sc->et.et_frequency = 32768;
346 		sc->et.et_min_period = 0x00080000;
347 		sc->et.et_max_period = 0x80000000;
348 		sc->et.et_start = rtc_start;
349 		sc->et.et_stop = rtc_stop;
350 		sc->et.et_priv = dev;
351 		et_register(&sc->et);
352 	}
353 	return(0);
354 }
355 
356 static int
357 atrtc_resume(device_t dev)
358 {
359 
360 	atrtc_restore();
361 	return(0);
362 }
363 
364 static int
365 atrtc_settime(device_t dev __unused, struct timespec *ts)
366 {
367 	struct bcd_clocktime bct;
368 
369 	clock_ts_to_bcd(ts, &bct, false);
370 	clock_dbgprint_bcd(dev, CLOCK_DBG_WRITE, &bct);
371 
372 	mtx_lock(&atrtc_time_lock);
373 	mtx_lock_spin(&atrtc_lock);
374 
375 	/* Disable RTC updates and interrupts.  */
376 	rtcout_locked(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
377 
378 	/* Write all the time registers. */
379 	rtcout_locked(RTC_SEC,   bct.sec);
380 	rtcout_locked(RTC_MIN,   bct.min);
381 	rtcout_locked(RTC_HRS,   bct.hour);
382 	rtcout_locked(RTC_WDAY,  bct.dow + 1);
383 	rtcout_locked(RTC_DAY,   bct.day);
384 	rtcout_locked(RTC_MONTH, bct.mon);
385 	rtcout_locked(RTC_YEAR,  bct.year & 0xff);
386 #ifdef USE_RTC_CENTURY
387 	rtcout_locked(RTC_CENTURY, bct.year >> 8);
388 #endif
389 
390 	/*
391 	 * Re-enable RTC updates and interrupts.
392 	 */
393 	rtcout_locked(RTC_STATUSB, rtc_statusb);
394 	rtcin_locked(RTC_INTR);
395 
396 	mtx_unlock_spin(&atrtc_lock);
397 	mtx_unlock(&atrtc_time_lock);
398 
399 	return (0);
400 }
401 
402 static int
403 atrtc_gettime(device_t dev, struct timespec *ts)
404 {
405 	struct bcd_clocktime bct;
406 
407 	/* Look if we have a RTC present and the time is valid */
408 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) {
409 		device_printf(dev, "WARNING: Battery failure indication\n");
410 		return (EINVAL);
411 	}
412 
413 	/*
414 	 * wait for time update to complete
415 	 * If RTCSA_TUP is zero, we have at least 244us before next update.
416 	 * This is fast enough on most hardware, but a refinement would be
417 	 * to make sure that no more than 240us pass after we start reading,
418 	 * and try again if so.
419 	 */
420 	mtx_lock(&atrtc_time_lock);
421 	while (rtcin(RTC_STATUSA) & RTCSA_TUP)
422 		continue;
423 	mtx_lock_spin(&atrtc_lock);
424 	bct.sec  = rtcin_locked(RTC_SEC);
425 	bct.min  = rtcin_locked(RTC_MIN);
426 	bct.hour = rtcin_locked(RTC_HRS);
427 	bct.day  = rtcin_locked(RTC_DAY);
428 	bct.mon  = rtcin_locked(RTC_MONTH);
429 	bct.year = rtcin_locked(RTC_YEAR);
430 #ifdef USE_RTC_CENTURY
431 	bct.year |= rtcin_locked(RTC_CENTURY) << 8;
432 #endif
433 	mtx_unlock_spin(&atrtc_lock);
434 	mtx_unlock(&atrtc_time_lock);
435 	/* dow is unused in timespec conversion and we have no nsec info. */
436 	bct.dow  = 0;
437 	bct.nsec = 0;
438 	clock_dbgprint_bcd(dev, CLOCK_DBG_READ, &bct);
439 	return (clock_bcd_to_ts(&bct, ts, false));
440 }
441 
442 static device_method_t atrtc_methods[] = {
443 	/* Device interface */
444 	DEVMETHOD(device_probe,		atrtc_probe),
445 	DEVMETHOD(device_attach,	atrtc_attach),
446 	DEVMETHOD(device_detach,	bus_generic_detach),
447 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
448 	DEVMETHOD(device_suspend,	bus_generic_suspend),
449 		/* XXX stop statclock? */
450 	DEVMETHOD(device_resume,	atrtc_resume),
451 
452 	/* clock interface */
453 	DEVMETHOD(clock_gettime,	atrtc_gettime),
454 	DEVMETHOD(clock_settime,	atrtc_settime),
455 
456 	{ 0, 0 }
457 };
458 
459 static driver_t atrtc_driver = {
460 	"atrtc",
461 	atrtc_methods,
462 	sizeof(struct atrtc_softc),
463 };
464 
465 static devclass_t atrtc_devclass;
466 
467 DRIVER_MODULE(atrtc, isa, atrtc_driver, atrtc_devclass, 0, 0);
468 DRIVER_MODULE(atrtc, acpi, atrtc_driver, atrtc_devclass, 0, 0);
469 ISA_PNP_INFO(atrtc_ids);
470