xref: /freebsd/sys/x86/iommu/intel_utils.c (revision 8d6f425ddd8021ae2257ba9682f8844254ecdde1)
1 /*-
2  * Copyright (c) 2013 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
6  * under sponsorship from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/memdesc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/rman.h>
43 #include <sys/rwlock.h>
44 #include <sys/sched.h>
45 #include <sys/sf_buf.h>
46 #include <sys/sysctl.h>
47 #include <sys/systm.h>
48 #include <sys/taskqueue.h>
49 #include <sys/tree.h>
50 #include <sys/vmem.h>
51 #include <dev/pci/pcivar.h>
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_map.h>
58 #include <vm/vm_pageout.h>
59 #include <machine/bus.h>
60 #include <machine/cpu.h>
61 #include <machine/intr_machdep.h>
62 #include <x86/include/apicvar.h>
63 #include <x86/include/busdma_impl.h>
64 #include <x86/iommu/intel_reg.h>
65 #include <x86/iommu/busdma_dmar.h>
66 #include <x86/iommu/intel_dmar.h>
67 
68 u_int
69 dmar_nd2mask(u_int nd)
70 {
71 	static const u_int masks[] = {
72 		0x000f,	/* nd == 0 */
73 		0x002f,	/* nd == 1 */
74 		0x00ff,	/* nd == 2 */
75 		0x02ff,	/* nd == 3 */
76 		0x0fff,	/* nd == 4 */
77 		0x2fff,	/* nd == 5 */
78 		0xffff,	/* nd == 6 */
79 		0x0000,	/* nd == 7 reserved */
80 	};
81 
82 	KASSERT(nd <= 6, ("number of domains %d", nd));
83 	return (masks[nd]);
84 }
85 
86 static const struct sagaw_bits_tag {
87 	int agaw;
88 	int cap;
89 	int awlvl;
90 	int pglvl;
91 } sagaw_bits[] = {
92 	{.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
93 	    .pglvl = 2},
94 	{.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
95 	    .pglvl = 3},
96 	{.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
97 	    .pglvl = 4},
98 	{.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
99 	    .pglvl = 5},
100 	{.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
101 	    .pglvl = 6}
102 };
103 #define SIZEOF_SAGAW_BITS (sizeof(sagaw_bits) / sizeof(sagaw_bits[0]))
104 
105 bool
106 dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
107 {
108 	int i;
109 
110 	for (i = 0; i < SIZEOF_SAGAW_BITS; i++) {
111 		if (sagaw_bits[i].pglvl != pglvl)
112 			continue;
113 		if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
114 			return (true);
115 	}
116 	return (false);
117 }
118 
119 int
120 ctx_set_agaw(struct dmar_ctx *ctx, int mgaw)
121 {
122 	int sagaw, i;
123 
124 	ctx->mgaw = mgaw;
125 	sagaw = DMAR_CAP_SAGAW(ctx->dmar->hw_cap);
126 	for (i = 0; i < SIZEOF_SAGAW_BITS; i++) {
127 		if (sagaw_bits[i].agaw >= mgaw) {
128 			ctx->agaw = sagaw_bits[i].agaw;
129 			ctx->pglvl = sagaw_bits[i].pglvl;
130 			ctx->awlvl = sagaw_bits[i].awlvl;
131 			return (0);
132 		}
133 	}
134 	device_printf(ctx->dmar->dev,
135 	    "context request mgaw %d for pci%d:%d:%d:%d, "
136 	    "no agaw found, sagaw %x\n", mgaw, ctx->dmar->segment,
137 	    pci_get_bus(ctx->ctx_tag.owner),
138 	    pci_get_slot(ctx->ctx_tag.owner),
139 	    pci_get_function(ctx->ctx_tag.owner), sagaw);
140 	return (EINVAL);
141 }
142 
143 /*
144  * Find a best fit mgaw for the given maxaddr:
145  *   - if allow_less is false, must find sagaw which maps all requested
146  *     addresses (used by identity mappings);
147  *   - if allow_less is true, and no supported sagaw can map all requested
148  *     address space, accept the biggest sagaw, whatever is it.
149  */
150 int
151 dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
152 {
153 	int i;
154 
155 	for (i = 0; i < SIZEOF_SAGAW_BITS; i++) {
156 		if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
157 		    (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
158 			break;
159 	}
160 	if (allow_less && i == SIZEOF_SAGAW_BITS) {
161 		do {
162 			i--;
163 		} while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
164 		    == 0);
165 	}
166 	if (i < SIZEOF_SAGAW_BITS)
167 		return (sagaw_bits[i].agaw);
168 	KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
169 	    (uintmax_t) maxaddr, allow_less));
170 	return (-1);
171 }
172 
173 /*
174  * Calculate the total amount of page table pages needed to map the
175  * whole bus address space on the context with the selected agaw.
176  */
177 vm_pindex_t
178 pglvl_max_pages(int pglvl)
179 {
180 	vm_pindex_t res;
181 	int i;
182 
183 	for (res = 0, i = pglvl; i > 0; i--) {
184 		res *= DMAR_NPTEPG;
185 		res++;
186 	}
187 	return (res);
188 }
189 
190 /*
191  * Return true if the page table level lvl supports the superpage for
192  * the context ctx.
193  */
194 int
195 ctx_is_sp_lvl(struct dmar_ctx *ctx, int lvl)
196 {
197 	int alvl, cap_sps;
198 	static const int sagaw_sp[] = {
199 		DMAR_CAP_SPS_2M,
200 		DMAR_CAP_SPS_1G,
201 		DMAR_CAP_SPS_512G,
202 		DMAR_CAP_SPS_1T
203 	};
204 
205 	alvl = ctx->pglvl - lvl - 1;
206 	cap_sps = DMAR_CAP_SPS(ctx->dmar->hw_cap);
207 	return (alvl < sizeof(sagaw_sp) / sizeof(sagaw_sp[0]) &&
208 	    (sagaw_sp[alvl] & cap_sps) != 0);
209 }
210 
211 dmar_gaddr_t
212 pglvl_page_size(int total_pglvl, int lvl)
213 {
214 	int rlvl;
215 	static const dmar_gaddr_t pg_sz[] = {
216 		(dmar_gaddr_t)DMAR_PAGE_SIZE,
217 		(dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
218 		(dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
219 		(dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
220 		(dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
221 		(dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
222 	};
223 
224 	KASSERT(lvl >= 0 && lvl < total_pglvl,
225 	    ("total %d lvl %d", total_pglvl, lvl));
226 	rlvl = total_pglvl - lvl - 1;
227 	KASSERT(rlvl < sizeof(pg_sz) / sizeof(pg_sz[0]),
228 	    ("sizeof pg_sz lvl %d", lvl));
229 	return (pg_sz[rlvl]);
230 }
231 
232 dmar_gaddr_t
233 ctx_page_size(struct dmar_ctx *ctx, int lvl)
234 {
235 
236 	return (pglvl_page_size(ctx->pglvl, lvl));
237 }
238 
239 int
240 calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
241     dmar_gaddr_t *isizep)
242 {
243 	dmar_gaddr_t isize;
244 	int am;
245 
246 	for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
247 		isize = 1ULL << (am + DMAR_PAGE_SHIFT);
248 		if ((base & (isize - 1)) == 0 && size >= isize)
249 			break;
250 		if (am == 0)
251 			break;
252 	}
253 	*isizep = isize;
254 	return (am);
255 }
256 
257 dmar_haddr_t dmar_high;
258 int haw;
259 int dmar_tbl_pagecnt;
260 
261 vm_page_t
262 dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
263 {
264 	vm_page_t m;
265 	int zeroed;
266 
267 	zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
268 	for (;;) {
269 		if ((flags & DMAR_PGF_OBJL) == 0)
270 			VM_OBJECT_WLOCK(obj);
271 		m = vm_page_lookup(obj, idx);
272 		if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
273 			if ((flags & DMAR_PGF_OBJL) == 0)
274 				VM_OBJECT_WUNLOCK(obj);
275 			break;
276 		}
277 		m = vm_page_alloc_contig(obj, idx, VM_ALLOC_NOBUSY |
278 		    VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | zeroed, 1, 0,
279 		    dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
280 		if ((flags & DMAR_PGF_OBJL) == 0)
281 			VM_OBJECT_WUNLOCK(obj);
282 		if (m != NULL) {
283 			if (zeroed && (m->flags & PG_ZERO) == 0)
284 				pmap_zero_page(m);
285 			atomic_add_int(&dmar_tbl_pagecnt, 1);
286 			break;
287 		}
288 		if ((flags & DMAR_PGF_WAITOK) == 0)
289 			break;
290 		if ((flags & DMAR_PGF_OBJL) != 0)
291 			VM_OBJECT_WUNLOCK(obj);
292 		VM_WAIT;
293 		if ((flags & DMAR_PGF_OBJL) != 0)
294 			VM_OBJECT_WLOCK(obj);
295 	}
296 	return (m);
297 }
298 
299 void
300 dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
301 {
302 	vm_page_t m;
303 
304 	if ((flags & DMAR_PGF_OBJL) == 0)
305 		VM_OBJECT_WLOCK(obj);
306 	m = vm_page_lookup(obj, idx);
307 	if (m != NULL) {
308 		vm_page_free(m);
309 		atomic_subtract_int(&dmar_tbl_pagecnt, 1);
310 	}
311 	if ((flags & DMAR_PGF_OBJL) == 0)
312 		VM_OBJECT_WUNLOCK(obj);
313 }
314 
315 void *
316 dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
317     struct sf_buf **sf)
318 {
319 	vm_page_t m;
320 	bool allocated;
321 
322 	if ((flags & DMAR_PGF_OBJL) == 0)
323 		VM_OBJECT_WLOCK(obj);
324 	m = vm_page_lookup(obj, idx);
325 	if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
326 		m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
327 		allocated = true;
328 	} else
329 		allocated = false;
330 	if (m == NULL) {
331 		if ((flags & DMAR_PGF_OBJL) == 0)
332 			VM_OBJECT_WUNLOCK(obj);
333 		return (NULL);
334 	}
335 	/* Sleepable allocations cannot fail. */
336 	if ((flags & DMAR_PGF_WAITOK) != 0)
337 		VM_OBJECT_WUNLOCK(obj);
338 	sched_pin();
339 	*sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
340 	    == 0 ? SFB_NOWAIT : 0));
341 	if (*sf == NULL) {
342 		sched_unpin();
343 		if (allocated) {
344 			VM_OBJECT_ASSERT_WLOCKED(obj);
345 			dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
346 		}
347 		if ((flags & DMAR_PGF_OBJL) == 0)
348 			VM_OBJECT_WUNLOCK(obj);
349 		return (NULL);
350 	}
351 	if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
352 	    (DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
353 		VM_OBJECT_WLOCK(obj);
354 	else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
355 		VM_OBJECT_WUNLOCK(obj);
356 	return ((void *)sf_buf_kva(*sf));
357 }
358 
359 void
360 dmar_unmap_pgtbl(struct sf_buf *sf)
361 {
362 
363 	sf_buf_free(sf);
364 	sched_unpin();
365 }
366 
367 static void
368 dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
369 {
370 
371 	if (DMAR_IS_COHERENT(unit))
372 		return;
373 	/*
374 	 * If DMAR does not snoop paging structures accesses, flush
375 	 * CPU cache to memory.
376 	 */
377 	pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz,
378 	    TRUE);
379 }
380 
381 void
382 dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
383 {
384 
385 	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
386 }
387 
388 void
389 dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
390 {
391 
392 	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
393 }
394 
395 void
396 dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
397 {
398 
399 	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
400 }
401 
402 /*
403  * Load the root entry pointer into the hardware, busily waiting for
404  * the completion.
405  */
406 int
407 dmar_load_root_entry_ptr(struct dmar_unit *unit)
408 {
409 	vm_page_t root_entry;
410 
411 	/*
412 	 * Access to the GCMD register must be serialized while the
413 	 * command is submitted.
414 	 */
415 	DMAR_ASSERT_LOCKED(unit);
416 
417 	VM_OBJECT_RLOCK(unit->ctx_obj);
418 	root_entry = vm_page_lookup(unit->ctx_obj, 0);
419 	VM_OBJECT_RUNLOCK(unit->ctx_obj);
420 	dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
421 	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
422 	/* XXXKIB should have a timeout */
423 	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) == 0)
424 		cpu_spinwait();
425 	return (0);
426 }
427 
428 /*
429  * Globally invalidate the context entries cache, busily waiting for
430  * the completion.
431  */
432 int
433 dmar_inv_ctx_glob(struct dmar_unit *unit)
434 {
435 
436 	/*
437 	 * Access to the CCMD register must be serialized while the
438 	 * command is submitted.
439 	 */
440 	DMAR_ASSERT_LOCKED(unit);
441 	KASSERT(!unit->qi_enabled, ("QI enabled"));
442 
443 	/*
444 	 * The DMAR_CCMD_ICC bit in the upper dword should be written
445 	 * after the low dword write is completed.  Amd64
446 	 * dmar_write8() does not have this issue, i386 dmar_write8()
447 	 * writes the upper dword last.
448 	 */
449 	dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
450 	/* XXXKIB should have a timeout */
451 	while ((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) != 0)
452 		cpu_spinwait();
453 	return (0);
454 }
455 
456 /*
457  * Globally invalidate the IOTLB, busily waiting for the completion.
458  */
459 int
460 dmar_inv_iotlb_glob(struct dmar_unit *unit)
461 {
462 	int reg;
463 
464 	DMAR_ASSERT_LOCKED(unit);
465 	KASSERT(!unit->qi_enabled, ("QI enabled"));
466 
467 	reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
468 	/* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
469 	dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
470 	    DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
471 	/* XXXKIB should have a timeout */
472 	while ((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
473 	    DMAR_IOTLB_IVT32) != 0)
474 		cpu_spinwait();
475 	return (0);
476 }
477 
478 /*
479  * Flush the chipset write buffers.  See 11.1 "Write Buffer Flushing"
480  * in the architecture specification.
481  */
482 int
483 dmar_flush_write_bufs(struct dmar_unit *unit)
484 {
485 
486 	DMAR_ASSERT_LOCKED(unit);
487 
488 	/*
489 	 * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
490 	 */
491 	KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
492 	    ("dmar%d: no RWBF", unit->unit));
493 
494 	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
495 	/* XXXKIB should have a timeout */
496 	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) == 0)
497 		cpu_spinwait();
498 	return (0);
499 }
500 
501 int
502 dmar_enable_translation(struct dmar_unit *unit)
503 {
504 
505 	DMAR_ASSERT_LOCKED(unit);
506 	unit->hw_gcmd |= DMAR_GCMD_TE;
507 	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
508 	/* XXXKIB should have a timeout */
509 	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) == 0)
510 		cpu_spinwait();
511 	return (0);
512 }
513 
514 int
515 dmar_disable_translation(struct dmar_unit *unit)
516 {
517 
518 	DMAR_ASSERT_LOCKED(unit);
519 	unit->hw_gcmd &= ~DMAR_GCMD_TE;
520 	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
521 	/* XXXKIB should have a timeout */
522 	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) != 0)
523 		cpu_spinwait();
524 	return (0);
525 }
526 
527 int
528 dmar_load_irt_ptr(struct dmar_unit *unit)
529 {
530 	uint64_t irta, s;
531 
532 	DMAR_ASSERT_LOCKED(unit);
533 	irta = unit->irt_phys;
534 	if (DMAR_X2APIC(unit))
535 		irta |= DMAR_IRTA_EIME;
536 	s = fls(unit->irte_cnt) - 2;
537 	KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
538 	    powerof2(unit->irte_cnt),
539 	    ("IRTA_REG_S overflow %x", unit->irte_cnt));
540 	irta |= s;
541 	dmar_write8(unit, DMAR_IRTA_REG, irta);
542 	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
543 	/* XXXKIB should have a timeout */
544 	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) == 0)
545 		cpu_spinwait();
546 	return (0);
547 }
548 
549 int
550 dmar_enable_ir(struct dmar_unit *unit)
551 {
552 
553 	DMAR_ASSERT_LOCKED(unit);
554 	unit->hw_gcmd |= DMAR_GCMD_IRE;
555 	unit->hw_gcmd &= ~DMAR_GCMD_CFI;
556 	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
557 	/* XXXKIB should have a timeout */
558 	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) == 0)
559 		cpu_spinwait();
560 	return (0);
561 }
562 
563 int
564 dmar_disable_ir(struct dmar_unit *unit)
565 {
566 
567 	DMAR_ASSERT_LOCKED(unit);
568 	unit->hw_gcmd &= ~DMAR_GCMD_IRE;
569 	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
570 	/* XXXKIB should have a timeout */
571 	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) != 0)
572 		cpu_spinwait();
573 	return (0);
574 }
575 
576 #define BARRIER_F				\
577 	u_int f_done, f_inproc, f_wakeup;	\
578 						\
579 	f_done = 1 << (barrier_id * 3);		\
580 	f_inproc = 1 << (barrier_id * 3 + 1);	\
581 	f_wakeup = 1 << (barrier_id * 3 + 2)
582 
583 bool
584 dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
585 {
586 	BARRIER_F;
587 
588 	DMAR_LOCK(dmar);
589 	if ((dmar->barrier_flags & f_done) != 0) {
590 		DMAR_UNLOCK(dmar);
591 		return (false);
592 	}
593 
594 	if ((dmar->barrier_flags & f_inproc) != 0) {
595 		while ((dmar->barrier_flags & f_inproc) != 0) {
596 			dmar->barrier_flags |= f_wakeup;
597 			msleep(&dmar->barrier_flags, &dmar->lock, 0,
598 			    "dmarb", 0);
599 		}
600 		KASSERT((dmar->barrier_flags & f_done) != 0,
601 		    ("dmar%d barrier %d missing done", dmar->unit, barrier_id));
602 		DMAR_UNLOCK(dmar);
603 		return (false);
604 	}
605 
606 	dmar->barrier_flags |= f_inproc;
607 	DMAR_UNLOCK(dmar);
608 	return (true);
609 }
610 
611 void
612 dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
613 {
614 	BARRIER_F;
615 
616 	DMAR_ASSERT_LOCKED(dmar);
617 	KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
618 	    ("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
619 	dmar->barrier_flags |= f_done;
620 	if ((dmar->barrier_flags & f_wakeup) != 0)
621 		wakeup(&dmar->barrier_flags);
622 	dmar->barrier_flags &= ~(f_inproc | f_wakeup);
623 	DMAR_UNLOCK(dmar);
624 }
625 
626 int dmar_match_verbose;
627 
628 static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
629 SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
630     &dmar_tbl_pagecnt, 0,
631     "Count of pages used for DMAR pagetables");
632 SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
633     &dmar_match_verbose, 0,
634     "Verbose matching of the PCI devices to DMAR paths");
635 #ifdef INVARIANTS
636 int dmar_check_free;
637 SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
638     &dmar_check_free, 0,
639     "Check the GPA RBtree for free_down and free_after validity");
640 #endif
641 
642