1 /*- 2 * Copyright (c) 2015 The FreeBSD Foundation 3 * All rights reserved. 4 * 5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 6 * under sponsorship from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/memdesc.h> 40 #include <sys/rman.h> 41 #include <sys/rwlock.h> 42 #include <sys/taskqueue.h> 43 #include <sys/tree.h> 44 #include <sys/vmem.h> 45 #include <machine/bus.h> 46 #include <machine/intr_machdep.h> 47 #include <vm/vm.h> 48 #include <vm/vm_extern.h> 49 #include <vm/vm_kern.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_page.h> 52 #include <x86/include/apicreg.h> 53 #include <x86/include/apicvar.h> 54 #include <x86/include/busdma_impl.h> 55 #include <x86/iommu/intel_reg.h> 56 #include <x86/iommu/busdma_dmar.h> 57 #include <x86/iommu/intel_dmar.h> 58 #include <dev/pci/pcivar.h> 59 #include <x86/iommu/iommu_intrmap.h> 60 61 static struct dmar_unit *dmar_ir_find(device_t src, uint16_t *rid, 62 int *is_dmar); 63 static void dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, 64 uint64_t low, uint16_t rid); 65 static int dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie); 66 67 int 68 iommu_alloc_msi_intr(device_t src, u_int *cookies, u_int count) 69 { 70 struct dmar_unit *unit; 71 vmem_addr_t vmem_res; 72 u_int idx, i; 73 int error; 74 75 unit = dmar_ir_find(src, NULL, NULL); 76 if (unit == NULL || !unit->ir_enabled) { 77 for (i = 0; i < count; i++) 78 cookies[i] = -1; 79 return (EOPNOTSUPP); 80 } 81 82 error = vmem_alloc(unit->irtids, count, M_FIRSTFIT | M_NOWAIT, 83 &vmem_res); 84 if (error != 0) { 85 KASSERT(error != EOPNOTSUPP, 86 ("impossible EOPNOTSUPP from vmem")); 87 return (error); 88 } 89 idx = vmem_res; 90 for (i = 0; i < count; i++) 91 cookies[i] = idx + i; 92 return (0); 93 } 94 95 int 96 iommu_map_msi_intr(device_t src, u_int cpu, u_int vector, u_int cookie, 97 uint64_t *addr, uint32_t *data) 98 { 99 struct dmar_unit *unit; 100 uint64_t low; 101 uint16_t rid; 102 int is_dmar; 103 104 unit = dmar_ir_find(src, &rid, &is_dmar); 105 if (is_dmar) { 106 KASSERT(unit == NULL, ("DMAR cannot translate itself")); 107 108 /* 109 * See VT-d specification, 5.1.6 Remapping Hardware - 110 * Interrupt Programming. 111 */ 112 *data = vector; 113 *addr = MSI_INTEL_ADDR_BASE | ((cpu & 0xff) << 12); 114 if (x2apic_mode) 115 *addr |= ((uint64_t)cpu & 0xffffff00) << 32; 116 else 117 KASSERT(cpu <= 0xff, ("cpu id too big %d", cpu)); 118 return (0); 119 } 120 if (unit == NULL || !unit->ir_enabled || cookie == -1) 121 return (EOPNOTSUPP); 122 123 low = (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) : 124 DMAR_IRTE1_DST_xAPIC(cpu)) | DMAR_IRTE1_V(vector) | 125 DMAR_IRTE1_DLM_FM | DMAR_IRTE1_TM_EDGE | DMAR_IRTE1_RH_DIRECT | 126 DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P; 127 dmar_ir_program_irte(unit, cookie, low, rid); 128 129 if (addr != NULL) { 130 /* 131 * See VT-d specification, 5.1.5.2 MSI and MSI-X 132 * Register Programming. 133 */ 134 *addr = MSI_INTEL_ADDR_BASE | ((cookie & 0x7fff) << 5) | 135 ((cookie & 0x8000) << 2) | 0x18; 136 *data = 0; 137 } 138 return (0); 139 } 140 141 int 142 iommu_unmap_msi_intr(device_t src, u_int cookie) 143 { 144 struct dmar_unit *unit; 145 146 if (cookie == -1) 147 return (0); 148 unit = dmar_ir_find(src, NULL, NULL); 149 return (dmar_ir_free_irte(unit, cookie)); 150 } 151 152 int 153 iommu_map_ioapic_intr(u_int ioapic_id, u_int cpu, u_int vector, bool edge, 154 bool activehi, int irq, u_int *cookie, uint32_t *hi, uint32_t *lo) 155 { 156 struct dmar_unit *unit; 157 vmem_addr_t vmem_res; 158 uint64_t low, iorte; 159 u_int idx; 160 int error; 161 uint16_t rid; 162 163 unit = dmar_find_ioapic(ioapic_id, &rid); 164 if (unit == NULL || !unit->ir_enabled) { 165 *cookie = -1; 166 return (EOPNOTSUPP); 167 } 168 169 error = vmem_alloc(unit->irtids, 1, M_FIRSTFIT | M_NOWAIT, &vmem_res); 170 if (error != 0) { 171 KASSERT(error != EOPNOTSUPP, 172 ("impossible EOPNOTSUPP from vmem")); 173 return (error); 174 } 175 idx = vmem_res; 176 low = 0; 177 switch (irq) { 178 case IRQ_EXTINT: 179 low |= DMAR_IRTE1_DLM_ExtINT; 180 break; 181 case IRQ_NMI: 182 low |= DMAR_IRTE1_DLM_NMI; 183 break; 184 case IRQ_SMI: 185 low |= DMAR_IRTE1_DLM_SMI; 186 break; 187 default: 188 KASSERT(vector != 0, ("No vector for IRQ %u", irq)); 189 low |= DMAR_IRTE1_DLM_FM | DMAR_IRTE1_V(vector); 190 break; 191 } 192 low |= (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) : 193 DMAR_IRTE1_DST_xAPIC(cpu)) | 194 (edge ? DMAR_IRTE1_TM_EDGE : DMAR_IRTE1_TM_LEVEL) | 195 DMAR_IRTE1_RH_DIRECT | DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P; 196 dmar_ir_program_irte(unit, idx, low, rid); 197 198 if (hi != NULL) { 199 /* 200 * See VT-d specification, 5.1.5.1 I/OxAPIC 201 * Programming. 202 */ 203 iorte = (1ULL << 48) | ((uint64_t)(idx & 0x7fff) << 49) | 204 ((idx & 0x8000) != 0 ? (1 << 11) : 0) | 205 (edge ? IOART_TRGREDG : IOART_TRGRLVL) | 206 (activehi ? IOART_INTAHI : IOART_INTALO) | 207 IOART_DELFIXED | vector; 208 *hi = iorte >> 32; 209 *lo = iorte; 210 } 211 *cookie = idx; 212 return (0); 213 } 214 215 int 216 iommu_unmap_ioapic_intr(u_int ioapic_id, u_int *cookie) 217 { 218 struct dmar_unit *unit; 219 u_int idx; 220 221 idx = *cookie; 222 if (idx == -1) 223 return (0); 224 *cookie = -1; 225 unit = dmar_find_ioapic(ioapic_id, NULL); 226 KASSERT(unit != NULL && unit->ir_enabled, 227 ("unmap: cookie %d unit %p", idx, unit)); 228 return (dmar_ir_free_irte(unit, idx)); 229 } 230 231 static struct dmar_unit * 232 dmar_ir_find(device_t src, uint16_t *rid, int *is_dmar) 233 { 234 devclass_t src_class; 235 struct dmar_unit *unit; 236 237 /* 238 * We need to determine if the interrupt source generates FSB 239 * interrupts. If yes, it is either DMAR, in which case 240 * interrupts are not remapped. Or it is HPET, and interrupts 241 * are remapped. For HPET, source id is reported by HPET 242 * record in DMAR ACPI table. 243 */ 244 if (is_dmar != NULL) 245 *is_dmar = FALSE; 246 src_class = device_get_devclass(src); 247 if (src_class == devclass_find("dmar")) { 248 unit = NULL; 249 if (is_dmar != NULL) 250 *is_dmar = TRUE; 251 } else if (src_class == devclass_find("hpet")) { 252 unit = dmar_find_hpet(src, rid); 253 } else { 254 unit = dmar_find(src); 255 if (unit != NULL && rid != NULL) 256 dmar_get_requester(src, rid); 257 } 258 return (unit); 259 } 260 261 static void 262 dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, uint64_t low, 263 uint16_t rid) 264 { 265 dmar_irte_t *irte; 266 uint64_t high; 267 268 KASSERT(idx < unit->irte_cnt, 269 ("bad cookie %d %d", idx, unit->irte_cnt)); 270 irte = &(unit->irt[idx]); 271 high = DMAR_IRTE2_SVT_RID | DMAR_IRTE2_SQ_RID | 272 DMAR_IRTE2_SID_RID(rid); 273 device_printf(unit->dev, 274 "programming irte[%d] rid %#x high %#jx low %#jx\n", 275 idx, rid, (uintmax_t)high, (uintmax_t)low); 276 DMAR_LOCK(unit); 277 if ((irte->irte1 & DMAR_IRTE1_P) != 0) { 278 /* 279 * The rte is already valid. Assume that the request 280 * is to remap the interrupt for balancing. Only low 281 * word of rte needs to be changed. Assert that the 282 * high word contains expected value. 283 */ 284 KASSERT(irte->irte2 == high, 285 ("irte2 mismatch, %jx %jx", (uintmax_t)irte->irte2, 286 (uintmax_t)high)); 287 dmar_pte_update(&irte->irte1, low); 288 } else { 289 dmar_pte_store(&irte->irte2, high); 290 dmar_pte_store(&irte->irte1, low); 291 } 292 dmar_qi_invalidate_iec(unit, idx, 1); 293 DMAR_UNLOCK(unit); 294 295 } 296 297 static int 298 dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie) 299 { 300 dmar_irte_t *irte; 301 302 KASSERT(unit != NULL && unit->ir_enabled, 303 ("unmap: cookie %d unit %p", cookie, unit)); 304 KASSERT(cookie < unit->irte_cnt, 305 ("bad cookie %u %u", cookie, unit->irte_cnt)); 306 irte = &(unit->irt[cookie]); 307 dmar_pte_clear(&irte->irte1); 308 dmar_pte_clear(&irte->irte2); 309 DMAR_LOCK(unit); 310 dmar_qi_invalidate_iec(unit, cookie, 1); 311 DMAR_UNLOCK(unit); 312 vmem_free(unit->irtids, cookie, 1); 313 return (0); 314 } 315 316 static u_int 317 clp2(u_int v) 318 { 319 320 return (powerof2(v) ? v : 1 << fls(v)); 321 } 322 323 int 324 dmar_init_irt(struct dmar_unit *unit) 325 { 326 327 if ((unit->hw_ecap & DMAR_ECAP_IR) == 0) 328 return (0); 329 unit->ir_enabled = 1; 330 TUNABLE_INT_FETCH("hw.dmar.ir", &unit->ir_enabled); 331 if (!unit->ir_enabled) 332 return (0); 333 if (!unit->qi_enabled) { 334 unit->ir_enabled = 0; 335 if (bootverbose) 336 device_printf(unit->dev, 337 "QI disabled, disabling interrupt remapping\n"); 338 return (0); 339 } 340 unit->irte_cnt = clp2(NUM_IO_INTS); 341 unit->irt = (dmar_irte_t *)(uintptr_t)kmem_alloc_contig(kernel_arena, 342 unit->irte_cnt * sizeof(dmar_irte_t), M_ZERO | M_WAITOK, 0, 343 dmar_high, PAGE_SIZE, 0, DMAR_IS_COHERENT(unit) ? 344 VM_MEMATTR_DEFAULT : VM_MEMATTR_UNCACHEABLE); 345 if (unit->irt == NULL) 346 return (ENOMEM); 347 unit->irt_phys = pmap_kextract((vm_offset_t)unit->irt); 348 unit->irtids = vmem_create("dmarirt", 0, unit->irte_cnt, 1, 0, 349 M_FIRSTFIT | M_NOWAIT); 350 DMAR_LOCK(unit); 351 dmar_load_irt_ptr(unit); 352 dmar_qi_invalidate_iec_glob(unit); 353 DMAR_UNLOCK(unit); 354 355 /* 356 * Initialize mappings for already configured interrupt pins. 357 * Required, because otherwise the interrupts fault without 358 * irtes. 359 */ 360 intr_reprogram(); 361 362 DMAR_LOCK(unit); 363 dmar_enable_ir(unit); 364 DMAR_UNLOCK(unit); 365 return (0); 366 } 367 368 void 369 dmar_fini_irt(struct dmar_unit *unit) 370 { 371 372 unit->ir_enabled = 0; 373 if (unit->irt != NULL) { 374 dmar_disable_ir(unit); 375 dmar_qi_invalidate_iec_glob(unit); 376 vmem_destroy(unit->irtids); 377 kmem_free(kernel_arena, (vm_offset_t)unit->irt, 378 unit->irte_cnt * sizeof(dmar_irte_t)); 379 } 380 } 381