1 /*- 2 * Copyright (c) 2013 The FreeBSD Foundation 3 * All rights reserved. 4 * 5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 6 * under sponsorship from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/bus.h> 37 #include <sys/interrupt.h> 38 #include <sys/kernel.h> 39 #include <sys/ktr.h> 40 #include <sys/lock.h> 41 #include <sys/memdesc.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 #include <sys/rman.h> 46 #include <sys/sf_buf.h> 47 #include <sys/sysctl.h> 48 #include <sys/taskqueue.h> 49 #include <sys/tree.h> 50 #include <sys/uio.h> 51 #include <sys/vmem.h> 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_kern.h> 55 #include <vm/vm_object.h> 56 #include <vm/vm_page.h> 57 #include <vm/vm_pager.h> 58 #include <vm/vm_map.h> 59 #include <machine/atomic.h> 60 #include <machine/bus.h> 61 #include <machine/cpu.h> 62 #include <machine/md_var.h> 63 #include <machine/specialreg.h> 64 #include <x86/include/busdma_impl.h> 65 #include <x86/iommu/intel_reg.h> 66 #include <x86/iommu/busdma_dmar.h> 67 #include <x86/iommu/intel_dmar.h> 68 69 static int domain_unmap_buf_locked(struct dmar_domain *domain, 70 dmar_gaddr_t base, dmar_gaddr_t size, int flags); 71 72 /* 73 * The cache of the identity mapping page tables for the DMARs. Using 74 * the cache saves significant amount of memory for page tables by 75 * reusing the page tables, since usually DMARs are identical and have 76 * the same capabilities. Still, cache records the information needed 77 * to match DMAR capabilities and page table format, to correctly 78 * handle different DMARs. 79 */ 80 81 struct idpgtbl { 82 dmar_gaddr_t maxaddr; /* Page table covers the guest address 83 range [0..maxaddr) */ 84 int pglvl; /* Total page table levels ignoring 85 superpages */ 86 int leaf; /* The last materialized page table 87 level, it is non-zero if superpages 88 are supported */ 89 vm_object_t pgtbl_obj; /* The page table pages */ 90 LIST_ENTRY(idpgtbl) link; 91 }; 92 93 static struct sx idpgtbl_lock; 94 SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl"); 95 static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls); 96 static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl", 97 "Intel DMAR Identity mappings cache elements"); 98 99 /* 100 * Build the next level of the page tables for the identity mapping. 101 * - lvl is the level to build; 102 * - idx is the index of the page table page in the pgtbl_obj, which is 103 * being allocated filled now; 104 * - addr is the starting address in the bus address space which is 105 * mapped by the page table page. 106 */ 107 static void 108 domain_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx, 109 dmar_gaddr_t addr) 110 { 111 vm_page_t m1; 112 dmar_pte_t *pte; 113 struct sf_buf *sf; 114 dmar_gaddr_t f, pg_sz; 115 vm_pindex_t base; 116 int i; 117 118 VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj); 119 if (addr >= tbl->maxaddr) 120 return; 121 (void)dmar_pgalloc(tbl->pgtbl_obj, idx, DMAR_PGF_OBJL | DMAR_PGF_WAITOK | 122 DMAR_PGF_ZERO); 123 base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */ 124 pg_sz = pglvl_page_size(tbl->pglvl, lvl); 125 if (lvl != tbl->leaf) { 126 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) 127 domain_idmap_nextlvl(tbl, lvl + 1, base + i, f); 128 } 129 VM_OBJECT_WUNLOCK(tbl->pgtbl_obj); 130 pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, DMAR_PGF_WAITOK, &sf); 131 if (lvl == tbl->leaf) { 132 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) { 133 if (f >= tbl->maxaddr) 134 break; 135 pte[i].pte = (DMAR_PTE_ADDR_MASK & f) | 136 DMAR_PTE_R | DMAR_PTE_W; 137 } 138 } else { 139 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) { 140 if (f >= tbl->maxaddr) 141 break; 142 m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i, 143 DMAR_PGF_NOALLOC); 144 KASSERT(m1 != NULL, ("lost page table page")); 145 pte[i].pte = (DMAR_PTE_ADDR_MASK & 146 VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W; 147 } 148 } 149 /* domain_get_idmap_pgtbl flushes CPU cache if needed. */ 150 dmar_unmap_pgtbl(sf); 151 VM_OBJECT_WLOCK(tbl->pgtbl_obj); 152 } 153 154 /* 155 * Find a ready and compatible identity-mapping page table in the 156 * cache. If not found, populate the identity-mapping page table for 157 * the context, up to the maxaddr. The maxaddr byte is allowed to be 158 * not mapped, which is aligned with the definition of Maxmem as the 159 * highest usable physical address + 1. If superpages are used, the 160 * maxaddr is typically mapped. 161 */ 162 vm_object_t 163 domain_get_idmap_pgtbl(struct dmar_domain *domain, dmar_gaddr_t maxaddr) 164 { 165 struct dmar_unit *unit; 166 struct idpgtbl *tbl; 167 vm_object_t res; 168 vm_page_t m; 169 int leaf, i; 170 171 leaf = 0; /* silence gcc */ 172 173 /* 174 * First, determine where to stop the paging structures. 175 */ 176 for (i = 0; i < domain->pglvl; i++) { 177 if (i == domain->pglvl - 1 || domain_is_sp_lvl(domain, i)) { 178 leaf = i; 179 break; 180 } 181 } 182 183 /* 184 * Search the cache for a compatible page table. Qualified 185 * page table must map up to maxaddr, its level must be 186 * supported by the DMAR and leaf should be equal to the 187 * calculated value. The later restriction could be lifted 188 * but I believe it is currently impossible to have any 189 * deviations for existing hardware. 190 */ 191 sx_slock(&idpgtbl_lock); 192 LIST_FOREACH(tbl, &idpgtbls, link) { 193 if (tbl->maxaddr >= maxaddr && 194 dmar_pglvl_supported(domain->dmar, tbl->pglvl) && 195 tbl->leaf == leaf) { 196 res = tbl->pgtbl_obj; 197 vm_object_reference(res); 198 sx_sunlock(&idpgtbl_lock); 199 domain->pglvl = tbl->pglvl; /* XXXKIB ? */ 200 goto end; 201 } 202 } 203 204 /* 205 * Not found in cache, relock the cache into exclusive mode to 206 * be able to add element, and recheck cache again after the 207 * relock. 208 */ 209 sx_sunlock(&idpgtbl_lock); 210 sx_xlock(&idpgtbl_lock); 211 LIST_FOREACH(tbl, &idpgtbls, link) { 212 if (tbl->maxaddr >= maxaddr && 213 dmar_pglvl_supported(domain->dmar, tbl->pglvl) && 214 tbl->leaf == leaf) { 215 res = tbl->pgtbl_obj; 216 vm_object_reference(res); 217 sx_xunlock(&idpgtbl_lock); 218 domain->pglvl = tbl->pglvl; /* XXXKIB ? */ 219 return (res); 220 } 221 } 222 223 /* 224 * Still not found, create new page table. 225 */ 226 tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK); 227 tbl->pglvl = domain->pglvl; 228 tbl->leaf = leaf; 229 tbl->maxaddr = maxaddr; 230 tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL, 231 IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL); 232 VM_OBJECT_WLOCK(tbl->pgtbl_obj); 233 domain_idmap_nextlvl(tbl, 0, 0, 0); 234 VM_OBJECT_WUNLOCK(tbl->pgtbl_obj); 235 LIST_INSERT_HEAD(&idpgtbls, tbl, link); 236 res = tbl->pgtbl_obj; 237 vm_object_reference(res); 238 sx_xunlock(&idpgtbl_lock); 239 240 end: 241 /* 242 * Table was found or created. 243 * 244 * If DMAR does not snoop paging structures accesses, flush 245 * CPU cache to memory. Note that dmar_unmap_pgtbl() coherent 246 * argument was possibly invalid at the time of the identity 247 * page table creation, since DMAR which was passed at the 248 * time of creation could be coherent, while current DMAR is 249 * not. 250 * 251 * If DMAR cannot look into the chipset write buffer, flush it 252 * as well. 253 */ 254 unit = domain->dmar; 255 if (!DMAR_IS_COHERENT(unit)) { 256 VM_OBJECT_WLOCK(res); 257 for (m = vm_page_lookup(res, 0); m != NULL; 258 m = vm_page_next(m)) 259 pmap_invalidate_cache_pages(&m, 1); 260 VM_OBJECT_WUNLOCK(res); 261 } 262 if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) { 263 DMAR_LOCK(unit); 264 dmar_flush_write_bufs(unit); 265 DMAR_UNLOCK(unit); 266 } 267 268 return (res); 269 } 270 271 /* 272 * Return a reference to the identity mapping page table to the cache. 273 */ 274 void 275 put_idmap_pgtbl(vm_object_t obj) 276 { 277 struct idpgtbl *tbl, *tbl1; 278 vm_object_t rmobj; 279 280 sx_slock(&idpgtbl_lock); 281 KASSERT(obj->ref_count >= 2, ("lost cache reference")); 282 vm_object_deallocate(obj); 283 284 /* 285 * Cache always owns one last reference on the page table object. 286 * If there is an additional reference, object must stay. 287 */ 288 if (obj->ref_count > 1) { 289 sx_sunlock(&idpgtbl_lock); 290 return; 291 } 292 293 /* 294 * Cache reference is the last, remove cache element and free 295 * page table object, returning the page table pages to the 296 * system. 297 */ 298 sx_sunlock(&idpgtbl_lock); 299 sx_xlock(&idpgtbl_lock); 300 LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) { 301 rmobj = tbl->pgtbl_obj; 302 if (rmobj->ref_count == 1) { 303 LIST_REMOVE(tbl, link); 304 atomic_subtract_int(&dmar_tbl_pagecnt, 305 rmobj->resident_page_count); 306 vm_object_deallocate(rmobj); 307 free(tbl, M_DMAR_IDPGTBL); 308 } 309 } 310 sx_xunlock(&idpgtbl_lock); 311 } 312 313 /* 314 * The core routines to map and unmap host pages at the given guest 315 * address. Support superpages. 316 */ 317 318 /* 319 * Index of the pte for the guest address base in the page table at 320 * the level lvl. 321 */ 322 static int 323 domain_pgtbl_pte_off(struct dmar_domain *domain, dmar_gaddr_t base, int lvl) 324 { 325 326 base >>= DMAR_PAGE_SHIFT + (domain->pglvl - lvl - 1) * 327 DMAR_NPTEPGSHIFT; 328 return (base & DMAR_PTEMASK); 329 } 330 331 /* 332 * Returns the page index of the page table page in the page table 333 * object, which maps the given address base at the page table level 334 * lvl. 335 */ 336 static vm_pindex_t 337 domain_pgtbl_get_pindex(struct dmar_domain *domain, dmar_gaddr_t base, int lvl) 338 { 339 vm_pindex_t idx, pidx; 340 int i; 341 342 KASSERT(lvl >= 0 && lvl < domain->pglvl, 343 ("wrong lvl %p %d", domain, lvl)); 344 345 for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx) { 346 idx = domain_pgtbl_pte_off(domain, base, i) + 347 pidx * DMAR_NPTEPG + 1; 348 } 349 return (idx); 350 } 351 352 static dmar_pte_t * 353 domain_pgtbl_map_pte(struct dmar_domain *domain, dmar_gaddr_t base, int lvl, 354 int flags, vm_pindex_t *idxp, struct sf_buf **sf) 355 { 356 vm_page_t m; 357 struct sf_buf *sfp; 358 dmar_pte_t *pte, *ptep; 359 vm_pindex_t idx, idx1; 360 361 DMAR_DOMAIN_ASSERT_PGLOCKED(domain); 362 KASSERT((flags & DMAR_PGF_OBJL) != 0, ("lost PGF_OBJL")); 363 364 idx = domain_pgtbl_get_pindex(domain, base, lvl); 365 if (*sf != NULL && idx == *idxp) { 366 pte = (dmar_pte_t *)sf_buf_kva(*sf); 367 } else { 368 if (*sf != NULL) 369 dmar_unmap_pgtbl(*sf); 370 *idxp = idx; 371 retry: 372 pte = dmar_map_pgtbl(domain->pgtbl_obj, idx, flags, sf); 373 if (pte == NULL) { 374 KASSERT(lvl > 0, 375 ("lost root page table page %p", domain)); 376 /* 377 * Page table page does not exists, allocate 378 * it and create pte in the up level. 379 */ 380 m = dmar_pgalloc(domain->pgtbl_obj, idx, flags | 381 DMAR_PGF_ZERO); 382 if (m == NULL) 383 return (NULL); 384 385 /* 386 * Prevent potential free while pgtbl_obj is 387 * unlocked in the recursive call to 388 * domain_pgtbl_map_pte(), if other thread did 389 * pte write and clean while the lock if 390 * dropped. 391 */ 392 m->wire_count++; 393 394 sfp = NULL; 395 ptep = domain_pgtbl_map_pte(domain, base, lvl - 1, 396 flags, &idx1, &sfp); 397 if (ptep == NULL) { 398 KASSERT(m->pindex != 0, 399 ("loosing root page %p", domain)); 400 m->wire_count--; 401 dmar_pgfree(domain->pgtbl_obj, m->pindex, 402 flags); 403 return (NULL); 404 } 405 dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W | 406 VM_PAGE_TO_PHYS(m)); 407 dmar_flush_pte_to_ram(domain->dmar, ptep); 408 sf_buf_page(sfp)->wire_count += 1; 409 m->wire_count--; 410 dmar_unmap_pgtbl(sfp); 411 /* Only executed once. */ 412 goto retry; 413 } 414 } 415 pte += domain_pgtbl_pte_off(domain, base, lvl); 416 return (pte); 417 } 418 419 static int 420 domain_map_buf_locked(struct dmar_domain *domain, dmar_gaddr_t base, 421 dmar_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags) 422 { 423 dmar_pte_t *pte; 424 struct sf_buf *sf; 425 dmar_gaddr_t pg_sz, base1, size1; 426 vm_pindex_t pi, c, idx, run_sz; 427 int lvl; 428 bool superpage; 429 430 DMAR_DOMAIN_ASSERT_PGLOCKED(domain); 431 432 base1 = base; 433 size1 = size; 434 flags |= DMAR_PGF_OBJL; 435 TD_PREP_PINNED_ASSERT; 436 437 for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz, 438 pi += run_sz) { 439 for (lvl = 0, c = 0, superpage = false;; lvl++) { 440 pg_sz = domain_page_size(domain, lvl); 441 run_sz = pg_sz >> DMAR_PAGE_SHIFT; 442 if (lvl == domain->pglvl - 1) 443 break; 444 /* 445 * Check if the current base suitable for the 446 * superpage mapping. First, verify the level. 447 */ 448 if (!domain_is_sp_lvl(domain, lvl)) 449 continue; 450 /* 451 * Next, look at the size of the mapping and 452 * alignment of both guest and host addresses. 453 */ 454 if (size < pg_sz || (base & (pg_sz - 1)) != 0 || 455 (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0) 456 continue; 457 /* All passed, check host pages contiguouty. */ 458 if (c == 0) { 459 for (c = 1; c < run_sz; c++) { 460 if (VM_PAGE_TO_PHYS(ma[pi + c]) != 461 VM_PAGE_TO_PHYS(ma[pi + c - 1]) + 462 PAGE_SIZE) 463 break; 464 } 465 } 466 if (c >= run_sz) { 467 superpage = true; 468 break; 469 } 470 } 471 KASSERT(size >= pg_sz, 472 ("mapping loop overflow %p %jx %jx %jx", domain, 473 (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz)); 474 KASSERT(pg_sz > 0, ("pg_sz 0 lvl %d", lvl)); 475 pte = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf); 476 if (pte == NULL) { 477 KASSERT((flags & DMAR_PGF_WAITOK) == 0, 478 ("failed waitable pte alloc %p", domain)); 479 if (sf != NULL) 480 dmar_unmap_pgtbl(sf); 481 domain_unmap_buf_locked(domain, base1, base - base1, 482 flags); 483 TD_PINNED_ASSERT; 484 return (ENOMEM); 485 } 486 dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags | 487 (superpage ? DMAR_PTE_SP : 0)); 488 dmar_flush_pte_to_ram(domain->dmar, pte); 489 sf_buf_page(sf)->wire_count += 1; 490 } 491 if (sf != NULL) 492 dmar_unmap_pgtbl(sf); 493 TD_PINNED_ASSERT; 494 return (0); 495 } 496 497 int 498 domain_map_buf(struct dmar_domain *domain, dmar_gaddr_t base, dmar_gaddr_t size, 499 vm_page_t *ma, uint64_t pflags, int flags) 500 { 501 struct dmar_unit *unit; 502 int error; 503 504 unit = domain->dmar; 505 506 KASSERT((domain->flags & DMAR_DOMAIN_IDMAP) == 0, 507 ("modifying idmap pagetable domain %p", domain)); 508 KASSERT((base & DMAR_PAGE_MASK) == 0, 509 ("non-aligned base %p %jx %jx", domain, (uintmax_t)base, 510 (uintmax_t)size)); 511 KASSERT((size & DMAR_PAGE_MASK) == 0, 512 ("non-aligned size %p %jx %jx", domain, (uintmax_t)base, 513 (uintmax_t)size)); 514 KASSERT(size > 0, ("zero size %p %jx %jx", domain, (uintmax_t)base, 515 (uintmax_t)size)); 516 KASSERT(base < (1ULL << domain->agaw), 517 ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base, 518 (uintmax_t)size, domain->agaw)); 519 KASSERT(base + size < (1ULL << domain->agaw), 520 ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base, 521 (uintmax_t)size, domain->agaw)); 522 KASSERT(base + size > base, 523 ("size overflow %p %jx %jx", domain, (uintmax_t)base, 524 (uintmax_t)size)); 525 KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0, 526 ("neither read nor write %jx", (uintmax_t)pflags)); 527 KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP | 528 DMAR_PTE_TM)) == 0, 529 ("invalid pte flags %jx", (uintmax_t)pflags)); 530 KASSERT((pflags & DMAR_PTE_SNP) == 0 || 531 (unit->hw_ecap & DMAR_ECAP_SC) != 0, 532 ("PTE_SNP for dmar without snoop control %p %jx", 533 domain, (uintmax_t)pflags)); 534 KASSERT((pflags & DMAR_PTE_TM) == 0 || 535 (unit->hw_ecap & DMAR_ECAP_DI) != 0, 536 ("PTE_TM for dmar without DIOTLB %p %jx", 537 domain, (uintmax_t)pflags)); 538 KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags)); 539 540 DMAR_DOMAIN_PGLOCK(domain); 541 error = domain_map_buf_locked(domain, base, size, ma, pflags, flags); 542 DMAR_DOMAIN_PGUNLOCK(domain); 543 if (error != 0) 544 return (error); 545 546 if ((unit->hw_cap & DMAR_CAP_CM) != 0) 547 domain_flush_iotlb_sync(domain, base, size); 548 else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) { 549 /* See 11.1 Write Buffer Flushing. */ 550 DMAR_LOCK(unit); 551 dmar_flush_write_bufs(unit); 552 DMAR_UNLOCK(unit); 553 } 554 return (0); 555 } 556 557 static void domain_unmap_clear_pte(struct dmar_domain *domain, 558 dmar_gaddr_t base, int lvl, int flags, dmar_pte_t *pte, 559 struct sf_buf **sf, bool free_fs); 560 561 static void 562 domain_free_pgtbl_pde(struct dmar_domain *domain, dmar_gaddr_t base, 563 int lvl, int flags) 564 { 565 struct sf_buf *sf; 566 dmar_pte_t *pde; 567 vm_pindex_t idx; 568 569 sf = NULL; 570 pde = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf); 571 domain_unmap_clear_pte(domain, base, lvl, flags, pde, &sf, true); 572 } 573 574 static void 575 domain_unmap_clear_pte(struct dmar_domain *domain, dmar_gaddr_t base, int lvl, 576 int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf) 577 { 578 vm_page_t m; 579 580 dmar_pte_clear(&pte->pte); 581 dmar_flush_pte_to_ram(domain->dmar, pte); 582 m = sf_buf_page(*sf); 583 if (free_sf) { 584 dmar_unmap_pgtbl(*sf); 585 *sf = NULL; 586 } 587 m->wire_count--; 588 if (m->wire_count != 0) 589 return; 590 KASSERT(lvl != 0, 591 ("lost reference (lvl) on root pg domain %p base %jx lvl %d", 592 domain, (uintmax_t)base, lvl)); 593 KASSERT(m->pindex != 0, 594 ("lost reference (idx) on root pg domain %p base %jx lvl %d", 595 domain, (uintmax_t)base, lvl)); 596 dmar_pgfree(domain->pgtbl_obj, m->pindex, flags); 597 domain_free_pgtbl_pde(domain, base, lvl - 1, flags); 598 } 599 600 /* 601 * Assumes that the unmap is never partial. 602 */ 603 static int 604 domain_unmap_buf_locked(struct dmar_domain *domain, dmar_gaddr_t base, 605 dmar_gaddr_t size, int flags) 606 { 607 dmar_pte_t *pte; 608 struct sf_buf *sf; 609 vm_pindex_t idx; 610 dmar_gaddr_t pg_sz; 611 int lvl; 612 613 DMAR_DOMAIN_ASSERT_PGLOCKED(domain); 614 if (size == 0) 615 return (0); 616 617 KASSERT((domain->flags & DMAR_DOMAIN_IDMAP) == 0, 618 ("modifying idmap pagetable domain %p", domain)); 619 KASSERT((base & DMAR_PAGE_MASK) == 0, 620 ("non-aligned base %p %jx %jx", domain, (uintmax_t)base, 621 (uintmax_t)size)); 622 KASSERT((size & DMAR_PAGE_MASK) == 0, 623 ("non-aligned size %p %jx %jx", domain, (uintmax_t)base, 624 (uintmax_t)size)); 625 KASSERT(base < (1ULL << domain->agaw), 626 ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base, 627 (uintmax_t)size, domain->agaw)); 628 KASSERT(base + size < (1ULL << domain->agaw), 629 ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base, 630 (uintmax_t)size, domain->agaw)); 631 KASSERT(base + size > base, 632 ("size overflow %p %jx %jx", domain, (uintmax_t)base, 633 (uintmax_t)size)); 634 KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags)); 635 636 pg_sz = 0; /* silence gcc */ 637 flags |= DMAR_PGF_OBJL; 638 TD_PREP_PINNED_ASSERT; 639 640 for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) { 641 for (lvl = 0; lvl < domain->pglvl; lvl++) { 642 if (lvl != domain->pglvl - 1 && 643 !domain_is_sp_lvl(domain, lvl)) 644 continue; 645 pg_sz = domain_page_size(domain, lvl); 646 if (pg_sz > size) 647 continue; 648 pte = domain_pgtbl_map_pte(domain, base, lvl, flags, 649 &idx, &sf); 650 KASSERT(pte != NULL, 651 ("sleeping or page missed %p %jx %d 0x%x", 652 domain, (uintmax_t)base, lvl, flags)); 653 if ((pte->pte & DMAR_PTE_SP) != 0 || 654 lvl == domain->pglvl - 1) { 655 domain_unmap_clear_pte(domain, base, lvl, 656 flags, pte, &sf, false); 657 break; 658 } 659 } 660 KASSERT(size >= pg_sz, 661 ("unmapping loop overflow %p %jx %jx %jx", domain, 662 (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz)); 663 } 664 if (sf != NULL) 665 dmar_unmap_pgtbl(sf); 666 /* 667 * See 11.1 Write Buffer Flushing for an explanation why RWBF 668 * can be ignored there. 669 */ 670 671 TD_PINNED_ASSERT; 672 return (0); 673 } 674 675 int 676 domain_unmap_buf(struct dmar_domain *domain, dmar_gaddr_t base, 677 dmar_gaddr_t size, int flags) 678 { 679 int error; 680 681 DMAR_DOMAIN_PGLOCK(domain); 682 error = domain_unmap_buf_locked(domain, base, size, flags); 683 DMAR_DOMAIN_PGUNLOCK(domain); 684 return (error); 685 } 686 687 int 688 domain_alloc_pgtbl(struct dmar_domain *domain) 689 { 690 vm_page_t m; 691 692 KASSERT(domain->pgtbl_obj == NULL, 693 ("already initialized %p", domain)); 694 695 domain->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL, 696 IDX_TO_OFF(pglvl_max_pages(domain->pglvl)), 0, 0, NULL); 697 DMAR_DOMAIN_PGLOCK(domain); 698 m = dmar_pgalloc(domain->pgtbl_obj, 0, DMAR_PGF_WAITOK | 699 DMAR_PGF_ZERO | DMAR_PGF_OBJL); 700 /* No implicit free of the top level page table page. */ 701 m->wire_count = 1; 702 DMAR_DOMAIN_PGUNLOCK(domain); 703 DMAR_LOCK(domain->dmar); 704 domain->flags |= DMAR_DOMAIN_PGTBL_INITED; 705 DMAR_UNLOCK(domain->dmar); 706 return (0); 707 } 708 709 void 710 domain_free_pgtbl(struct dmar_domain *domain) 711 { 712 vm_object_t obj; 713 vm_page_t m; 714 715 obj = domain->pgtbl_obj; 716 if (obj == NULL) { 717 KASSERT((domain->dmar->hw_ecap & DMAR_ECAP_PT) != 0 && 718 (domain->flags & DMAR_DOMAIN_IDMAP) != 0, 719 ("lost pagetable object domain %p", domain)); 720 return; 721 } 722 DMAR_DOMAIN_ASSERT_PGLOCKED(domain); 723 domain->pgtbl_obj = NULL; 724 725 if ((domain->flags & DMAR_DOMAIN_IDMAP) != 0) { 726 put_idmap_pgtbl(obj); 727 domain->flags &= ~DMAR_DOMAIN_IDMAP; 728 return; 729 } 730 731 /* Obliterate wire_counts */ 732 VM_OBJECT_ASSERT_WLOCKED(obj); 733 for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m)) 734 m->wire_count = 0; 735 VM_OBJECT_WUNLOCK(obj); 736 vm_object_deallocate(obj); 737 } 738 739 static inline uint64_t 740 domain_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro) 741 { 742 uint64_t iotlbr; 743 744 dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT | 745 DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt); 746 for (;;) { 747 iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF); 748 if ((iotlbr & DMAR_IOTLB_IVT) == 0) 749 break; 750 cpu_spinwait(); 751 } 752 return (iotlbr); 753 } 754 755 void 756 domain_flush_iotlb_sync(struct dmar_domain *domain, dmar_gaddr_t base, 757 dmar_gaddr_t size) 758 { 759 struct dmar_unit *unit; 760 dmar_gaddr_t isize; 761 uint64_t iotlbr; 762 int am, iro; 763 764 unit = domain->dmar; 765 KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call", 766 unit->unit)); 767 iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16; 768 DMAR_LOCK(unit); 769 if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) { 770 iotlbr = domain_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM | 771 DMAR_IOTLB_DID(domain->domain), iro); 772 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) != 773 DMAR_IOTLB_IAIG_INVLD, 774 ("dmar%d: invalidation failed %jx", unit->unit, 775 (uintmax_t)iotlbr)); 776 } else { 777 for (; size > 0; base += isize, size -= isize) { 778 am = calc_am(unit, base, size, &isize); 779 dmar_write8(unit, iro, base | am); 780 iotlbr = domain_wait_iotlb_flush(unit, 781 DMAR_IOTLB_IIRG_PAGE | 782 DMAR_IOTLB_DID(domain->domain), iro); 783 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) != 784 DMAR_IOTLB_IAIG_INVLD, 785 ("dmar%d: PSI invalidation failed " 786 "iotlbr 0x%jx base 0x%jx size 0x%jx am %d", 787 unit->unit, (uintmax_t)iotlbr, 788 (uintmax_t)base, (uintmax_t)size, am)); 789 /* 790 * Any non-page granularity covers whole guest 791 * address space for the domain. 792 */ 793 if ((iotlbr & DMAR_IOTLB_IAIG_MASK) != 794 DMAR_IOTLB_IAIG_PAGE) 795 break; 796 } 797 } 798 DMAR_UNLOCK(unit); 799 } 800