1 /*- 2 * Copyright (c) 2015 The FreeBSD Foundation 3 * All rights reserved. 4 * 5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 6 * under sponsorship from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/memdesc.h> 40 #include <sys/mutex.h> 41 #include <sys/rman.h> 42 #include <sys/rwlock.h> 43 #include <sys/taskqueue.h> 44 #include <sys/tree.h> 45 #include <sys/vmem.h> 46 #include <machine/bus.h> 47 #include <machine/intr_machdep.h> 48 #include <vm/vm.h> 49 #include <vm/vm_extern.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <x86/include/apicreg.h> 54 #include <x86/include/apicvar.h> 55 #include <x86/include/busdma_impl.h> 56 #include <x86/iommu/intel_reg.h> 57 #include <x86/iommu/busdma_dmar.h> 58 #include <dev/pci/pcireg.h> 59 #include <x86/iommu/intel_dmar.h> 60 #include <dev/pci/pcivar.h> 61 #include <x86/iommu/iommu_intrmap.h> 62 63 static struct dmar_unit *dmar_ir_find(device_t src, uint16_t *rid, 64 int *is_dmar); 65 static void dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, 66 uint64_t low, uint16_t rid); 67 static int dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie); 68 69 int 70 iommu_alloc_msi_intr(device_t src, u_int *cookies, u_int count) 71 { 72 struct dmar_unit *unit; 73 vmem_addr_t vmem_res; 74 u_int idx, i; 75 int error; 76 77 unit = dmar_ir_find(src, NULL, NULL); 78 if (unit == NULL || !unit->ir_enabled) { 79 for (i = 0; i < count; i++) 80 cookies[i] = -1; 81 return (EOPNOTSUPP); 82 } 83 84 error = vmem_alloc(unit->irtids, count, M_FIRSTFIT | M_NOWAIT, 85 &vmem_res); 86 if (error != 0) { 87 KASSERT(error != EOPNOTSUPP, 88 ("impossible EOPNOTSUPP from vmem")); 89 return (error); 90 } 91 idx = vmem_res; 92 for (i = 0; i < count; i++) 93 cookies[i] = idx + i; 94 return (0); 95 } 96 97 int 98 iommu_map_msi_intr(device_t src, u_int cpu, u_int vector, u_int cookie, 99 uint64_t *addr, uint32_t *data) 100 { 101 struct dmar_unit *unit; 102 uint64_t low; 103 uint16_t rid; 104 int is_dmar; 105 106 unit = dmar_ir_find(src, &rid, &is_dmar); 107 if (is_dmar) { 108 KASSERT(unit == NULL, ("DMAR cannot translate itself")); 109 110 /* 111 * See VT-d specification, 5.1.6 Remapping Hardware - 112 * Interrupt Programming. 113 */ 114 *data = vector; 115 *addr = MSI_INTEL_ADDR_BASE | ((cpu & 0xff) << 12); 116 if (x2apic_mode) 117 *addr |= ((uint64_t)cpu & 0xffffff00) << 32; 118 else 119 KASSERT(cpu <= 0xff, ("cpu id too big %d", cpu)); 120 return (0); 121 } 122 if (unit == NULL || !unit->ir_enabled || cookie == -1) 123 return (EOPNOTSUPP); 124 125 low = (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) : 126 DMAR_IRTE1_DST_xAPIC(cpu)) | DMAR_IRTE1_V(vector) | 127 DMAR_IRTE1_DLM_FM | DMAR_IRTE1_TM_EDGE | DMAR_IRTE1_RH_DIRECT | 128 DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P; 129 dmar_ir_program_irte(unit, cookie, low, rid); 130 131 if (addr != NULL) { 132 /* 133 * See VT-d specification, 5.1.5.2 MSI and MSI-X 134 * Register Programming. 135 */ 136 *addr = MSI_INTEL_ADDR_BASE | ((cookie & 0x7fff) << 5) | 137 ((cookie & 0x8000) << 2) | 0x18; 138 *data = 0; 139 } 140 return (0); 141 } 142 143 int 144 iommu_unmap_msi_intr(device_t src, u_int cookie) 145 { 146 struct dmar_unit *unit; 147 148 if (cookie == -1) 149 return (0); 150 unit = dmar_ir_find(src, NULL, NULL); 151 return (dmar_ir_free_irte(unit, cookie)); 152 } 153 154 int 155 iommu_map_ioapic_intr(u_int ioapic_id, u_int cpu, u_int vector, bool edge, 156 bool activehi, int irq, u_int *cookie, uint32_t *hi, uint32_t *lo) 157 { 158 struct dmar_unit *unit; 159 vmem_addr_t vmem_res; 160 uint64_t low, iorte; 161 u_int idx; 162 int error; 163 uint16_t rid; 164 165 unit = dmar_find_ioapic(ioapic_id, &rid); 166 if (unit == NULL || !unit->ir_enabled) { 167 *cookie = -1; 168 return (EOPNOTSUPP); 169 } 170 171 error = vmem_alloc(unit->irtids, 1, M_FIRSTFIT | M_NOWAIT, &vmem_res); 172 if (error != 0) { 173 KASSERT(error != EOPNOTSUPP, 174 ("impossible EOPNOTSUPP from vmem")); 175 return (error); 176 } 177 idx = vmem_res; 178 low = 0; 179 switch (irq) { 180 case IRQ_EXTINT: 181 low |= DMAR_IRTE1_DLM_ExtINT; 182 break; 183 case IRQ_NMI: 184 low |= DMAR_IRTE1_DLM_NMI; 185 break; 186 case IRQ_SMI: 187 low |= DMAR_IRTE1_DLM_SMI; 188 break; 189 default: 190 KASSERT(vector != 0, ("No vector for IRQ %u", irq)); 191 low |= DMAR_IRTE1_DLM_FM | DMAR_IRTE1_V(vector); 192 break; 193 } 194 low |= (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) : 195 DMAR_IRTE1_DST_xAPIC(cpu)) | 196 (edge ? DMAR_IRTE1_TM_EDGE : DMAR_IRTE1_TM_LEVEL) | 197 DMAR_IRTE1_RH_DIRECT | DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P; 198 dmar_ir_program_irte(unit, idx, low, rid); 199 200 if (hi != NULL) { 201 /* 202 * See VT-d specification, 5.1.5.1 I/OxAPIC 203 * Programming. 204 */ 205 iorte = (1ULL << 48) | ((uint64_t)(idx & 0x7fff) << 49) | 206 ((idx & 0x8000) != 0 ? (1 << 11) : 0) | 207 (edge ? IOART_TRGREDG : IOART_TRGRLVL) | 208 (activehi ? IOART_INTAHI : IOART_INTALO) | 209 IOART_DELFIXED | vector; 210 *hi = iorte >> 32; 211 *lo = iorte; 212 } 213 *cookie = idx; 214 return (0); 215 } 216 217 int 218 iommu_unmap_ioapic_intr(u_int ioapic_id, u_int *cookie) 219 { 220 struct dmar_unit *unit; 221 u_int idx; 222 223 idx = *cookie; 224 if (idx == -1) 225 return (0); 226 *cookie = -1; 227 unit = dmar_find_ioapic(ioapic_id, NULL); 228 KASSERT(unit != NULL && unit->ir_enabled, 229 ("unmap: cookie %d unit %p", idx, unit)); 230 return (dmar_ir_free_irte(unit, idx)); 231 } 232 233 static struct dmar_unit * 234 dmar_ir_find(device_t src, uint16_t *rid, int *is_dmar) 235 { 236 devclass_t src_class; 237 struct dmar_unit *unit; 238 239 /* 240 * We need to determine if the interrupt source generates FSB 241 * interrupts. If yes, it is either DMAR, in which case 242 * interrupts are not remapped. Or it is HPET, and interrupts 243 * are remapped. For HPET, source id is reported by HPET 244 * record in DMAR ACPI table. 245 */ 246 if (is_dmar != NULL) 247 *is_dmar = FALSE; 248 src_class = device_get_devclass(src); 249 if (src_class == devclass_find("dmar")) { 250 unit = NULL; 251 if (is_dmar != NULL) 252 *is_dmar = TRUE; 253 } else if (src_class == devclass_find("hpet")) { 254 unit = dmar_find_hpet(src, rid); 255 } else { 256 unit = dmar_find(src, bootverbose); 257 if (unit != NULL && rid != NULL) 258 dmar_get_requester(src, rid); 259 } 260 return (unit); 261 } 262 263 static void 264 dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, uint64_t low, 265 uint16_t rid) 266 { 267 dmar_irte_t *irte; 268 uint64_t high; 269 270 KASSERT(idx < unit->irte_cnt, 271 ("bad cookie %d %d", idx, unit->irte_cnt)); 272 irte = &(unit->irt[idx]); 273 high = DMAR_IRTE2_SVT_RID | DMAR_IRTE2_SQ_RID | 274 DMAR_IRTE2_SID_RID(rid); 275 if (bootverbose) { 276 device_printf(unit->dev, 277 "programming irte[%d] rid %#x high %#jx low %#jx\n", 278 idx, rid, (uintmax_t)high, (uintmax_t)low); 279 } 280 DMAR_LOCK(unit); 281 if ((irte->irte1 & DMAR_IRTE1_P) != 0) { 282 /* 283 * The rte is already valid. Assume that the request 284 * is to remap the interrupt for balancing. Only low 285 * word of rte needs to be changed. Assert that the 286 * high word contains expected value. 287 */ 288 KASSERT(irte->irte2 == high, 289 ("irte2 mismatch, %jx %jx", (uintmax_t)irte->irte2, 290 (uintmax_t)high)); 291 dmar_pte_update(&irte->irte1, low); 292 } else { 293 dmar_pte_store(&irte->irte2, high); 294 dmar_pte_store(&irte->irte1, low); 295 } 296 dmar_qi_invalidate_iec(unit, idx, 1); 297 DMAR_UNLOCK(unit); 298 299 } 300 301 static int 302 dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie) 303 { 304 dmar_irte_t *irte; 305 306 KASSERT(unit != NULL && unit->ir_enabled, 307 ("unmap: cookie %d unit %p", cookie, unit)); 308 KASSERT(cookie < unit->irte_cnt, 309 ("bad cookie %u %u", cookie, unit->irte_cnt)); 310 irte = &(unit->irt[cookie]); 311 dmar_pte_clear(&irte->irte1); 312 dmar_pte_clear(&irte->irte2); 313 DMAR_LOCK(unit); 314 dmar_qi_invalidate_iec(unit, cookie, 1); 315 DMAR_UNLOCK(unit); 316 vmem_free(unit->irtids, cookie, 1); 317 return (0); 318 } 319 320 static u_int 321 clp2(u_int v) 322 { 323 324 return (powerof2(v) ? v : 1 << fls(v)); 325 } 326 327 int 328 dmar_init_irt(struct dmar_unit *unit) 329 { 330 331 if ((unit->hw_ecap & DMAR_ECAP_IR) == 0) 332 return (0); 333 unit->ir_enabled = 1; 334 TUNABLE_INT_FETCH("hw.dmar.ir", &unit->ir_enabled); 335 if (!unit->ir_enabled) 336 return (0); 337 if (!unit->qi_enabled) { 338 unit->ir_enabled = 0; 339 if (bootverbose) 340 device_printf(unit->dev, 341 "QI disabled, disabling interrupt remapping\n"); 342 return (0); 343 } 344 unit->irte_cnt = clp2(num_io_irqs); 345 unit->irt = (dmar_irte_t *)(uintptr_t)kmem_alloc_contig( 346 unit->irte_cnt * sizeof(dmar_irte_t), M_ZERO | M_WAITOK, 0, 347 dmar_high, PAGE_SIZE, 0, DMAR_IS_COHERENT(unit) ? 348 VM_MEMATTR_DEFAULT : VM_MEMATTR_UNCACHEABLE); 349 if (unit->irt == NULL) 350 return (ENOMEM); 351 unit->irt_phys = pmap_kextract((vm_offset_t)unit->irt); 352 unit->irtids = vmem_create("dmarirt", 0, unit->irte_cnt, 1, 0, 353 M_FIRSTFIT | M_NOWAIT); 354 DMAR_LOCK(unit); 355 dmar_load_irt_ptr(unit); 356 dmar_qi_invalidate_iec_glob(unit); 357 DMAR_UNLOCK(unit); 358 359 /* 360 * Initialize mappings for already configured interrupt pins. 361 * Required, because otherwise the interrupts fault without 362 * irtes. 363 */ 364 intr_reprogram(); 365 366 DMAR_LOCK(unit); 367 dmar_enable_ir(unit); 368 DMAR_UNLOCK(unit); 369 return (0); 370 } 371 372 void 373 dmar_fini_irt(struct dmar_unit *unit) 374 { 375 376 unit->ir_enabled = 0; 377 if (unit->irt != NULL) { 378 dmar_disable_ir(unit); 379 dmar_qi_invalidate_iec_glob(unit); 380 vmem_destroy(unit->irtids); 381 kmem_free((vm_offset_t)unit->irt, unit->irte_cnt * 382 sizeof(dmar_irte_t)); 383 } 384 } 385