1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2013 The FreeBSD Foundation 5 * 6 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 7 * under sponsorship from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include "opt_acpi.h" 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/memdesc.h> 38 #include <sys/module.h> 39 #include <sys/rman.h> 40 #include <sys/taskqueue.h> 41 #include <sys/time.h> 42 #include <sys/tree.h> 43 #include <sys/vmem.h> 44 #include <vm/vm.h> 45 #include <vm/vm_extern.h> 46 #include <vm/vm_kern.h> 47 #include <vm/vm_page.h> 48 #include <vm/vm_map.h> 49 #include <contrib/dev/acpica/include/acpi.h> 50 #include <contrib/dev/acpica/include/accommon.h> 51 #include <dev/acpica/acpivar.h> 52 #include <dev/pci/pcireg.h> 53 #include <machine/bus.h> 54 #include <machine/cpu.h> 55 #include <x86/include/busdma_impl.h> 56 #include <dev/iommu/busdma_iommu.h> 57 #include <x86/iommu/intel_reg.h> 58 #include <x86/iommu/intel_dmar.h> 59 60 static bool 61 dmar_qi_seq_processed(const struct dmar_unit *unit, 62 const struct iommu_qi_genseq *pseq) 63 { 64 u_int gen; 65 66 gen = unit->inv_waitd_gen; 67 return (pseq->gen < gen || 68 (pseq->gen == gen && pseq->seq <= unit->inv_waitd_seq_hw)); 69 } 70 71 static int 72 dmar_enable_qi(struct dmar_unit *unit) 73 { 74 int error; 75 76 DMAR_ASSERT_LOCKED(unit); 77 unit->hw_gcmd |= DMAR_GCMD_QIE; 78 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 79 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_QIES) 80 != 0)); 81 return (error); 82 } 83 84 static int 85 dmar_disable_qi(struct dmar_unit *unit) 86 { 87 int error; 88 89 DMAR_ASSERT_LOCKED(unit); 90 unit->hw_gcmd &= ~DMAR_GCMD_QIE; 91 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 92 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_QIES) 93 == 0)); 94 return (error); 95 } 96 97 static void 98 dmar_qi_advance_tail(struct dmar_unit *unit) 99 { 100 101 DMAR_ASSERT_LOCKED(unit); 102 dmar_write4(unit, DMAR_IQT_REG, unit->inv_queue_tail); 103 } 104 105 static void 106 dmar_qi_ensure(struct dmar_unit *unit, int descr_count) 107 { 108 uint32_t head; 109 int bytes; 110 111 DMAR_ASSERT_LOCKED(unit); 112 bytes = descr_count << DMAR_IQ_DESCR_SZ_SHIFT; 113 for (;;) { 114 if (bytes <= unit->inv_queue_avail) 115 break; 116 /* refill */ 117 head = dmar_read4(unit, DMAR_IQH_REG); 118 head &= DMAR_IQH_MASK; 119 unit->inv_queue_avail = head - unit->inv_queue_tail - 120 DMAR_IQ_DESCR_SZ; 121 if (head <= unit->inv_queue_tail) 122 unit->inv_queue_avail += unit->inv_queue_size; 123 if (bytes <= unit->inv_queue_avail) 124 break; 125 126 /* 127 * No space in the queue, do busy wait. Hardware must 128 * make a progress. But first advance the tail to 129 * inform the descriptor streamer about entries we 130 * might have already filled, otherwise they could 131 * clog the whole queue.. 132 * 133 * See dmar_qi_invalidate_locked() for a discussion 134 * about data race prevention. 135 */ 136 dmar_qi_advance_tail(unit); 137 unit->inv_queue_full++; 138 cpu_spinwait(); 139 } 140 unit->inv_queue_avail -= bytes; 141 } 142 143 static void 144 dmar_qi_emit(struct dmar_unit *unit, uint64_t data1, uint64_t data2) 145 { 146 147 DMAR_ASSERT_LOCKED(unit); 148 *(volatile uint64_t *)(unit->inv_queue + unit->inv_queue_tail) = data1; 149 unit->inv_queue_tail += DMAR_IQ_DESCR_SZ / 2; 150 KASSERT(unit->inv_queue_tail <= unit->inv_queue_size, 151 ("tail overflow 0x%x 0x%jx", unit->inv_queue_tail, 152 (uintmax_t)unit->inv_queue_size)); 153 unit->inv_queue_tail &= unit->inv_queue_size - 1; 154 *(volatile uint64_t *)(unit->inv_queue + unit->inv_queue_tail) = data2; 155 unit->inv_queue_tail += DMAR_IQ_DESCR_SZ / 2; 156 KASSERT(unit->inv_queue_tail <= unit->inv_queue_size, 157 ("tail overflow 0x%x 0x%jx", unit->inv_queue_tail, 158 (uintmax_t)unit->inv_queue_size)); 159 unit->inv_queue_tail &= unit->inv_queue_size - 1; 160 } 161 162 static void 163 dmar_qi_emit_wait_descr(struct dmar_unit *unit, uint32_t seq, bool intr, 164 bool memw, bool fence) 165 { 166 167 DMAR_ASSERT_LOCKED(unit); 168 dmar_qi_emit(unit, DMAR_IQ_DESCR_WAIT_ID | 169 (intr ? DMAR_IQ_DESCR_WAIT_IF : 0) | 170 (memw ? DMAR_IQ_DESCR_WAIT_SW : 0) | 171 (fence ? DMAR_IQ_DESCR_WAIT_FN : 0) | 172 (memw ? DMAR_IQ_DESCR_WAIT_SD(seq) : 0), 173 memw ? unit->inv_waitd_seq_hw_phys : 0); 174 } 175 176 static void 177 dmar_qi_emit_wait_seq(struct dmar_unit *unit, struct iommu_qi_genseq *pseq, 178 bool emit_wait) 179 { 180 struct iommu_qi_genseq gsec; 181 uint32_t seq; 182 183 KASSERT(pseq != NULL, ("wait descriptor with no place for seq")); 184 DMAR_ASSERT_LOCKED(unit); 185 if (unit->inv_waitd_seq == 0xffffffff) { 186 gsec.gen = unit->inv_waitd_gen; 187 gsec.seq = unit->inv_waitd_seq; 188 dmar_qi_ensure(unit, 1); 189 dmar_qi_emit_wait_descr(unit, gsec.seq, false, true, false); 190 dmar_qi_advance_tail(unit); 191 while (!dmar_qi_seq_processed(unit, &gsec)) 192 cpu_spinwait(); 193 unit->inv_waitd_gen++; 194 unit->inv_waitd_seq = 1; 195 } 196 seq = unit->inv_waitd_seq++; 197 pseq->gen = unit->inv_waitd_gen; 198 pseq->seq = seq; 199 if (emit_wait) { 200 dmar_qi_ensure(unit, 1); 201 dmar_qi_emit_wait_descr(unit, seq, true, true, false); 202 } 203 } 204 205 /* 206 * To avoid missed wakeups, callers must increment the unit's waiters count 207 * before advancing the tail past the wait descriptor. 208 */ 209 static void 210 dmar_qi_wait_for_seq(struct dmar_unit *unit, const struct iommu_qi_genseq *gseq, 211 bool nowait) 212 { 213 214 DMAR_ASSERT_LOCKED(unit); 215 KASSERT(unit->inv_seq_waiters > 0, ("%s: no waiters", __func__)); 216 while (!dmar_qi_seq_processed(unit, gseq)) { 217 if (cold || nowait) { 218 cpu_spinwait(); 219 } else { 220 msleep(&unit->inv_seq_waiters, &unit->iommu.lock, 0, 221 "dmarse", hz); 222 } 223 } 224 unit->inv_seq_waiters--; 225 } 226 227 static void 228 dmar_qi_invalidate_emit(struct dmar_domain *domain, iommu_gaddr_t base, 229 iommu_gaddr_t size, struct iommu_qi_genseq *pseq, bool emit_wait) 230 { 231 struct dmar_unit *unit; 232 iommu_gaddr_t isize; 233 int am; 234 235 unit = domain->dmar; 236 DMAR_ASSERT_LOCKED(unit); 237 for (; size > 0; base += isize, size -= isize) { 238 am = calc_am(unit, base, size, &isize); 239 dmar_qi_ensure(unit, 1); 240 dmar_qi_emit(unit, DMAR_IQ_DESCR_IOTLB_INV | 241 DMAR_IQ_DESCR_IOTLB_PAGE | DMAR_IQ_DESCR_IOTLB_DW | 242 DMAR_IQ_DESCR_IOTLB_DR | 243 DMAR_IQ_DESCR_IOTLB_DID(domain->domain), 244 base | am); 245 } 246 dmar_qi_emit_wait_seq(unit, pseq, emit_wait); 247 } 248 249 /* 250 * The caller must not be using the entry's dmamap_link field. 251 */ 252 void 253 dmar_qi_invalidate_locked(struct dmar_domain *domain, 254 struct iommu_map_entry *entry, bool emit_wait) 255 { 256 struct dmar_unit *unit; 257 258 unit = domain->dmar; 259 DMAR_ASSERT_LOCKED(unit); 260 dmar_qi_invalidate_emit(domain, entry->start, entry->end - 261 entry->start, &entry->gseq, emit_wait); 262 263 /* 264 * To avoid a data race in dmar_qi_task(), the entry's gseq must be 265 * initialized before the entry is added to the TLB flush list, and the 266 * entry must be added to that list before the tail is advanced. More 267 * precisely, the tail must not be advanced past the wait descriptor 268 * that will generate the interrupt that schedules dmar_qi_task() for 269 * execution before the entry is added to the list. While an earlier 270 * call to dmar_qi_ensure() might have advanced the tail, it will not 271 * advance it past the wait descriptor. 272 * 273 * See the definition of struct dmar_unit for more information on 274 * synchronization. 275 */ 276 entry->tlb_flush_next = NULL; 277 atomic_store_rel_ptr((uintptr_t *)&unit->tlb_flush_tail->tlb_flush_next, 278 (uintptr_t)entry); 279 unit->tlb_flush_tail = entry; 280 281 dmar_qi_advance_tail(unit); 282 } 283 284 void 285 dmar_qi_invalidate_sync(struct dmar_domain *domain, iommu_gaddr_t base, 286 iommu_gaddr_t size, bool cansleep) 287 { 288 struct dmar_unit *unit; 289 struct iommu_qi_genseq gseq; 290 291 unit = domain->dmar; 292 DMAR_LOCK(unit); 293 dmar_qi_invalidate_emit(domain, base, size, &gseq, true); 294 295 /* 296 * To avoid a missed wakeup in dmar_qi_task(), the unit's waiters count 297 * must be incremented before the tail is advanced. 298 */ 299 unit->inv_seq_waiters++; 300 301 dmar_qi_advance_tail(unit); 302 dmar_qi_wait_for_seq(unit, &gseq, !cansleep); 303 DMAR_UNLOCK(unit); 304 } 305 306 void 307 dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit) 308 { 309 struct iommu_qi_genseq gseq; 310 311 DMAR_ASSERT_LOCKED(unit); 312 dmar_qi_ensure(unit, 2); 313 dmar_qi_emit(unit, DMAR_IQ_DESCR_CTX_INV | DMAR_IQ_DESCR_CTX_GLOB, 0); 314 dmar_qi_emit_wait_seq(unit, &gseq, true); 315 /* See dmar_qi_invalidate_sync(). */ 316 unit->inv_seq_waiters++; 317 dmar_qi_advance_tail(unit); 318 dmar_qi_wait_for_seq(unit, &gseq, false); 319 } 320 321 void 322 dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit) 323 { 324 struct iommu_qi_genseq gseq; 325 326 DMAR_ASSERT_LOCKED(unit); 327 dmar_qi_ensure(unit, 2); 328 dmar_qi_emit(unit, DMAR_IQ_DESCR_IOTLB_INV | DMAR_IQ_DESCR_IOTLB_GLOB | 329 DMAR_IQ_DESCR_IOTLB_DW | DMAR_IQ_DESCR_IOTLB_DR, 0); 330 dmar_qi_emit_wait_seq(unit, &gseq, true); 331 /* See dmar_qi_invalidate_sync(). */ 332 unit->inv_seq_waiters++; 333 dmar_qi_advance_tail(unit); 334 dmar_qi_wait_for_seq(unit, &gseq, false); 335 } 336 337 void 338 dmar_qi_invalidate_iec_glob(struct dmar_unit *unit) 339 { 340 struct iommu_qi_genseq gseq; 341 342 DMAR_ASSERT_LOCKED(unit); 343 dmar_qi_ensure(unit, 2); 344 dmar_qi_emit(unit, DMAR_IQ_DESCR_IEC_INV, 0); 345 dmar_qi_emit_wait_seq(unit, &gseq, true); 346 /* See dmar_qi_invalidate_sync(). */ 347 unit->inv_seq_waiters++; 348 dmar_qi_advance_tail(unit); 349 dmar_qi_wait_for_seq(unit, &gseq, false); 350 } 351 352 void 353 dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt) 354 { 355 struct iommu_qi_genseq gseq; 356 u_int c, l; 357 358 DMAR_ASSERT_LOCKED(unit); 359 KASSERT(start < unit->irte_cnt && start < start + cnt && 360 start + cnt <= unit->irte_cnt, 361 ("inv iec overflow %d %d %d", unit->irte_cnt, start, cnt)); 362 for (; cnt > 0; cnt -= c, start += c) { 363 l = ffs(start | cnt) - 1; 364 c = 1 << l; 365 dmar_qi_ensure(unit, 1); 366 dmar_qi_emit(unit, DMAR_IQ_DESCR_IEC_INV | 367 DMAR_IQ_DESCR_IEC_IDX | DMAR_IQ_DESCR_IEC_IIDX(start) | 368 DMAR_IQ_DESCR_IEC_IM(l), 0); 369 } 370 dmar_qi_ensure(unit, 1); 371 dmar_qi_emit_wait_seq(unit, &gseq, true); 372 373 /* 374 * Since dmar_qi_wait_for_seq() will not sleep, this increment's 375 * placement relative to advancing the tail doesn't matter. 376 */ 377 unit->inv_seq_waiters++; 378 379 dmar_qi_advance_tail(unit); 380 381 /* 382 * The caller of the function, in particular, 383 * dmar_ir_program_irte(), may be called from the context 384 * where the sleeping is forbidden (in fact, the 385 * intr_table_lock mutex may be held, locked from 386 * intr_shuffle_irqs()). Wait for the invalidation completion 387 * using the busy wait. 388 * 389 * The impact on the interrupt input setup code is small, the 390 * expected overhead is comparable with the chipset register 391 * read. It is more harmful for the parallel DMA operations, 392 * since we own the dmar unit lock until whole invalidation 393 * queue is processed, which includes requests possibly issued 394 * before our request. 395 */ 396 dmar_qi_wait_for_seq(unit, &gseq, true); 397 } 398 399 int 400 dmar_qi_intr(void *arg) 401 { 402 struct dmar_unit *unit; 403 404 unit = arg; 405 KASSERT(unit->qi_enabled, ("dmar%d: QI is not enabled", 406 unit->iommu.unit)); 407 taskqueue_enqueue(unit->qi_taskqueue, &unit->qi_task); 408 return (FILTER_HANDLED); 409 } 410 411 static void 412 dmar_qi_drain_tlb_flush(struct dmar_unit *unit) 413 { 414 struct iommu_map_entry *entry, *head; 415 416 for (head = unit->tlb_flush_head;; head = entry) { 417 entry = (struct iommu_map_entry *) 418 atomic_load_acq_ptr((uintptr_t *)&head->tlb_flush_next); 419 if (entry == NULL || 420 !dmar_qi_seq_processed(unit, &entry->gseq)) 421 break; 422 unit->tlb_flush_head = entry; 423 iommu_gas_free_entry(head); 424 if ((entry->flags & IOMMU_MAP_ENTRY_RMRR) != 0) 425 iommu_gas_free_region(entry); 426 else 427 iommu_gas_free_space(entry); 428 } 429 } 430 431 static void 432 dmar_qi_task(void *arg, int pending __unused) 433 { 434 struct dmar_unit *unit; 435 uint32_t ics; 436 437 unit = arg; 438 dmar_qi_drain_tlb_flush(unit); 439 440 /* 441 * Request an interrupt on the completion of the next invalidation 442 * wait descriptor with the IF field set. 443 */ 444 ics = dmar_read4(unit, DMAR_ICS_REG); 445 if ((ics & DMAR_ICS_IWC) != 0) { 446 ics = DMAR_ICS_IWC; 447 dmar_write4(unit, DMAR_ICS_REG, ics); 448 449 /* 450 * Drain a second time in case the DMAR processes an entry 451 * after the first call and before clearing DMAR_ICS_IWC. 452 * Otherwise, such entries will linger until a later entry 453 * that requests an interrupt is processed. 454 */ 455 dmar_qi_drain_tlb_flush(unit); 456 } 457 458 if (unit->inv_seq_waiters > 0) { 459 /* 460 * Acquire the DMAR lock so that wakeup() is called only after 461 * the waiter is sleeping. 462 */ 463 DMAR_LOCK(unit); 464 wakeup(&unit->inv_seq_waiters); 465 DMAR_UNLOCK(unit); 466 } 467 } 468 469 int 470 dmar_init_qi(struct dmar_unit *unit) 471 { 472 uint64_t iqa; 473 uint32_t ics; 474 int qi_sz; 475 476 if (!DMAR_HAS_QI(unit) || (unit->hw_cap & DMAR_CAP_CM) != 0) 477 return (0); 478 unit->qi_enabled = 1; 479 TUNABLE_INT_FETCH("hw.dmar.qi", &unit->qi_enabled); 480 if (!unit->qi_enabled) 481 return (0); 482 483 unit->tlb_flush_head = unit->tlb_flush_tail = 484 iommu_gas_alloc_entry(NULL, 0); 485 TASK_INIT(&unit->qi_task, 0, dmar_qi_task, unit); 486 unit->qi_taskqueue = taskqueue_create_fast("dmarqf", M_WAITOK, 487 taskqueue_thread_enqueue, &unit->qi_taskqueue); 488 taskqueue_start_threads(&unit->qi_taskqueue, 1, PI_AV, 489 "dmar%d qi taskq", unit->iommu.unit); 490 491 unit->inv_waitd_gen = 0; 492 unit->inv_waitd_seq = 1; 493 494 qi_sz = DMAR_IQA_QS_DEF; 495 TUNABLE_INT_FETCH("hw.dmar.qi_size", &qi_sz); 496 if (qi_sz > DMAR_IQA_QS_MAX) 497 qi_sz = DMAR_IQA_QS_MAX; 498 unit->inv_queue_size = (1ULL << qi_sz) * PAGE_SIZE; 499 /* Reserve one descriptor to prevent wraparound. */ 500 unit->inv_queue_avail = unit->inv_queue_size - DMAR_IQ_DESCR_SZ; 501 502 /* The invalidation queue reads by DMARs are always coherent. */ 503 unit->inv_queue = kmem_alloc_contig(unit->inv_queue_size, M_WAITOK | 504 M_ZERO, 0, dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); 505 unit->inv_waitd_seq_hw_phys = pmap_kextract( 506 (vm_offset_t)&unit->inv_waitd_seq_hw); 507 508 DMAR_LOCK(unit); 509 dmar_write8(unit, DMAR_IQT_REG, 0); 510 iqa = pmap_kextract((uintptr_t)unit->inv_queue); 511 iqa |= qi_sz; 512 dmar_write8(unit, DMAR_IQA_REG, iqa); 513 dmar_enable_qi(unit); 514 ics = dmar_read4(unit, DMAR_ICS_REG); 515 if ((ics & DMAR_ICS_IWC) != 0) { 516 ics = DMAR_ICS_IWC; 517 dmar_write4(unit, DMAR_ICS_REG, ics); 518 } 519 dmar_enable_qi_intr(unit); 520 DMAR_UNLOCK(unit); 521 522 return (0); 523 } 524 525 void 526 dmar_fini_qi(struct dmar_unit *unit) 527 { 528 struct iommu_qi_genseq gseq; 529 530 if (!unit->qi_enabled) 531 return; 532 taskqueue_drain(unit->qi_taskqueue, &unit->qi_task); 533 taskqueue_free(unit->qi_taskqueue); 534 unit->qi_taskqueue = NULL; 535 536 DMAR_LOCK(unit); 537 /* quisce */ 538 dmar_qi_ensure(unit, 1); 539 dmar_qi_emit_wait_seq(unit, &gseq, true); 540 /* See dmar_qi_invalidate_sync_locked(). */ 541 unit->inv_seq_waiters++; 542 dmar_qi_advance_tail(unit); 543 dmar_qi_wait_for_seq(unit, &gseq, false); 544 /* only after the quisce, disable queue */ 545 dmar_disable_qi_intr(unit); 546 dmar_disable_qi(unit); 547 KASSERT(unit->inv_seq_waiters == 0, 548 ("dmar%d: waiters on disabled queue", unit->iommu.unit)); 549 DMAR_UNLOCK(unit); 550 551 kmem_free(unit->inv_queue, unit->inv_queue_size); 552 unit->inv_queue = NULL; 553 unit->inv_queue_size = 0; 554 unit->qi_enabled = 0; 555 } 556 557 void 558 dmar_enable_qi_intr(struct dmar_unit *unit) 559 { 560 uint32_t iectl; 561 562 DMAR_ASSERT_LOCKED(unit); 563 KASSERT(DMAR_HAS_QI(unit), ("dmar%d: QI is not supported", 564 unit->iommu.unit)); 565 iectl = dmar_read4(unit, DMAR_IECTL_REG); 566 iectl &= ~DMAR_IECTL_IM; 567 dmar_write4(unit, DMAR_IECTL_REG, iectl); 568 } 569 570 void 571 dmar_disable_qi_intr(struct dmar_unit *unit) 572 { 573 uint32_t iectl; 574 575 DMAR_ASSERT_LOCKED(unit); 576 KASSERT(DMAR_HAS_QI(unit), ("dmar%d: QI is not supported", 577 unit->iommu.unit)); 578 iectl = dmar_read4(unit, DMAR_IECTL_REG); 579 dmar_write4(unit, DMAR_IECTL_REG, iectl | DMAR_IECTL_IM); 580 } 581