1 /*- 2 * Copyright (c) 2015 The FreeBSD Foundation 3 * All rights reserved. 4 * 5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 6 * under sponsorship from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/memdesc.h> 40 #include <sys/mutex.h> 41 #include <sys/rman.h> 42 #include <sys/rwlock.h> 43 #include <sys/taskqueue.h> 44 #include <sys/tree.h> 45 #include <sys/vmem.h> 46 #include <machine/bus.h> 47 #include <machine/intr_machdep.h> 48 #include <vm/vm.h> 49 #include <vm/vm_extern.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <x86/include/apicreg.h> 54 #include <x86/include/apicvar.h> 55 #include <x86/include/busdma_impl.h> 56 #include <x86/iommu/intel_reg.h> 57 #include <x86/iommu/busdma_dmar.h> 58 #include <x86/iommu/intel_dmar.h> 59 #include <dev/pci/pcivar.h> 60 #include <x86/iommu/iommu_intrmap.h> 61 62 static struct dmar_unit *dmar_ir_find(device_t src, uint16_t *rid, 63 int *is_dmar); 64 static void dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, 65 uint64_t low, uint16_t rid); 66 static int dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie); 67 68 int 69 iommu_alloc_msi_intr(device_t src, u_int *cookies, u_int count) 70 { 71 struct dmar_unit *unit; 72 vmem_addr_t vmem_res; 73 u_int idx, i; 74 int error; 75 76 unit = dmar_ir_find(src, NULL, NULL); 77 if (unit == NULL || !unit->ir_enabled) { 78 for (i = 0; i < count; i++) 79 cookies[i] = -1; 80 return (EOPNOTSUPP); 81 } 82 83 error = vmem_alloc(unit->irtids, count, M_FIRSTFIT | M_NOWAIT, 84 &vmem_res); 85 if (error != 0) { 86 KASSERT(error != EOPNOTSUPP, 87 ("impossible EOPNOTSUPP from vmem")); 88 return (error); 89 } 90 idx = vmem_res; 91 for (i = 0; i < count; i++) 92 cookies[i] = idx + i; 93 return (0); 94 } 95 96 int 97 iommu_map_msi_intr(device_t src, u_int cpu, u_int vector, u_int cookie, 98 uint64_t *addr, uint32_t *data) 99 { 100 struct dmar_unit *unit; 101 uint64_t low; 102 uint16_t rid; 103 int is_dmar; 104 105 unit = dmar_ir_find(src, &rid, &is_dmar); 106 if (is_dmar) { 107 KASSERT(unit == NULL, ("DMAR cannot translate itself")); 108 109 /* 110 * See VT-d specification, 5.1.6 Remapping Hardware - 111 * Interrupt Programming. 112 */ 113 *data = vector; 114 *addr = MSI_INTEL_ADDR_BASE | ((cpu & 0xff) << 12); 115 if (x2apic_mode) 116 *addr |= ((uint64_t)cpu & 0xffffff00) << 32; 117 else 118 KASSERT(cpu <= 0xff, ("cpu id too big %d", cpu)); 119 return (0); 120 } 121 if (unit == NULL || !unit->ir_enabled || cookie == -1) 122 return (EOPNOTSUPP); 123 124 low = (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) : 125 DMAR_IRTE1_DST_xAPIC(cpu)) | DMAR_IRTE1_V(vector) | 126 DMAR_IRTE1_DLM_FM | DMAR_IRTE1_TM_EDGE | DMAR_IRTE1_RH_DIRECT | 127 DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P; 128 dmar_ir_program_irte(unit, cookie, low, rid); 129 130 if (addr != NULL) { 131 /* 132 * See VT-d specification, 5.1.5.2 MSI and MSI-X 133 * Register Programming. 134 */ 135 *addr = MSI_INTEL_ADDR_BASE | ((cookie & 0x7fff) << 5) | 136 ((cookie & 0x8000) << 2) | 0x18; 137 *data = 0; 138 } 139 return (0); 140 } 141 142 int 143 iommu_unmap_msi_intr(device_t src, u_int cookie) 144 { 145 struct dmar_unit *unit; 146 147 if (cookie == -1) 148 return (0); 149 unit = dmar_ir_find(src, NULL, NULL); 150 return (dmar_ir_free_irte(unit, cookie)); 151 } 152 153 int 154 iommu_map_ioapic_intr(u_int ioapic_id, u_int cpu, u_int vector, bool edge, 155 bool activehi, int irq, u_int *cookie, uint32_t *hi, uint32_t *lo) 156 { 157 struct dmar_unit *unit; 158 vmem_addr_t vmem_res; 159 uint64_t low, iorte; 160 u_int idx; 161 int error; 162 uint16_t rid; 163 164 unit = dmar_find_ioapic(ioapic_id, &rid); 165 if (unit == NULL || !unit->ir_enabled) { 166 *cookie = -1; 167 return (EOPNOTSUPP); 168 } 169 170 error = vmem_alloc(unit->irtids, 1, M_FIRSTFIT | M_NOWAIT, &vmem_res); 171 if (error != 0) { 172 KASSERT(error != EOPNOTSUPP, 173 ("impossible EOPNOTSUPP from vmem")); 174 return (error); 175 } 176 idx = vmem_res; 177 low = 0; 178 switch (irq) { 179 case IRQ_EXTINT: 180 low |= DMAR_IRTE1_DLM_ExtINT; 181 break; 182 case IRQ_NMI: 183 low |= DMAR_IRTE1_DLM_NMI; 184 break; 185 case IRQ_SMI: 186 low |= DMAR_IRTE1_DLM_SMI; 187 break; 188 default: 189 KASSERT(vector != 0, ("No vector for IRQ %u", irq)); 190 low |= DMAR_IRTE1_DLM_FM | DMAR_IRTE1_V(vector); 191 break; 192 } 193 low |= (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) : 194 DMAR_IRTE1_DST_xAPIC(cpu)) | 195 (edge ? DMAR_IRTE1_TM_EDGE : DMAR_IRTE1_TM_LEVEL) | 196 DMAR_IRTE1_RH_DIRECT | DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P; 197 dmar_ir_program_irte(unit, idx, low, rid); 198 199 if (hi != NULL) { 200 /* 201 * See VT-d specification, 5.1.5.1 I/OxAPIC 202 * Programming. 203 */ 204 iorte = (1ULL << 48) | ((uint64_t)(idx & 0x7fff) << 49) | 205 ((idx & 0x8000) != 0 ? (1 << 11) : 0) | 206 (edge ? IOART_TRGREDG : IOART_TRGRLVL) | 207 (activehi ? IOART_INTAHI : IOART_INTALO) | 208 IOART_DELFIXED | vector; 209 *hi = iorte >> 32; 210 *lo = iorte; 211 } 212 *cookie = idx; 213 return (0); 214 } 215 216 int 217 iommu_unmap_ioapic_intr(u_int ioapic_id, u_int *cookie) 218 { 219 struct dmar_unit *unit; 220 u_int idx; 221 222 idx = *cookie; 223 if (idx == -1) 224 return (0); 225 *cookie = -1; 226 unit = dmar_find_ioapic(ioapic_id, NULL); 227 KASSERT(unit != NULL && unit->ir_enabled, 228 ("unmap: cookie %d unit %p", idx, unit)); 229 return (dmar_ir_free_irte(unit, idx)); 230 } 231 232 static struct dmar_unit * 233 dmar_ir_find(device_t src, uint16_t *rid, int *is_dmar) 234 { 235 devclass_t src_class; 236 struct dmar_unit *unit; 237 238 /* 239 * We need to determine if the interrupt source generates FSB 240 * interrupts. If yes, it is either DMAR, in which case 241 * interrupts are not remapped. Or it is HPET, and interrupts 242 * are remapped. For HPET, source id is reported by HPET 243 * record in DMAR ACPI table. 244 */ 245 if (is_dmar != NULL) 246 *is_dmar = FALSE; 247 src_class = device_get_devclass(src); 248 if (src_class == devclass_find("dmar")) { 249 unit = NULL; 250 if (is_dmar != NULL) 251 *is_dmar = TRUE; 252 } else if (src_class == devclass_find("hpet")) { 253 unit = dmar_find_hpet(src, rid); 254 } else { 255 unit = dmar_find(src, bootverbose); 256 if (unit != NULL && rid != NULL) 257 dmar_get_requester(src, rid); 258 } 259 return (unit); 260 } 261 262 static void 263 dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, uint64_t low, 264 uint16_t rid) 265 { 266 dmar_irte_t *irte; 267 uint64_t high; 268 269 KASSERT(idx < unit->irte_cnt, 270 ("bad cookie %d %d", idx, unit->irte_cnt)); 271 irte = &(unit->irt[idx]); 272 high = DMAR_IRTE2_SVT_RID | DMAR_IRTE2_SQ_RID | 273 DMAR_IRTE2_SID_RID(rid); 274 if (bootverbose) { 275 device_printf(unit->dev, 276 "programming irte[%d] rid %#x high %#jx low %#jx\n", 277 idx, rid, (uintmax_t)high, (uintmax_t)low); 278 } 279 DMAR_LOCK(unit); 280 if ((irte->irte1 & DMAR_IRTE1_P) != 0) { 281 /* 282 * The rte is already valid. Assume that the request 283 * is to remap the interrupt for balancing. Only low 284 * word of rte needs to be changed. Assert that the 285 * high word contains expected value. 286 */ 287 KASSERT(irte->irte2 == high, 288 ("irte2 mismatch, %jx %jx", (uintmax_t)irte->irte2, 289 (uintmax_t)high)); 290 dmar_pte_update(&irte->irte1, low); 291 } else { 292 dmar_pte_store(&irte->irte2, high); 293 dmar_pte_store(&irte->irte1, low); 294 } 295 dmar_qi_invalidate_iec(unit, idx, 1); 296 DMAR_UNLOCK(unit); 297 298 } 299 300 static int 301 dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie) 302 { 303 dmar_irte_t *irte; 304 305 KASSERT(unit != NULL && unit->ir_enabled, 306 ("unmap: cookie %d unit %p", cookie, unit)); 307 KASSERT(cookie < unit->irte_cnt, 308 ("bad cookie %u %u", cookie, unit->irte_cnt)); 309 irte = &(unit->irt[cookie]); 310 dmar_pte_clear(&irte->irte1); 311 dmar_pte_clear(&irte->irte2); 312 DMAR_LOCK(unit); 313 dmar_qi_invalidate_iec(unit, cookie, 1); 314 DMAR_UNLOCK(unit); 315 vmem_free(unit->irtids, cookie, 1); 316 return (0); 317 } 318 319 static u_int 320 clp2(u_int v) 321 { 322 323 return (powerof2(v) ? v : 1 << fls(v)); 324 } 325 326 int 327 dmar_init_irt(struct dmar_unit *unit) 328 { 329 330 if ((unit->hw_ecap & DMAR_ECAP_IR) == 0) 331 return (0); 332 unit->ir_enabled = 1; 333 TUNABLE_INT_FETCH("hw.dmar.ir", &unit->ir_enabled); 334 if (!unit->ir_enabled) 335 return (0); 336 if (!unit->qi_enabled) { 337 unit->ir_enabled = 0; 338 if (bootverbose) 339 device_printf(unit->dev, 340 "QI disabled, disabling interrupt remapping\n"); 341 return (0); 342 } 343 unit->irte_cnt = clp2(num_io_irqs); 344 unit->irt = (dmar_irte_t *)(uintptr_t)kmem_alloc_contig( 345 unit->irte_cnt * sizeof(dmar_irte_t), M_ZERO | M_WAITOK, 0, 346 dmar_high, PAGE_SIZE, 0, DMAR_IS_COHERENT(unit) ? 347 VM_MEMATTR_DEFAULT : VM_MEMATTR_UNCACHEABLE); 348 if (unit->irt == NULL) 349 return (ENOMEM); 350 unit->irt_phys = pmap_kextract((vm_offset_t)unit->irt); 351 unit->irtids = vmem_create("dmarirt", 0, unit->irte_cnt, 1, 0, 352 M_FIRSTFIT | M_NOWAIT); 353 DMAR_LOCK(unit); 354 dmar_load_irt_ptr(unit); 355 dmar_qi_invalidate_iec_glob(unit); 356 DMAR_UNLOCK(unit); 357 358 /* 359 * Initialize mappings for already configured interrupt pins. 360 * Required, because otherwise the interrupts fault without 361 * irtes. 362 */ 363 intr_reprogram(); 364 365 DMAR_LOCK(unit); 366 dmar_enable_ir(unit); 367 DMAR_UNLOCK(unit); 368 return (0); 369 } 370 371 void 372 dmar_fini_irt(struct dmar_unit *unit) 373 { 374 375 unit->ir_enabled = 0; 376 if (unit->irt != NULL) { 377 dmar_disable_ir(unit); 378 dmar_qi_invalidate_iec_glob(unit); 379 vmem_destroy(unit->irtids); 380 kmem_free((vm_offset_t)unit->irt, unit->irte_cnt * 381 sizeof(dmar_irte_t)); 382 } 383 } 384