1 /*- 2 * Copyright (c) 2013 The FreeBSD Foundation 3 * All rights reserved. 4 * 5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 6 * under sponsorship from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/kernel.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/memdesc.h> 39 #include <sys/mutex.h> 40 #include <sys/proc.h> 41 #include <sys/queue.h> 42 #include <sys/rman.h> 43 #include <sys/rwlock.h> 44 #include <sys/sched.h> 45 #include <sys/sf_buf.h> 46 #include <sys/sysctl.h> 47 #include <sys/systm.h> 48 #include <sys/taskqueue.h> 49 #include <sys/tree.h> 50 #include <sys/vmem.h> 51 #include <dev/pci/pcivar.h> 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_kern.h> 55 #include <vm/vm_object.h> 56 #include <vm/vm_page.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_pageout.h> 59 #include <machine/bus.h> 60 #include <machine/cpu.h> 61 #include <machine/intr_machdep.h> 62 #include <x86/include/apicvar.h> 63 #include <x86/include/busdma_impl.h> 64 #include <x86/iommu/intel_reg.h> 65 #include <x86/iommu/busdma_dmar.h> 66 #include <x86/iommu/intel_dmar.h> 67 68 u_int 69 dmar_nd2mask(u_int nd) 70 { 71 static const u_int masks[] = { 72 0x000f, /* nd == 0 */ 73 0x002f, /* nd == 1 */ 74 0x00ff, /* nd == 2 */ 75 0x02ff, /* nd == 3 */ 76 0x0fff, /* nd == 4 */ 77 0x2fff, /* nd == 5 */ 78 0xffff, /* nd == 6 */ 79 0x0000, /* nd == 7 reserved */ 80 }; 81 82 KASSERT(nd <= 6, ("number of domains %d", nd)); 83 return (masks[nd]); 84 } 85 86 static const struct sagaw_bits_tag { 87 int agaw; 88 int cap; 89 int awlvl; 90 int pglvl; 91 } sagaw_bits[] = { 92 {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL, 93 .pglvl = 2}, 94 {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL, 95 .pglvl = 3}, 96 {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL, 97 .pglvl = 4}, 98 {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL, 99 .pglvl = 5}, 100 {.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL, 101 .pglvl = 6} 102 }; 103 104 bool 105 dmar_pglvl_supported(struct dmar_unit *unit, int pglvl) 106 { 107 int i; 108 109 for (i = 0; i < nitems(sagaw_bits); i++) { 110 if (sagaw_bits[i].pglvl != pglvl) 111 continue; 112 if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) 113 return (true); 114 } 115 return (false); 116 } 117 118 int 119 domain_set_agaw(struct dmar_domain *domain, int mgaw) 120 { 121 int sagaw, i; 122 123 domain->mgaw = mgaw; 124 sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap); 125 for (i = 0; i < nitems(sagaw_bits); i++) { 126 if (sagaw_bits[i].agaw >= mgaw) { 127 domain->agaw = sagaw_bits[i].agaw; 128 domain->pglvl = sagaw_bits[i].pglvl; 129 domain->awlvl = sagaw_bits[i].awlvl; 130 return (0); 131 } 132 } 133 device_printf(domain->dmar->dev, 134 "context request mgaw %d: no agaw found, sagaw %x\n", 135 mgaw, sagaw); 136 return (EINVAL); 137 } 138 139 /* 140 * Find a best fit mgaw for the given maxaddr: 141 * - if allow_less is false, must find sagaw which maps all requested 142 * addresses (used by identity mappings); 143 * - if allow_less is true, and no supported sagaw can map all requested 144 * address space, accept the biggest sagaw, whatever is it. 145 */ 146 int 147 dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less) 148 { 149 int i; 150 151 for (i = 0; i < nitems(sagaw_bits); i++) { 152 if ((1ULL << sagaw_bits[i].agaw) >= maxaddr && 153 (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) 154 break; 155 } 156 if (allow_less && i == nitems(sagaw_bits)) { 157 do { 158 i--; 159 } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) 160 == 0); 161 } 162 if (i < nitems(sagaw_bits)) 163 return (sagaw_bits[i].agaw); 164 KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d", 165 (uintmax_t) maxaddr, allow_less)); 166 return (-1); 167 } 168 169 /* 170 * Calculate the total amount of page table pages needed to map the 171 * whole bus address space on the context with the selected agaw. 172 */ 173 vm_pindex_t 174 pglvl_max_pages(int pglvl) 175 { 176 vm_pindex_t res; 177 int i; 178 179 for (res = 0, i = pglvl; i > 0; i--) { 180 res *= DMAR_NPTEPG; 181 res++; 182 } 183 return (res); 184 } 185 186 /* 187 * Return true if the page table level lvl supports the superpage for 188 * the context ctx. 189 */ 190 int 191 domain_is_sp_lvl(struct dmar_domain *domain, int lvl) 192 { 193 int alvl, cap_sps; 194 static const int sagaw_sp[] = { 195 DMAR_CAP_SPS_2M, 196 DMAR_CAP_SPS_1G, 197 DMAR_CAP_SPS_512G, 198 DMAR_CAP_SPS_1T 199 }; 200 201 alvl = domain->pglvl - lvl - 1; 202 cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap); 203 return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0); 204 } 205 206 dmar_gaddr_t 207 pglvl_page_size(int total_pglvl, int lvl) 208 { 209 int rlvl; 210 static const dmar_gaddr_t pg_sz[] = { 211 (dmar_gaddr_t)DMAR_PAGE_SIZE, 212 (dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT, 213 (dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT), 214 (dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT), 215 (dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT), 216 (dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT) 217 }; 218 219 KASSERT(lvl >= 0 && lvl < total_pglvl, 220 ("total %d lvl %d", total_pglvl, lvl)); 221 rlvl = total_pglvl - lvl - 1; 222 KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl)); 223 return (pg_sz[rlvl]); 224 } 225 226 dmar_gaddr_t 227 domain_page_size(struct dmar_domain *domain, int lvl) 228 { 229 230 return (pglvl_page_size(domain->pglvl, lvl)); 231 } 232 233 int 234 calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size, 235 dmar_gaddr_t *isizep) 236 { 237 dmar_gaddr_t isize; 238 int am; 239 240 for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) { 241 isize = 1ULL << (am + DMAR_PAGE_SHIFT); 242 if ((base & (isize - 1)) == 0 && size >= isize) 243 break; 244 if (am == 0) 245 break; 246 } 247 *isizep = isize; 248 return (am); 249 } 250 251 dmar_haddr_t dmar_high; 252 int haw; 253 int dmar_tbl_pagecnt; 254 255 vm_page_t 256 dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags) 257 { 258 vm_page_t m; 259 int zeroed; 260 261 zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0; 262 for (;;) { 263 if ((flags & DMAR_PGF_OBJL) == 0) 264 VM_OBJECT_WLOCK(obj); 265 m = vm_page_lookup(obj, idx); 266 if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) { 267 if ((flags & DMAR_PGF_OBJL) == 0) 268 VM_OBJECT_WUNLOCK(obj); 269 break; 270 } 271 m = vm_page_alloc_contig(obj, idx, VM_ALLOC_NOBUSY | 272 VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | zeroed, 1, 0, 273 dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); 274 if ((flags & DMAR_PGF_OBJL) == 0) 275 VM_OBJECT_WUNLOCK(obj); 276 if (m != NULL) { 277 if (zeroed && (m->flags & PG_ZERO) == 0) 278 pmap_zero_page(m); 279 atomic_add_int(&dmar_tbl_pagecnt, 1); 280 break; 281 } 282 if ((flags & DMAR_PGF_WAITOK) == 0) 283 break; 284 if ((flags & DMAR_PGF_OBJL) != 0) 285 VM_OBJECT_WUNLOCK(obj); 286 VM_WAIT; 287 if ((flags & DMAR_PGF_OBJL) != 0) 288 VM_OBJECT_WLOCK(obj); 289 } 290 return (m); 291 } 292 293 void 294 dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags) 295 { 296 vm_page_t m; 297 298 if ((flags & DMAR_PGF_OBJL) == 0) 299 VM_OBJECT_WLOCK(obj); 300 m = vm_page_lookup(obj, idx); 301 if (m != NULL) { 302 vm_page_free(m); 303 atomic_subtract_int(&dmar_tbl_pagecnt, 1); 304 } 305 if ((flags & DMAR_PGF_OBJL) == 0) 306 VM_OBJECT_WUNLOCK(obj); 307 } 308 309 void * 310 dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, 311 struct sf_buf **sf) 312 { 313 vm_page_t m; 314 bool allocated; 315 316 if ((flags & DMAR_PGF_OBJL) == 0) 317 VM_OBJECT_WLOCK(obj); 318 m = vm_page_lookup(obj, idx); 319 if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) { 320 m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL); 321 allocated = true; 322 } else 323 allocated = false; 324 if (m == NULL) { 325 if ((flags & DMAR_PGF_OBJL) == 0) 326 VM_OBJECT_WUNLOCK(obj); 327 return (NULL); 328 } 329 /* Sleepable allocations cannot fail. */ 330 if ((flags & DMAR_PGF_WAITOK) != 0) 331 VM_OBJECT_WUNLOCK(obj); 332 sched_pin(); 333 *sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK) 334 == 0 ? SFB_NOWAIT : 0)); 335 if (*sf == NULL) { 336 sched_unpin(); 337 if (allocated) { 338 VM_OBJECT_ASSERT_WLOCKED(obj); 339 dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL); 340 } 341 if ((flags & DMAR_PGF_OBJL) == 0) 342 VM_OBJECT_WUNLOCK(obj); 343 return (NULL); 344 } 345 if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 346 (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) 347 VM_OBJECT_WLOCK(obj); 348 else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0) 349 VM_OBJECT_WUNLOCK(obj); 350 return ((void *)sf_buf_kva(*sf)); 351 } 352 353 void 354 dmar_unmap_pgtbl(struct sf_buf *sf) 355 { 356 357 sf_buf_free(sf); 358 sched_unpin(); 359 } 360 361 static void 362 dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz) 363 { 364 365 if (DMAR_IS_COHERENT(unit)) 366 return; 367 /* 368 * If DMAR does not snoop paging structures accesses, flush 369 * CPU cache to memory. 370 */ 371 pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz, 372 TRUE); 373 } 374 375 void 376 dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst) 377 { 378 379 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); 380 } 381 382 void 383 dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst) 384 { 385 386 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); 387 } 388 389 void 390 dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst) 391 { 392 393 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); 394 } 395 396 /* 397 * Load the root entry pointer into the hardware, busily waiting for 398 * the completion. 399 */ 400 int 401 dmar_load_root_entry_ptr(struct dmar_unit *unit) 402 { 403 vm_page_t root_entry; 404 405 /* 406 * Access to the GCMD register must be serialized while the 407 * command is submitted. 408 */ 409 DMAR_ASSERT_LOCKED(unit); 410 411 VM_OBJECT_RLOCK(unit->ctx_obj); 412 root_entry = vm_page_lookup(unit->ctx_obj, 0); 413 VM_OBJECT_RUNLOCK(unit->ctx_obj); 414 dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry)); 415 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP); 416 /* XXXKIB should have a timeout */ 417 while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) == 0) 418 cpu_spinwait(); 419 return (0); 420 } 421 422 /* 423 * Globally invalidate the context entries cache, busily waiting for 424 * the completion. 425 */ 426 int 427 dmar_inv_ctx_glob(struct dmar_unit *unit) 428 { 429 430 /* 431 * Access to the CCMD register must be serialized while the 432 * command is submitted. 433 */ 434 DMAR_ASSERT_LOCKED(unit); 435 KASSERT(!unit->qi_enabled, ("QI enabled")); 436 437 /* 438 * The DMAR_CCMD_ICC bit in the upper dword should be written 439 * after the low dword write is completed. Amd64 440 * dmar_write8() does not have this issue, i386 dmar_write8() 441 * writes the upper dword last. 442 */ 443 dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB); 444 /* XXXKIB should have a timeout */ 445 while ((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) != 0) 446 cpu_spinwait(); 447 return (0); 448 } 449 450 /* 451 * Globally invalidate the IOTLB, busily waiting for the completion. 452 */ 453 int 454 dmar_inv_iotlb_glob(struct dmar_unit *unit) 455 { 456 int reg; 457 458 DMAR_ASSERT_LOCKED(unit); 459 KASSERT(!unit->qi_enabled, ("QI enabled")); 460 461 reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap); 462 /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */ 463 dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT | 464 DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW); 465 /* XXXKIB should have a timeout */ 466 while ((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) & 467 DMAR_IOTLB_IVT32) != 0) 468 cpu_spinwait(); 469 return (0); 470 } 471 472 /* 473 * Flush the chipset write buffers. See 11.1 "Write Buffer Flushing" 474 * in the architecture specification. 475 */ 476 int 477 dmar_flush_write_bufs(struct dmar_unit *unit) 478 { 479 480 DMAR_ASSERT_LOCKED(unit); 481 482 /* 483 * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported. 484 */ 485 KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0, 486 ("dmar%d: no RWBF", unit->unit)); 487 488 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF); 489 /* XXXKIB should have a timeout */ 490 while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) == 0) 491 cpu_spinwait(); 492 return (0); 493 } 494 495 int 496 dmar_enable_translation(struct dmar_unit *unit) 497 { 498 499 DMAR_ASSERT_LOCKED(unit); 500 unit->hw_gcmd |= DMAR_GCMD_TE; 501 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 502 /* XXXKIB should have a timeout */ 503 while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) == 0) 504 cpu_spinwait(); 505 return (0); 506 } 507 508 int 509 dmar_disable_translation(struct dmar_unit *unit) 510 { 511 512 DMAR_ASSERT_LOCKED(unit); 513 unit->hw_gcmd &= ~DMAR_GCMD_TE; 514 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 515 /* XXXKIB should have a timeout */ 516 while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) != 0) 517 cpu_spinwait(); 518 return (0); 519 } 520 521 int 522 dmar_load_irt_ptr(struct dmar_unit *unit) 523 { 524 uint64_t irta, s; 525 526 DMAR_ASSERT_LOCKED(unit); 527 irta = unit->irt_phys; 528 if (DMAR_X2APIC(unit)) 529 irta |= DMAR_IRTA_EIME; 530 s = fls(unit->irte_cnt) - 2; 531 KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK && 532 powerof2(unit->irte_cnt), 533 ("IRTA_REG_S overflow %x", unit->irte_cnt)); 534 irta |= s; 535 dmar_write8(unit, DMAR_IRTA_REG, irta); 536 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP); 537 /* XXXKIB should have a timeout */ 538 while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) == 0) 539 cpu_spinwait(); 540 return (0); 541 } 542 543 int 544 dmar_enable_ir(struct dmar_unit *unit) 545 { 546 547 DMAR_ASSERT_LOCKED(unit); 548 unit->hw_gcmd |= DMAR_GCMD_IRE; 549 unit->hw_gcmd &= ~DMAR_GCMD_CFI; 550 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 551 /* XXXKIB should have a timeout */ 552 while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) == 0) 553 cpu_spinwait(); 554 return (0); 555 } 556 557 int 558 dmar_disable_ir(struct dmar_unit *unit) 559 { 560 561 DMAR_ASSERT_LOCKED(unit); 562 unit->hw_gcmd &= ~DMAR_GCMD_IRE; 563 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 564 /* XXXKIB should have a timeout */ 565 while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) != 0) 566 cpu_spinwait(); 567 return (0); 568 } 569 570 #define BARRIER_F \ 571 u_int f_done, f_inproc, f_wakeup; \ 572 \ 573 f_done = 1 << (barrier_id * 3); \ 574 f_inproc = 1 << (barrier_id * 3 + 1); \ 575 f_wakeup = 1 << (barrier_id * 3 + 2) 576 577 bool 578 dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id) 579 { 580 BARRIER_F; 581 582 DMAR_LOCK(dmar); 583 if ((dmar->barrier_flags & f_done) != 0) { 584 DMAR_UNLOCK(dmar); 585 return (false); 586 } 587 588 if ((dmar->barrier_flags & f_inproc) != 0) { 589 while ((dmar->barrier_flags & f_inproc) != 0) { 590 dmar->barrier_flags |= f_wakeup; 591 msleep(&dmar->barrier_flags, &dmar->lock, 0, 592 "dmarb", 0); 593 } 594 KASSERT((dmar->barrier_flags & f_done) != 0, 595 ("dmar%d barrier %d missing done", dmar->unit, barrier_id)); 596 DMAR_UNLOCK(dmar); 597 return (false); 598 } 599 600 dmar->barrier_flags |= f_inproc; 601 DMAR_UNLOCK(dmar); 602 return (true); 603 } 604 605 void 606 dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id) 607 { 608 BARRIER_F; 609 610 DMAR_ASSERT_LOCKED(dmar); 611 KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc, 612 ("dmar%d barrier %d missed entry", dmar->unit, barrier_id)); 613 dmar->barrier_flags |= f_done; 614 if ((dmar->barrier_flags & f_wakeup) != 0) 615 wakeup(&dmar->barrier_flags); 616 dmar->barrier_flags &= ~(f_inproc | f_wakeup); 617 DMAR_UNLOCK(dmar); 618 } 619 620 int dmar_match_verbose; 621 int dmar_batch_coalesce = 100; 622 623 static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, ""); 624 SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD, 625 &dmar_tbl_pagecnt, 0, 626 "Count of pages used for DMAR pagetables"); 627 SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN, 628 &dmar_match_verbose, 0, 629 "Verbose matching of the PCI devices to DMAR paths"); 630 SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN, 631 &dmar_batch_coalesce, 0, 632 "Number of qi batches between interrupt"); 633 #ifdef INVARIANTS 634 int dmar_check_free; 635 SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN, 636 &dmar_check_free, 0, 637 "Check the GPA RBtree for free_down and free_after validity"); 638 #endif 639 640