1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2008 Poul-Henning Kamp 5 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_acpi.h" 32 #include "opt_isa.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/bus.h> 37 #include <sys/clock.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/kdb.h> 41 #include <sys/kernel.h> 42 #include <sys/module.h> 43 #include <sys/proc.h> 44 #include <sys/rman.h> 45 #include <sys/timeet.h> 46 47 #include <isa/rtc.h> 48 #ifdef DEV_ISA 49 #include <isa/isareg.h> 50 #include <isa/isavar.h> 51 #endif 52 #include <machine/intr_machdep.h> 53 #include "clock_if.h" 54 #ifdef DEV_ACPI 55 #include <contrib/dev/acpica/include/acpi.h> 56 #include <contrib/dev/acpica/include/accommon.h> 57 #include <dev/acpica/acpivar.h> 58 #include <machine/md_var.h> 59 #endif 60 61 /* tunable to detect a power loss of the rtc */ 62 static bool atrtc_power_lost = false; 63 SYSCTL_BOOL(_machdep, OID_AUTO, atrtc_power_lost, CTLFLAG_RD, &atrtc_power_lost, 64 false, "RTC lost power on last power cycle (probably caused by an emtpy cmos battery)"); 65 66 /* 67 * atrtc_lock protects low-level access to individual hardware registers. 68 * atrtc_time_lock protects the entire sequence of accessing multiple registers 69 * to read or write the date and time. 70 */ 71 static struct mtx atrtc_lock; 72 MTX_SYSINIT(atrtc_lock_init, &atrtc_lock, "atrtc", MTX_SPIN); 73 74 /* Force RTC enabled/disabled. */ 75 static int atrtc_enabled = -1; 76 TUNABLE_INT("hw.atrtc.enabled", &atrtc_enabled); 77 78 struct mtx atrtc_time_lock; 79 MTX_SYSINIT(atrtc_time_lock_init, &atrtc_time_lock, "atrtc_time", MTX_DEF); 80 81 int atrtcclock_disable = 0; 82 83 static int rtc_century = 0; 84 static int rtc_reg = -1; 85 static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF; 86 static u_char rtc_statusb = RTCSB_24HR; 87 88 #ifdef DEV_ACPI 89 #define _COMPONENT ACPI_TIMER 90 ACPI_MODULE_NAME("ATRTC") 91 #endif 92 93 /* 94 * RTC support routines 95 */ 96 97 static inline u_char 98 rtcin_locked(int reg) 99 { 100 101 if (rtc_reg != reg) { 102 inb(0x84); 103 outb(IO_RTC, reg); 104 rtc_reg = reg; 105 inb(0x84); 106 } 107 return (inb(IO_RTC + 1)); 108 } 109 110 static inline void 111 rtcout_locked(int reg, u_char val) 112 { 113 114 if (rtc_reg != reg) { 115 inb(0x84); 116 outb(IO_RTC, reg); 117 rtc_reg = reg; 118 inb(0x84); 119 } 120 outb(IO_RTC + 1, val); 121 inb(0x84); 122 } 123 124 int 125 rtcin(int reg) 126 { 127 u_char val; 128 129 mtx_lock_spin(&atrtc_lock); 130 val = rtcin_locked(reg); 131 mtx_unlock_spin(&atrtc_lock); 132 return (val); 133 } 134 135 void 136 writertc(int reg, u_char val) 137 { 138 139 mtx_lock_spin(&atrtc_lock); 140 rtcout_locked(reg, val); 141 mtx_unlock_spin(&atrtc_lock); 142 } 143 144 static void 145 atrtc_start(void) 146 { 147 148 mtx_lock_spin(&atrtc_lock); 149 rtcout_locked(RTC_STATUSA, rtc_statusa); 150 rtcout_locked(RTC_STATUSB, RTCSB_24HR); 151 mtx_unlock_spin(&atrtc_lock); 152 } 153 154 static void 155 atrtc_rate(unsigned rate) 156 { 157 158 rtc_statusa = RTCSA_DIVIDER | rate; 159 writertc(RTC_STATUSA, rtc_statusa); 160 } 161 162 static void 163 atrtc_enable_intr(void) 164 { 165 166 rtc_statusb |= RTCSB_PINTR; 167 mtx_lock_spin(&atrtc_lock); 168 rtcout_locked(RTC_STATUSB, rtc_statusb); 169 rtcin_locked(RTC_INTR); 170 mtx_unlock_spin(&atrtc_lock); 171 } 172 173 static void 174 atrtc_disable_intr(void) 175 { 176 177 rtc_statusb &= ~RTCSB_PINTR; 178 mtx_lock_spin(&atrtc_lock); 179 rtcout_locked(RTC_STATUSB, rtc_statusb); 180 rtcin_locked(RTC_INTR); 181 mtx_unlock_spin(&atrtc_lock); 182 } 183 184 void 185 atrtc_restore(void) 186 { 187 188 /* Restore all of the RTC's "status" (actually, control) registers. */ 189 mtx_lock_spin(&atrtc_lock); 190 rtcin_locked(RTC_STATUSA); /* dummy to get rtc_reg set */ 191 rtcout_locked(RTC_STATUSB, RTCSB_24HR); 192 rtcout_locked(RTC_STATUSA, rtc_statusa); 193 rtcout_locked(RTC_STATUSB, rtc_statusb); 194 rtcin_locked(RTC_INTR); 195 mtx_unlock_spin(&atrtc_lock); 196 } 197 198 /********************************************************************** 199 * RTC driver for subr_rtc 200 */ 201 202 struct atrtc_softc { 203 int port_rid, intr_rid; 204 struct resource *port_res; 205 struct resource *intr_res; 206 void *intr_handler; 207 struct eventtimer et; 208 #ifdef DEV_ACPI 209 ACPI_HANDLE acpi_handle; 210 #endif 211 }; 212 213 static int 214 rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period) 215 { 216 217 atrtc_rate(max(fls(period + (period >> 1)) - 17, 1)); 218 atrtc_enable_intr(); 219 return (0); 220 } 221 222 static int 223 rtc_stop(struct eventtimer *et) 224 { 225 226 atrtc_disable_intr(); 227 return (0); 228 } 229 230 /* 231 * This routine receives statistical clock interrupts from the RTC. 232 * As explained above, these occur at 128 interrupts per second. 233 * When profiling, we receive interrupts at a rate of 1024 Hz. 234 * 235 * This does not actually add as much overhead as it sounds, because 236 * when the statistical clock is active, the hardclock driver no longer 237 * needs to keep (inaccurate) statistics on its own. This decouples 238 * statistics gathering from scheduling interrupts. 239 * 240 * The RTC chip requires that we read status register C (RTC_INTR) 241 * to acknowledge an interrupt, before it will generate the next one. 242 * Under high interrupt load, rtcintr() can be indefinitely delayed and 243 * the clock can tick immediately after the read from RTC_INTR. In this 244 * case, the mc146818A interrupt signal will not drop for long enough 245 * to register with the 8259 PIC. If an interrupt is missed, the stat 246 * clock will halt, considerably degrading system performance. This is 247 * why we use 'while' rather than a more straightforward 'if' below. 248 * Stat clock ticks can still be lost, causing minor loss of accuracy 249 * in the statistics, but the stat clock will no longer stop. 250 */ 251 static int 252 rtc_intr(void *arg) 253 { 254 struct atrtc_softc *sc = (struct atrtc_softc *)arg; 255 int flag = 0; 256 257 while (rtcin(RTC_INTR) & RTCIR_PERIOD) { 258 flag = 1; 259 if (sc->et.et_active) 260 sc->et.et_event_cb(&sc->et, sc->et.et_arg); 261 } 262 return(flag ? FILTER_HANDLED : FILTER_STRAY); 263 } 264 265 #ifdef DEV_ACPI 266 /* 267 * ACPI RTC CMOS address space handler 268 */ 269 #define ATRTC_LAST_REG 0x40 270 271 static void 272 rtcin_region(int reg, void *buf, int len) 273 { 274 u_char *ptr = buf; 275 276 /* Drop lock after each IO as intr and settime have greater priority */ 277 while (len-- > 0) 278 *ptr++ = rtcin(reg++) & 0xff; 279 } 280 281 static void 282 rtcout_region(int reg, const void *buf, int len) 283 { 284 const u_char *ptr = buf; 285 286 while (len-- > 0) 287 writertc(reg++, *ptr++); 288 } 289 290 static bool 291 atrtc_check_cmos_access(bool is_read, ACPI_PHYSICAL_ADDRESS addr, UINT32 len) 292 { 293 294 /* Block address space wrapping on out-of-bound access */ 295 if (addr >= ATRTC_LAST_REG || addr + len > ATRTC_LAST_REG) 296 return (false); 297 298 if (is_read) { 299 /* Reading 0x0C will muck with interrupts */ 300 if (addr <= RTC_INTR && addr + len > RTC_INTR) 301 return (false); 302 } else { 303 /* 304 * Allow single-byte writes to alarm registers and 305 * multi-byte writes to addr >= 0x30, else deny. 306 */ 307 if (!((len == 1 && (addr == RTC_SECALRM || 308 addr == RTC_MINALRM || 309 addr == RTC_HRSALRM)) || 310 addr >= 0x30)) 311 return (false); 312 } 313 return (true); 314 } 315 316 static ACPI_STATUS 317 atrtc_acpi_cmos_handler(UINT32 func, ACPI_PHYSICAL_ADDRESS addr, 318 UINT32 bitwidth, UINT64 *value, void *context, void *region_context) 319 { 320 device_t dev = context; 321 UINT32 bytewidth = howmany(bitwidth, 8); 322 bool is_read = func == ACPI_READ; 323 324 /* ACPICA is very verbose on CMOS handler failures, so we, too */ 325 #define CMOS_HANDLER_ERR(fmt, ...) \ 326 device_printf(dev, "ACPI [SystemCMOS] handler: " fmt, ##__VA_ARGS__) 327 328 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 329 330 if (value == NULL) { 331 CMOS_HANDLER_ERR("NULL parameter\n"); 332 return (AE_BAD_PARAMETER); 333 } 334 if (bitwidth == 0 || (bitwidth & 0x07) != 0) { 335 CMOS_HANDLER_ERR("Invalid bitwidth: %u\n", bitwidth); 336 return (AE_BAD_PARAMETER); 337 } 338 if (!atrtc_check_cmos_access(is_read, addr, bytewidth)) { 339 CMOS_HANDLER_ERR("%s access rejected: addr=%#04jx, len=%u\n", 340 is_read ? "Read" : "Write", (uintmax_t)addr, bytewidth); 341 return (AE_BAD_PARAMETER); 342 } 343 344 switch (func) { 345 case ACPI_READ: 346 rtcin_region(addr, value, bytewidth); 347 break; 348 case ACPI_WRITE: 349 rtcout_region(addr, value, bytewidth); 350 break; 351 default: 352 CMOS_HANDLER_ERR("Invalid function: %u\n", func); 353 return (AE_BAD_PARAMETER); 354 } 355 356 ACPI_VPRINT(dev, acpi_device_get_parent_softc(dev), 357 "ACPI RTC CMOS %s access: addr=%#04x, len=%u, val=%*D\n", 358 is_read ? "read" : "write", (unsigned)addr, bytewidth, 359 bytewidth, value, " "); 360 361 return (AE_OK); 362 } 363 364 static int 365 atrtc_reg_acpi_cmos_handler(device_t dev) 366 { 367 struct atrtc_softc *sc = device_get_softc(dev); 368 369 ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__); 370 371 /* Don't handle address space events if driver is disabled. */ 372 if (acpi_disabled("atrtc")) 373 return (ENXIO); 374 375 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sc->acpi_handle))) { 376 return (ENXIO); 377 } 378 379 if (sc->acpi_handle == NULL || 380 ACPI_FAILURE(AcpiInstallAddressSpaceHandler(sc->acpi_handle, 381 ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler, NULL, dev))) { 382 sc->acpi_handle = NULL; 383 device_printf(dev, 384 "Can't register ACPI CMOS address space handler\n"); 385 return (ENXIO); 386 } 387 388 return (0); 389 } 390 391 static int 392 atrtc_unreg_acpi_cmos_handler(device_t dev) 393 { 394 struct atrtc_softc *sc = device_get_softc(dev); 395 396 ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__); 397 398 if (sc->acpi_handle != NULL) 399 AcpiRemoveAddressSpaceHandler(sc->acpi_handle, 400 ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler); 401 402 return (0); 403 } 404 #endif /* DEV_ACPI */ 405 406 /* 407 * Attach to the ISA PnP descriptors for the timer and realtime clock. 408 */ 409 static struct isa_pnp_id atrtc_ids[] = { 410 { 0x000bd041 /* PNP0B00 */, "AT realtime clock" }, 411 { 0 } 412 }; 413 414 static bool 415 atrtc_acpi_disabled(void) 416 { 417 #ifdef DEV_ACPI 418 uint16_t flags; 419 420 if (!acpi_get_fadt_bootflags(&flags)) 421 return (false); 422 return ((flags & ACPI_FADT_NO_CMOS_RTC) != 0); 423 #else 424 return (false); 425 #endif 426 } 427 428 static int 429 rtc_acpi_century_get(void) 430 { 431 #ifdef DEV_ACPI 432 ACPI_TABLE_FADT *fadt; 433 vm_paddr_t physaddr; 434 int century; 435 436 physaddr = acpi_find_table(ACPI_SIG_FADT); 437 if (physaddr == 0) 438 return (0); 439 440 fadt = acpi_map_table(physaddr, ACPI_SIG_FADT); 441 if (fadt == NULL) 442 return (0); 443 444 century = fadt->Century; 445 acpi_unmap_table(fadt); 446 447 return (century); 448 #else 449 return (0); 450 #endif 451 } 452 453 static int 454 atrtc_probe(device_t dev) 455 { 456 int result; 457 458 if ((atrtc_enabled == -1 && atrtc_acpi_disabled()) || 459 (atrtc_enabled == 0)) 460 return (ENXIO); 461 462 result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids); 463 /* ENOENT means no PnP-ID, device is hinted. */ 464 if (result == ENOENT) { 465 device_set_desc(dev, "AT realtime clock"); 466 return (BUS_PROBE_LOW_PRIORITY); 467 } 468 rtc_century = rtc_acpi_century_get(); 469 return (result); 470 } 471 472 static int 473 atrtc_attach(device_t dev) 474 { 475 struct atrtc_softc *sc; 476 rman_res_t s; 477 int i; 478 479 sc = device_get_softc(dev); 480 sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid, 481 IO_RTC, IO_RTC + 1, 2, RF_ACTIVE); 482 if (sc->port_res == NULL) 483 device_printf(dev, "Warning: Couldn't map I/O.\n"); 484 atrtc_start(); 485 clock_register(dev, 1000000); 486 bzero(&sc->et, sizeof(struct eventtimer)); 487 if (!atrtcclock_disable && 488 (resource_int_value(device_get_name(dev), device_get_unit(dev), 489 "clock", &i) != 0 || i != 0)) { 490 sc->intr_rid = 0; 491 while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid, 492 &s, NULL) == 0 && s != 8) 493 sc->intr_rid++; 494 sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ, 495 &sc->intr_rid, 8, 8, 1, RF_ACTIVE); 496 if (sc->intr_res == NULL) { 497 device_printf(dev, "Can't map interrupt.\n"); 498 return (0); 499 } else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK, 500 rtc_intr, NULL, sc, &sc->intr_handler))) { 501 device_printf(dev, "Can't setup interrupt.\n"); 502 return (0); 503 } else { 504 /* Bind IRQ to BSP to avoid live migration. */ 505 bus_bind_intr(dev, sc->intr_res, 0); 506 } 507 sc->et.et_name = "RTC"; 508 sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV; 509 sc->et.et_quality = 0; 510 sc->et.et_frequency = 32768; 511 sc->et.et_min_period = 0x00080000; 512 sc->et.et_max_period = 0x80000000; 513 sc->et.et_start = rtc_start; 514 sc->et.et_stop = rtc_stop; 515 sc->et.et_priv = dev; 516 et_register(&sc->et); 517 } 518 return(0); 519 } 520 521 static int 522 atrtc_isa_attach(device_t dev) 523 { 524 525 return (atrtc_attach(dev)); 526 } 527 528 #ifdef DEV_ACPI 529 static int 530 atrtc_acpi_attach(device_t dev) 531 { 532 int ret; 533 534 ret = atrtc_attach(dev); 535 if (ret) 536 return (ret); 537 538 (void)atrtc_reg_acpi_cmos_handler(dev); 539 540 return (0); 541 } 542 543 static int 544 atrtc_acpi_detach(device_t dev) 545 { 546 547 (void)atrtc_unreg_acpi_cmos_handler(dev); 548 return (0); 549 } 550 #endif /* DEV_ACPI */ 551 552 static int 553 atrtc_resume(device_t dev) 554 { 555 556 atrtc_restore(); 557 return(0); 558 } 559 560 static int 561 atrtc_settime(device_t dev __unused, struct timespec *ts) 562 { 563 struct bcd_clocktime bct; 564 565 clock_ts_to_bcd(ts, &bct, false); 566 clock_dbgprint_bcd(dev, CLOCK_DBG_WRITE, &bct); 567 568 mtx_lock(&atrtc_time_lock); 569 mtx_lock_spin(&atrtc_lock); 570 571 /* Disable RTC updates and interrupts. */ 572 rtcout_locked(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR); 573 574 /* Write all the time registers. */ 575 rtcout_locked(RTC_SEC, bct.sec); 576 rtcout_locked(RTC_MIN, bct.min); 577 rtcout_locked(RTC_HRS, bct.hour); 578 rtcout_locked(RTC_WDAY, bct.dow + 1); 579 rtcout_locked(RTC_DAY, bct.day); 580 rtcout_locked(RTC_MONTH, bct.mon); 581 rtcout_locked(RTC_YEAR, bct.year & 0xff); 582 if (rtc_century) 583 rtcout_locked(rtc_century, bct.year >> 8); 584 585 /* 586 * Re-enable RTC updates and interrupts. 587 */ 588 rtcout_locked(RTC_STATUSB, rtc_statusb); 589 rtcin_locked(RTC_INTR); 590 591 mtx_unlock_spin(&atrtc_lock); 592 mtx_unlock(&atrtc_time_lock); 593 594 return (0); 595 } 596 597 static int 598 atrtc_gettime(device_t dev, struct timespec *ts) 599 { 600 struct bcd_clocktime bct; 601 602 /* Look if we have a RTC present and the time is valid */ 603 if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) { 604 atrtc_power_lost = true; 605 device_printf(dev, "WARNING: Battery failure indication\n"); 606 return (EINVAL); 607 } 608 609 /* 610 * wait for time update to complete 611 * If RTCSA_TUP is zero, we have at least 244us before next update. 612 * This is fast enough on most hardware, but a refinement would be 613 * to make sure that no more than 240us pass after we start reading, 614 * and try again if so. 615 */ 616 mtx_lock(&atrtc_time_lock); 617 while (rtcin(RTC_STATUSA) & RTCSA_TUP) 618 continue; 619 mtx_lock_spin(&atrtc_lock); 620 bct.sec = rtcin_locked(RTC_SEC); 621 bct.min = rtcin_locked(RTC_MIN); 622 bct.hour = rtcin_locked(RTC_HRS); 623 bct.day = rtcin_locked(RTC_DAY); 624 bct.mon = rtcin_locked(RTC_MONTH); 625 bct.year = rtcin_locked(RTC_YEAR); 626 if (rtc_century) 627 bct.year |= rtcin_locked(rtc_century) << 8; 628 mtx_unlock_spin(&atrtc_lock); 629 mtx_unlock(&atrtc_time_lock); 630 /* dow is unused in timespec conversion and we have no nsec info. */ 631 bct.dow = 0; 632 bct.nsec = 0; 633 clock_dbgprint_bcd(dev, CLOCK_DBG_READ, &bct); 634 return (clock_bcd_to_ts(&bct, ts, false)); 635 } 636 637 static device_method_t atrtc_isa_methods[] = { 638 /* Device interface */ 639 DEVMETHOD(device_probe, atrtc_probe), 640 DEVMETHOD(device_attach, atrtc_isa_attach), 641 DEVMETHOD(device_detach, bus_generic_detach), 642 DEVMETHOD(device_shutdown, bus_generic_shutdown), 643 DEVMETHOD(device_suspend, bus_generic_suspend), 644 /* XXX stop statclock? */ 645 DEVMETHOD(device_resume, atrtc_resume), 646 647 /* clock interface */ 648 DEVMETHOD(clock_gettime, atrtc_gettime), 649 DEVMETHOD(clock_settime, atrtc_settime), 650 { 0, 0 } 651 }; 652 653 static driver_t atrtc_isa_driver = { 654 "atrtc", 655 atrtc_isa_methods, 656 sizeof(struct atrtc_softc), 657 }; 658 659 #ifdef DEV_ACPI 660 static device_method_t atrtc_acpi_methods[] = { 661 /* Device interface */ 662 DEVMETHOD(device_probe, atrtc_probe), 663 DEVMETHOD(device_attach, atrtc_acpi_attach), 664 DEVMETHOD(device_detach, atrtc_acpi_detach), 665 /* XXX stop statclock? */ 666 DEVMETHOD(device_resume, atrtc_resume), 667 668 /* clock interface */ 669 DEVMETHOD(clock_gettime, atrtc_gettime), 670 DEVMETHOD(clock_settime, atrtc_settime), 671 { 0, 0 } 672 }; 673 674 static driver_t atrtc_acpi_driver = { 675 "atrtc", 676 atrtc_acpi_methods, 677 sizeof(struct atrtc_softc), 678 }; 679 #endif /* DEV_ACPI */ 680 681 DRIVER_MODULE(atrtc, isa, atrtc_isa_driver, 0, 0); 682 #ifdef DEV_ACPI 683 DRIVER_MODULE(atrtc, acpi, atrtc_acpi_driver, 0, 0); 684 #endif 685 ISA_PNP_INFO(atrtc_ids); 686