1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2013 The FreeBSD Foundation 5 * All rights reserved. 6 * 7 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 8 * under sponsorship from the FreeBSD Foundation. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/bus.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/memdesc.h> 41 #include <sys/mutex.h> 42 #include <sys/proc.h> 43 #include <sys/queue.h> 44 #include <sys/rman.h> 45 #include <sys/rwlock.h> 46 #include <sys/sched.h> 47 #include <sys/sf_buf.h> 48 #include <sys/sysctl.h> 49 #include <sys/systm.h> 50 #include <sys/taskqueue.h> 51 #include <sys/time.h> 52 #include <sys/tree.h> 53 #include <sys/vmem.h> 54 #include <vm/vm.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vm_object.h> 58 #include <vm/vm_page.h> 59 #include <vm/vm_map.h> 60 #include <vm/vm_pageout.h> 61 #include <dev/pci/pcireg.h> 62 #include <dev/pci/pcivar.h> 63 #include <machine/bus.h> 64 #include <machine/cpu.h> 65 #include <machine/intr_machdep.h> 66 #include <x86/include/apicvar.h> 67 #include <x86/include/busdma_impl.h> 68 #include <dev/iommu/busdma_iommu.h> 69 #include <x86/iommu/intel_reg.h> 70 #include <x86/iommu/intel_dmar.h> 71 72 u_int 73 dmar_nd2mask(u_int nd) 74 { 75 static const u_int masks[] = { 76 0x000f, /* nd == 0 */ 77 0x002f, /* nd == 1 */ 78 0x00ff, /* nd == 2 */ 79 0x02ff, /* nd == 3 */ 80 0x0fff, /* nd == 4 */ 81 0x2fff, /* nd == 5 */ 82 0xffff, /* nd == 6 */ 83 0x0000, /* nd == 7 reserved */ 84 }; 85 86 KASSERT(nd <= 6, ("number of domains %d", nd)); 87 return (masks[nd]); 88 } 89 90 static const struct sagaw_bits_tag { 91 int agaw; 92 int cap; 93 int awlvl; 94 int pglvl; 95 } sagaw_bits[] = { 96 {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL, 97 .pglvl = 2}, 98 {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL, 99 .pglvl = 3}, 100 {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL, 101 .pglvl = 4}, 102 {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL, 103 .pglvl = 5}, 104 {.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL, 105 .pglvl = 6} 106 }; 107 108 bool 109 dmar_pglvl_supported(struct dmar_unit *unit, int pglvl) 110 { 111 int i; 112 113 for (i = 0; i < nitems(sagaw_bits); i++) { 114 if (sagaw_bits[i].pglvl != pglvl) 115 continue; 116 if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) 117 return (true); 118 } 119 return (false); 120 } 121 122 int 123 domain_set_agaw(struct dmar_domain *domain, int mgaw) 124 { 125 int sagaw, i; 126 127 domain->mgaw = mgaw; 128 sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap); 129 for (i = 0; i < nitems(sagaw_bits); i++) { 130 if (sagaw_bits[i].agaw >= mgaw) { 131 domain->agaw = sagaw_bits[i].agaw; 132 domain->pglvl = sagaw_bits[i].pglvl; 133 domain->awlvl = sagaw_bits[i].awlvl; 134 return (0); 135 } 136 } 137 device_printf(domain->dmar->dev, 138 "context request mgaw %d: no agaw found, sagaw %x\n", 139 mgaw, sagaw); 140 return (EINVAL); 141 } 142 143 /* 144 * Find a best fit mgaw for the given maxaddr: 145 * - if allow_less is false, must find sagaw which maps all requested 146 * addresses (used by identity mappings); 147 * - if allow_less is true, and no supported sagaw can map all requested 148 * address space, accept the biggest sagaw, whatever is it. 149 */ 150 int 151 dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, bool allow_less) 152 { 153 int i; 154 155 for (i = 0; i < nitems(sagaw_bits); i++) { 156 if ((1ULL << sagaw_bits[i].agaw) >= maxaddr && 157 (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) 158 break; 159 } 160 if (allow_less && i == nitems(sagaw_bits)) { 161 do { 162 i--; 163 } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) 164 == 0); 165 } 166 if (i < nitems(sagaw_bits)) 167 return (sagaw_bits[i].agaw); 168 KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d", 169 (uintmax_t) maxaddr, allow_less)); 170 return (-1); 171 } 172 173 /* 174 * Calculate the total amount of page table pages needed to map the 175 * whole bus address space on the context with the selected agaw. 176 */ 177 vm_pindex_t 178 pglvl_max_pages(int pglvl) 179 { 180 vm_pindex_t res; 181 int i; 182 183 for (res = 0, i = pglvl; i > 0; i--) { 184 res *= DMAR_NPTEPG; 185 res++; 186 } 187 return (res); 188 } 189 190 /* 191 * Return true if the page table level lvl supports the superpage for 192 * the context ctx. 193 */ 194 int 195 domain_is_sp_lvl(struct dmar_domain *domain, int lvl) 196 { 197 int alvl, cap_sps; 198 static const int sagaw_sp[] = { 199 DMAR_CAP_SPS_2M, 200 DMAR_CAP_SPS_1G, 201 DMAR_CAP_SPS_512G, 202 DMAR_CAP_SPS_1T 203 }; 204 205 alvl = domain->pglvl - lvl - 1; 206 cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap); 207 return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0); 208 } 209 210 iommu_gaddr_t 211 pglvl_page_size(int total_pglvl, int lvl) 212 { 213 int rlvl; 214 static const iommu_gaddr_t pg_sz[] = { 215 (iommu_gaddr_t)DMAR_PAGE_SIZE, 216 (iommu_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT, 217 (iommu_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT), 218 (iommu_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT), 219 (iommu_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT), 220 (iommu_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT) 221 }; 222 223 KASSERT(lvl >= 0 && lvl < total_pglvl, 224 ("total %d lvl %d", total_pglvl, lvl)); 225 rlvl = total_pglvl - lvl - 1; 226 KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl)); 227 return (pg_sz[rlvl]); 228 } 229 230 iommu_gaddr_t 231 domain_page_size(struct dmar_domain *domain, int lvl) 232 { 233 234 return (pglvl_page_size(domain->pglvl, lvl)); 235 } 236 237 int 238 calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size, 239 iommu_gaddr_t *isizep) 240 { 241 iommu_gaddr_t isize; 242 int am; 243 244 for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) { 245 isize = 1ULL << (am + DMAR_PAGE_SHIFT); 246 if ((base & (isize - 1)) == 0 && size >= isize) 247 break; 248 if (am == 0) 249 break; 250 } 251 *isizep = isize; 252 return (am); 253 } 254 255 iommu_haddr_t dmar_high; 256 int haw; 257 int dmar_tbl_pagecnt; 258 259 vm_page_t 260 dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags) 261 { 262 vm_page_t m; 263 int zeroed, aflags; 264 265 zeroed = (flags & IOMMU_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0; 266 aflags = zeroed | VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | 267 ((flags & IOMMU_PGF_WAITOK) != 0 ? VM_ALLOC_WAITFAIL : 268 VM_ALLOC_NOWAIT); 269 for (;;) { 270 if ((flags & IOMMU_PGF_OBJL) == 0) 271 VM_OBJECT_WLOCK(obj); 272 m = vm_page_lookup(obj, idx); 273 if ((flags & IOMMU_PGF_NOALLOC) != 0 || m != NULL) { 274 if ((flags & IOMMU_PGF_OBJL) == 0) 275 VM_OBJECT_WUNLOCK(obj); 276 break; 277 } 278 m = vm_page_alloc_contig(obj, idx, aflags, 1, 0, 279 dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); 280 if ((flags & IOMMU_PGF_OBJL) == 0) 281 VM_OBJECT_WUNLOCK(obj); 282 if (m != NULL) { 283 if (zeroed && (m->flags & PG_ZERO) == 0) 284 pmap_zero_page(m); 285 atomic_add_int(&dmar_tbl_pagecnt, 1); 286 break; 287 } 288 if ((flags & IOMMU_PGF_WAITOK) == 0) 289 break; 290 } 291 return (m); 292 } 293 294 void 295 dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags) 296 { 297 vm_page_t m; 298 299 if ((flags & IOMMU_PGF_OBJL) == 0) 300 VM_OBJECT_WLOCK(obj); 301 m = vm_page_grab(obj, idx, VM_ALLOC_NOCREAT); 302 if (m != NULL) { 303 vm_page_free(m); 304 atomic_subtract_int(&dmar_tbl_pagecnt, 1); 305 } 306 if ((flags & IOMMU_PGF_OBJL) == 0) 307 VM_OBJECT_WUNLOCK(obj); 308 } 309 310 void * 311 dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, 312 struct sf_buf **sf) 313 { 314 vm_page_t m; 315 bool allocated; 316 317 if ((flags & IOMMU_PGF_OBJL) == 0) 318 VM_OBJECT_WLOCK(obj); 319 m = vm_page_lookup(obj, idx); 320 if (m == NULL && (flags & IOMMU_PGF_ALLOC) != 0) { 321 m = dmar_pgalloc(obj, idx, flags | IOMMU_PGF_OBJL); 322 allocated = true; 323 } else 324 allocated = false; 325 if (m == NULL) { 326 if ((flags & IOMMU_PGF_OBJL) == 0) 327 VM_OBJECT_WUNLOCK(obj); 328 return (NULL); 329 } 330 /* Sleepable allocations cannot fail. */ 331 if ((flags & IOMMU_PGF_WAITOK) != 0) 332 VM_OBJECT_WUNLOCK(obj); 333 sched_pin(); 334 *sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & IOMMU_PGF_WAITOK) 335 == 0 ? SFB_NOWAIT : 0)); 336 if (*sf == NULL) { 337 sched_unpin(); 338 if (allocated) { 339 VM_OBJECT_ASSERT_WLOCKED(obj); 340 dmar_pgfree(obj, m->pindex, flags | IOMMU_PGF_OBJL); 341 } 342 if ((flags & IOMMU_PGF_OBJL) == 0) 343 VM_OBJECT_WUNLOCK(obj); 344 return (NULL); 345 } 346 if ((flags & (IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL)) == 347 (IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL)) 348 VM_OBJECT_WLOCK(obj); 349 else if ((flags & (IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL)) == 0) 350 VM_OBJECT_WUNLOCK(obj); 351 return ((void *)sf_buf_kva(*sf)); 352 } 353 354 void 355 dmar_unmap_pgtbl(struct sf_buf *sf) 356 { 357 358 sf_buf_free(sf); 359 sched_unpin(); 360 } 361 362 static void 363 dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz) 364 { 365 366 if (DMAR_IS_COHERENT(unit)) 367 return; 368 /* 369 * If DMAR does not snoop paging structures accesses, flush 370 * CPU cache to memory. 371 */ 372 pmap_force_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz); 373 } 374 375 void 376 dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst) 377 { 378 379 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); 380 } 381 382 void 383 dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst) 384 { 385 386 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); 387 } 388 389 void 390 dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst) 391 { 392 393 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); 394 } 395 396 /* 397 * Load the root entry pointer into the hardware, busily waiting for 398 * the completion. 399 */ 400 int 401 dmar_load_root_entry_ptr(struct dmar_unit *unit) 402 { 403 vm_page_t root_entry; 404 int error; 405 406 /* 407 * Access to the GCMD register must be serialized while the 408 * command is submitted. 409 */ 410 DMAR_ASSERT_LOCKED(unit); 411 412 VM_OBJECT_RLOCK(unit->ctx_obj); 413 root_entry = vm_page_lookup(unit->ctx_obj, 0); 414 VM_OBJECT_RUNLOCK(unit->ctx_obj); 415 dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry)); 416 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP); 417 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) 418 != 0)); 419 return (error); 420 } 421 422 /* 423 * Globally invalidate the context entries cache, busily waiting for 424 * the completion. 425 */ 426 int 427 dmar_inv_ctx_glob(struct dmar_unit *unit) 428 { 429 int error; 430 431 /* 432 * Access to the CCMD register must be serialized while the 433 * command is submitted. 434 */ 435 DMAR_ASSERT_LOCKED(unit); 436 KASSERT(!unit->qi_enabled, ("QI enabled")); 437 438 /* 439 * The DMAR_CCMD_ICC bit in the upper dword should be written 440 * after the low dword write is completed. Amd64 441 * dmar_write8() does not have this issue, i386 dmar_write8() 442 * writes the upper dword last. 443 */ 444 dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB); 445 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) 446 == 0)); 447 return (error); 448 } 449 450 /* 451 * Globally invalidate the IOTLB, busily waiting for the completion. 452 */ 453 int 454 dmar_inv_iotlb_glob(struct dmar_unit *unit) 455 { 456 int error, reg; 457 458 DMAR_ASSERT_LOCKED(unit); 459 KASSERT(!unit->qi_enabled, ("QI enabled")); 460 461 reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap); 462 /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */ 463 dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT | 464 DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW); 465 DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) & 466 DMAR_IOTLB_IVT32) == 0)); 467 return (error); 468 } 469 470 /* 471 * Flush the chipset write buffers. See 11.1 "Write Buffer Flushing" 472 * in the architecture specification. 473 */ 474 int 475 dmar_flush_write_bufs(struct dmar_unit *unit) 476 { 477 int error; 478 479 DMAR_ASSERT_LOCKED(unit); 480 481 /* 482 * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported. 483 */ 484 KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0, 485 ("dmar%d: no RWBF", unit->iommu.unit)); 486 487 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF); 488 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) 489 != 0)); 490 return (error); 491 } 492 493 int 494 dmar_enable_translation(struct dmar_unit *unit) 495 { 496 int error; 497 498 DMAR_ASSERT_LOCKED(unit); 499 unit->hw_gcmd |= DMAR_GCMD_TE; 500 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 501 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) 502 != 0)); 503 return (error); 504 } 505 506 int 507 dmar_disable_translation(struct dmar_unit *unit) 508 { 509 int error; 510 511 DMAR_ASSERT_LOCKED(unit); 512 unit->hw_gcmd &= ~DMAR_GCMD_TE; 513 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 514 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) 515 == 0)); 516 return (error); 517 } 518 519 int 520 dmar_load_irt_ptr(struct dmar_unit *unit) 521 { 522 uint64_t irta, s; 523 int error; 524 525 DMAR_ASSERT_LOCKED(unit); 526 irta = unit->irt_phys; 527 if (DMAR_X2APIC(unit)) 528 irta |= DMAR_IRTA_EIME; 529 s = fls(unit->irte_cnt) - 2; 530 KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK && 531 powerof2(unit->irte_cnt), 532 ("IRTA_REG_S overflow %x", unit->irte_cnt)); 533 irta |= s; 534 dmar_write8(unit, DMAR_IRTA_REG, irta); 535 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP); 536 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) 537 != 0)); 538 return (error); 539 } 540 541 int 542 dmar_enable_ir(struct dmar_unit *unit) 543 { 544 int error; 545 546 DMAR_ASSERT_LOCKED(unit); 547 unit->hw_gcmd |= DMAR_GCMD_IRE; 548 unit->hw_gcmd &= ~DMAR_GCMD_CFI; 549 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 550 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) 551 != 0)); 552 return (error); 553 } 554 555 int 556 dmar_disable_ir(struct dmar_unit *unit) 557 { 558 int error; 559 560 DMAR_ASSERT_LOCKED(unit); 561 unit->hw_gcmd &= ~DMAR_GCMD_IRE; 562 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 563 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) 564 == 0)); 565 return (error); 566 } 567 568 #define BARRIER_F \ 569 u_int f_done, f_inproc, f_wakeup; \ 570 \ 571 f_done = 1 << (barrier_id * 3); \ 572 f_inproc = 1 << (barrier_id * 3 + 1); \ 573 f_wakeup = 1 << (barrier_id * 3 + 2) 574 575 bool 576 dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id) 577 { 578 BARRIER_F; 579 580 DMAR_LOCK(dmar); 581 if ((dmar->barrier_flags & f_done) != 0) { 582 DMAR_UNLOCK(dmar); 583 return (false); 584 } 585 586 if ((dmar->barrier_flags & f_inproc) != 0) { 587 while ((dmar->barrier_flags & f_inproc) != 0) { 588 dmar->barrier_flags |= f_wakeup; 589 msleep(&dmar->barrier_flags, &dmar->iommu.lock, 0, 590 "dmarb", 0); 591 } 592 KASSERT((dmar->barrier_flags & f_done) != 0, 593 ("dmar%d barrier %d missing done", dmar->iommu.unit, 594 barrier_id)); 595 DMAR_UNLOCK(dmar); 596 return (false); 597 } 598 599 dmar->barrier_flags |= f_inproc; 600 DMAR_UNLOCK(dmar); 601 return (true); 602 } 603 604 void 605 dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id) 606 { 607 BARRIER_F; 608 609 DMAR_ASSERT_LOCKED(dmar); 610 KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc, 611 ("dmar%d barrier %d missed entry", dmar->iommu.unit, barrier_id)); 612 dmar->barrier_flags |= f_done; 613 if ((dmar->barrier_flags & f_wakeup) != 0) 614 wakeup(&dmar->barrier_flags); 615 dmar->barrier_flags &= ~(f_inproc | f_wakeup); 616 DMAR_UNLOCK(dmar); 617 } 618 619 int dmar_batch_coalesce = 100; 620 struct timespec dmar_hw_timeout = { 621 .tv_sec = 0, 622 .tv_nsec = 1000000 623 }; 624 625 static const uint64_t d = 1000000000; 626 627 void 628 dmar_update_timeout(uint64_t newval) 629 { 630 631 /* XXXKIB not atomic */ 632 dmar_hw_timeout.tv_sec = newval / d; 633 dmar_hw_timeout.tv_nsec = newval % d; 634 } 635 636 uint64_t 637 dmar_get_timeout(void) 638 { 639 640 return ((uint64_t)dmar_hw_timeout.tv_sec * d + 641 dmar_hw_timeout.tv_nsec); 642 } 643 644 static int 645 dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS) 646 { 647 uint64_t val; 648 int error; 649 650 val = dmar_get_timeout(); 651 error = sysctl_handle_long(oidp, &val, 0, req); 652 if (error != 0 || req->newptr == NULL) 653 return (error); 654 dmar_update_timeout(val); 655 return (error); 656 } 657 658 static SYSCTL_NODE(_hw_iommu, OID_AUTO, dmar, CTLFLAG_RD | CTLFLAG_MPSAFE, 659 NULL, ""); 660 SYSCTL_INT(_hw_iommu_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD, 661 &dmar_tbl_pagecnt, 0, 662 "Count of pages used for DMAR pagetables"); 663 SYSCTL_INT(_hw_iommu_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN, 664 &dmar_batch_coalesce, 0, 665 "Number of qi batches between interrupt"); 666 SYSCTL_PROC(_hw_iommu_dmar, OID_AUTO, timeout, 667 CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 668 dmar_timeout_sysctl, "QU", 669 "Timeout for command wait, in nanoseconds"); 670