xref: /freebsd/sys/x86/iommu/intel_qi.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013 The FreeBSD Foundation
5  *
6  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include "opt_acpi.h"
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/memdesc.h>
38 #include <sys/module.h>
39 #include <sys/rman.h>
40 #include <sys/taskqueue.h>
41 #include <sys/time.h>
42 #include <sys/tree.h>
43 #include <sys/vmem.h>
44 #include <vm/vm.h>
45 #include <vm/vm_extern.h>
46 #include <vm/vm_kern.h>
47 #include <vm/vm_page.h>
48 #include <vm/vm_map.h>
49 #include <contrib/dev/acpica/include/acpi.h>
50 #include <contrib/dev/acpica/include/accommon.h>
51 #include <dev/acpica/acpivar.h>
52 #include <dev/pci/pcireg.h>
53 #include <machine/bus.h>
54 #include <machine/cpu.h>
55 #include <x86/include/busdma_impl.h>
56 #include <dev/iommu/busdma_iommu.h>
57 #include <x86/iommu/intel_reg.h>
58 #include <x86/iommu/x86_iommu.h>
59 #include <x86/iommu/intel_dmar.h>
60 
61 static int
62 dmar_enable_qi(struct dmar_unit *unit)
63 {
64 	int error;
65 
66 	DMAR_ASSERT_LOCKED(unit);
67 	unit->hw_gcmd |= DMAR_GCMD_QIE;
68 	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
69 	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_QIES)
70 	    != 0));
71 	return (error);
72 }
73 
74 static int
75 dmar_disable_qi(struct dmar_unit *unit)
76 {
77 	int error;
78 
79 	DMAR_ASSERT_LOCKED(unit);
80 	unit->hw_gcmd &= ~DMAR_GCMD_QIE;
81 	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
82 	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_QIES)
83 	    == 0));
84 	return (error);
85 }
86 
87 static void
88 dmar_qi_advance_tail(struct iommu_unit *iommu)
89 {
90 	struct dmar_unit *unit;
91 
92 	unit = IOMMU2DMAR(iommu);
93 	DMAR_ASSERT_LOCKED(unit);
94 	dmar_write4(unit, DMAR_IQT_REG, unit->x86c.inv_queue_tail);
95 }
96 
97 static void
98 dmar_qi_ensure(struct iommu_unit *iommu, int descr_count)
99 {
100 	struct dmar_unit *unit;
101 	uint32_t head;
102 	int bytes;
103 
104 	unit = IOMMU2DMAR(iommu);
105 	DMAR_ASSERT_LOCKED(unit);
106 	bytes = descr_count << DMAR_IQ_DESCR_SZ_SHIFT;
107 	for (;;) {
108 		if (bytes <= unit->x86c.inv_queue_avail)
109 			break;
110 		/* refill */
111 		head = dmar_read4(unit, DMAR_IQH_REG);
112 		head &= DMAR_IQH_MASK;
113 		unit->x86c.inv_queue_avail = head - unit->x86c.inv_queue_tail -
114 		    DMAR_IQ_DESCR_SZ;
115 		if (head <= unit->x86c.inv_queue_tail)
116 			unit->x86c.inv_queue_avail += unit->x86c.inv_queue_size;
117 		if (bytes <= unit->x86c.inv_queue_avail)
118 			break;
119 
120 		/*
121 		 * No space in the queue, do busy wait.  Hardware must
122 		 * make a progress.  But first advance the tail to
123 		 * inform the descriptor streamer about entries we
124 		 * might have already filled, otherwise they could
125 		 * clog the whole queue..
126 		 *
127 		 * See dmar_qi_invalidate_locked() for a discussion
128 		 * about data race prevention.
129 		 */
130 		dmar_qi_advance_tail(DMAR2IOMMU(unit));
131 		unit->x86c.inv_queue_full++;
132 		cpu_spinwait();
133 	}
134 	unit->x86c.inv_queue_avail -= bytes;
135 }
136 
137 static void
138 dmar_qi_emit(struct dmar_unit *unit, uint64_t data1, uint64_t data2)
139 {
140 
141 	DMAR_ASSERT_LOCKED(unit);
142 #ifdef __LP64__
143 	atomic_store_64((uint64_t *)(unit->x86c.inv_queue +
144 	    unit->x86c.inv_queue_tail), data1);
145 #else
146 	*(volatile uint64_t *)(unit->x86c.inv_queue +
147 	    unit->x86c.inv_queue_tail) = data1;
148 #endif
149 	unit->x86c.inv_queue_tail += DMAR_IQ_DESCR_SZ / 2;
150 	KASSERT(unit->x86c.inv_queue_tail <= unit->x86c.inv_queue_size,
151 	    ("tail overflow 0x%x 0x%jx", unit->x86c.inv_queue_tail,
152 	    (uintmax_t)unit->x86c.inv_queue_size));
153 	unit->x86c.inv_queue_tail &= unit->x86c.inv_queue_size - 1;
154 #ifdef __LP64__
155 	atomic_store_64((uint64_t *)(unit->x86c.inv_queue +
156 	    unit->x86c.inv_queue_tail), data2);
157 #else
158 	*(volatile uint64_t *)(unit->x86c.inv_queue +
159 	    unit->x86c.inv_queue_tail) = data2;
160 #endif
161 	unit->x86c.inv_queue_tail += DMAR_IQ_DESCR_SZ / 2;
162 	KASSERT(unit->x86c.inv_queue_tail <= unit->x86c.inv_queue_size,
163 	    ("tail overflow 0x%x 0x%jx", unit->x86c.inv_queue_tail,
164 	    (uintmax_t)unit->x86c.inv_queue_size));
165 	unit->x86c.inv_queue_tail &= unit->x86c.inv_queue_size - 1;
166 }
167 
168 static void
169 dmar_qi_emit_wait_descr(struct iommu_unit *iommu, uint32_t seq, bool intr,
170     bool memw, bool fence)
171 {
172 	struct dmar_unit *unit;
173 
174 	unit = IOMMU2DMAR(iommu);
175 	DMAR_ASSERT_LOCKED(unit);
176 	dmar_qi_emit(unit, DMAR_IQ_DESCR_WAIT_ID |
177 	    (intr ? DMAR_IQ_DESCR_WAIT_IF : 0) |
178 	    (memw ? DMAR_IQ_DESCR_WAIT_SW : 0) |
179 	    (fence ? DMAR_IQ_DESCR_WAIT_FN : 0) |
180 	    (memw ? DMAR_IQ_DESCR_WAIT_SD(seq) : 0),
181 	    memw ? unit->x86c.inv_waitd_seq_hw_phys : 0);
182 }
183 
184 static void
185 dmar_qi_invalidate_emit(struct iommu_domain *idomain, iommu_gaddr_t base,
186     iommu_gaddr_t size, struct iommu_qi_genseq *pseq, bool emit_wait)
187 {
188 	struct dmar_unit *unit;
189 	struct dmar_domain *domain;
190 	iommu_gaddr_t isize;
191 	int am;
192 
193 	domain = __containerof(idomain, struct dmar_domain, iodom);
194 	unit = domain->dmar;
195 	DMAR_ASSERT_LOCKED(unit);
196 	for (; size > 0; base += isize, size -= isize) {
197 		am = calc_am(unit, base, size, &isize);
198 		dmar_qi_ensure(DMAR2IOMMU(unit), 1);
199 		dmar_qi_emit(unit, DMAR_IQ_DESCR_IOTLB_INV |
200 		    DMAR_IQ_DESCR_IOTLB_PAGE | DMAR_IQ_DESCR_IOTLB_DW |
201 		    DMAR_IQ_DESCR_IOTLB_DR |
202 		    DMAR_IQ_DESCR_IOTLB_DID(domain->domain),
203 		    base | am);
204 	}
205 	iommu_qi_emit_wait_seq(DMAR2IOMMU(unit), pseq, emit_wait);
206 }
207 
208 static void
209 dmar_qi_invalidate_glob_impl(struct dmar_unit *unit, uint64_t data1)
210 {
211 	struct iommu_qi_genseq gseq;
212 
213 	DMAR_ASSERT_LOCKED(unit);
214 	dmar_qi_ensure(DMAR2IOMMU(unit), 2);
215 	dmar_qi_emit(unit, data1, 0);
216 	iommu_qi_emit_wait_seq(DMAR2IOMMU(unit), &gseq, true);
217 	/* See dmar_qi_invalidate_sync(). */
218 	unit->x86c.inv_seq_waiters++;
219 	dmar_qi_advance_tail(DMAR2IOMMU(unit));
220 	iommu_qi_wait_for_seq(DMAR2IOMMU(unit), &gseq, false);
221 }
222 
223 void
224 dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit)
225 {
226 	dmar_qi_invalidate_glob_impl(unit, DMAR_IQ_DESCR_CTX_INV |
227 	    DMAR_IQ_DESCR_CTX_GLOB);
228 }
229 
230 void
231 dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit)
232 {
233 	dmar_qi_invalidate_glob_impl(unit, DMAR_IQ_DESCR_IOTLB_INV |
234 	    DMAR_IQ_DESCR_IOTLB_GLOB | DMAR_IQ_DESCR_IOTLB_DW |
235 	    DMAR_IQ_DESCR_IOTLB_DR);
236 }
237 
238 void
239 dmar_qi_invalidate_iec_glob(struct dmar_unit *unit)
240 {
241 	dmar_qi_invalidate_glob_impl(unit, DMAR_IQ_DESCR_IEC_INV);
242 }
243 
244 void
245 dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt)
246 {
247 	struct iommu_qi_genseq gseq;
248 	u_int c, l;
249 
250 	DMAR_ASSERT_LOCKED(unit);
251 	KASSERT(start < unit->irte_cnt && start < start + cnt &&
252 	    start + cnt <= unit->irte_cnt,
253 	    ("inv iec overflow %d %d %d", unit->irte_cnt, start, cnt));
254 	for (; cnt > 0; cnt -= c, start += c) {
255 		l = ffs(start | cnt) - 1;
256 		c = 1 << l;
257 		dmar_qi_ensure(DMAR2IOMMU(unit), 1);
258 		dmar_qi_emit(unit, DMAR_IQ_DESCR_IEC_INV |
259 		    DMAR_IQ_DESCR_IEC_IDX | DMAR_IQ_DESCR_IEC_IIDX(start) |
260 		    DMAR_IQ_DESCR_IEC_IM(l), 0);
261 	}
262 	dmar_qi_ensure(DMAR2IOMMU(unit), 1);
263 	iommu_qi_emit_wait_seq(DMAR2IOMMU(unit), &gseq, true);
264 
265 	/*
266 	 * Since iommu_qi_wait_for_seq() will not sleep, this increment's
267 	 * placement relative to advancing the tail doesn't matter.
268 	 */
269 	unit->x86c.inv_seq_waiters++;
270 
271 	dmar_qi_advance_tail(DMAR2IOMMU(unit));
272 
273 	/*
274 	 * The caller of the function, in particular,
275 	 * dmar_ir_program_irte(), may be called from the context
276 	 * where the sleeping is forbidden (in fact, the
277 	 * intr_table_lock mutex may be held, locked from
278 	 * intr_shuffle_irqs()).  Wait for the invalidation completion
279 	 * using the busy wait.
280 	 *
281 	 * The impact on the interrupt input setup code is small, the
282 	 * expected overhead is comparable with the chipset register
283 	 * read.  It is more harmful for the parallel DMA operations,
284 	 * since we own the dmar unit lock until whole invalidation
285 	 * queue is processed, which includes requests possibly issued
286 	 * before our request.
287 	 */
288 	iommu_qi_wait_for_seq(DMAR2IOMMU(unit), &gseq, true);
289 }
290 
291 int
292 dmar_qi_intr(void *arg)
293 {
294 	struct dmar_unit *unit;
295 
296 	unit = IOMMU2DMAR((struct iommu_unit *)arg);
297 	KASSERT(unit->qi_enabled, ("dmar%d: QI is not enabled",
298 	    unit->iommu.unit));
299 	taskqueue_enqueue(unit->x86c.qi_taskqueue, &unit->x86c.qi_task);
300 	return (FILTER_HANDLED);
301 }
302 
303 static void
304 dmar_qi_task(void *arg, int pending __unused)
305 {
306 	struct dmar_unit *unit;
307 	uint32_t ics;
308 
309 	unit = IOMMU2DMAR(arg);
310 	iommu_qi_drain_tlb_flush(DMAR2IOMMU(unit));
311 
312 	/*
313 	 * Request an interrupt on the completion of the next invalidation
314 	 * wait descriptor with the IF field set.
315 	 */
316 	ics = dmar_read4(unit, DMAR_ICS_REG);
317 	if ((ics & DMAR_ICS_IWC) != 0) {
318 		ics = DMAR_ICS_IWC;
319 		dmar_write4(unit, DMAR_ICS_REG, ics);
320 
321 		/*
322 		 * Drain a second time in case the DMAR processes an entry
323 		 * after the first call and before clearing DMAR_ICS_IWC.
324 		 * Otherwise, such entries will linger until a later entry
325 		 * that requests an interrupt is processed.
326 		 */
327 		iommu_qi_drain_tlb_flush(DMAR2IOMMU(unit));
328 	}
329 
330 	if (unit->x86c.inv_seq_waiters > 0) {
331 		/*
332 		 * Acquire the DMAR lock so that wakeup() is called only after
333 		 * the waiter is sleeping.
334 		 */
335 		DMAR_LOCK(unit);
336 		wakeup(&unit->x86c.inv_seq_waiters);
337 		DMAR_UNLOCK(unit);
338 	}
339 }
340 
341 int
342 dmar_init_qi(struct dmar_unit *unit)
343 {
344 	uint64_t iqa;
345 	uint32_t ics;
346 	u_int qi_sz;
347 
348 	if (!DMAR_HAS_QI(unit) || (unit->hw_cap & DMAR_CAP_CM) != 0)
349 		return (0);
350 	unit->qi_enabled = 1;
351 	TUNABLE_INT_FETCH("hw.dmar.qi", &unit->qi_enabled);
352 	if (!unit->qi_enabled)
353 		return (0);
354 
355 	unit->x86c.qi_buf_maxsz = DMAR_IQA_QS_MAX;
356 	unit->x86c.qi_cmd_sz = DMAR_IQ_DESCR_SZ;
357 	iommu_qi_common_init(DMAR2IOMMU(unit), dmar_qi_task);
358 	get_x86_iommu()->qi_ensure = dmar_qi_ensure;
359 	get_x86_iommu()->qi_emit_wait_descr = dmar_qi_emit_wait_descr;
360 	get_x86_iommu()->qi_advance_tail = dmar_qi_advance_tail;
361 	get_x86_iommu()->qi_invalidate_emit = dmar_qi_invalidate_emit;
362 
363 	qi_sz = ilog2(unit->x86c.inv_queue_size / PAGE_SIZE);
364 
365 	DMAR_LOCK(unit);
366 	dmar_write8(unit, DMAR_IQT_REG, 0);
367 	iqa = pmap_kextract((uintptr_t)unit->x86c.inv_queue);
368 	iqa |= qi_sz;
369 	dmar_write8(unit, DMAR_IQA_REG, iqa);
370 	dmar_enable_qi(unit);
371 	ics = dmar_read4(unit, DMAR_ICS_REG);
372 	if ((ics & DMAR_ICS_IWC) != 0) {
373 		ics = DMAR_ICS_IWC;
374 		dmar_write4(unit, DMAR_ICS_REG, ics);
375 	}
376 	dmar_enable_qi_intr(DMAR2IOMMU(unit));
377 	DMAR_UNLOCK(unit);
378 
379 	return (0);
380 }
381 
382 static void
383 dmar_fini_qi_helper(struct iommu_unit *iommu)
384 {
385 	dmar_disable_qi_intr(iommu);
386 	dmar_disable_qi(IOMMU2DMAR(iommu));
387 }
388 
389 void
390 dmar_fini_qi(struct dmar_unit *unit)
391 {
392 	if (!unit->qi_enabled)
393 		return;
394 	iommu_qi_common_fini(DMAR2IOMMU(unit), dmar_fini_qi_helper);
395 	unit->qi_enabled = 0;
396 }
397 
398 void
399 dmar_enable_qi_intr(struct iommu_unit *iommu)
400 {
401 	struct dmar_unit *unit;
402 	uint32_t iectl;
403 
404 	unit = IOMMU2DMAR(iommu);
405 	DMAR_ASSERT_LOCKED(unit);
406 	KASSERT(DMAR_HAS_QI(unit), ("dmar%d: QI is not supported",
407 	    unit->iommu.unit));
408 	iectl = dmar_read4(unit, DMAR_IECTL_REG);
409 	iectl &= ~DMAR_IECTL_IM;
410 	dmar_write4(unit, DMAR_IECTL_REG, iectl);
411 }
412 
413 void
414 dmar_disable_qi_intr(struct iommu_unit *iommu)
415 {
416 	struct dmar_unit *unit;
417 	uint32_t iectl;
418 
419 	unit = IOMMU2DMAR(iommu);
420 	DMAR_ASSERT_LOCKED(unit);
421 	KASSERT(DMAR_HAS_QI(unit), ("dmar%d: QI is not supported",
422 	    unit->iommu.unit));
423 	iectl = dmar_read4(unit, DMAR_IECTL_REG);
424 	dmar_write4(unit, DMAR_IECTL_REG, iectl | DMAR_IECTL_IM);
425 }
426