1 /*- 2 * Copyright (c) 2013 The FreeBSD Foundation 3 * All rights reserved. 4 * 5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 6 * under sponsorship from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/bus.h> 37 #include <sys/interrupt.h> 38 #include <sys/kernel.h> 39 #include <sys/ktr.h> 40 #include <sys/lock.h> 41 #include <sys/memdesc.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 #include <sys/rman.h> 46 #include <sys/sf_buf.h> 47 #include <sys/sysctl.h> 48 #include <sys/taskqueue.h> 49 #include <sys/tree.h> 50 #include <sys/uio.h> 51 #include <vm/vm.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_kern.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <vm/vm_pager.h> 57 #include <vm/vm_map.h> 58 #include <machine/atomic.h> 59 #include <machine/bus.h> 60 #include <machine/cpu.h> 61 #include <machine/md_var.h> 62 #include <machine/specialreg.h> 63 #include <x86/include/busdma_impl.h> 64 #include <x86/iommu/intel_reg.h> 65 #include <x86/iommu/busdma_dmar.h> 66 #include <x86/iommu/intel_dmar.h> 67 68 static int ctx_unmap_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base, 69 dmar_gaddr_t size, int flags); 70 71 /* 72 * The cache of the identity mapping page tables for the DMARs. Using 73 * the cache saves significant amount of memory for page tables by 74 * reusing the page tables, since usually DMARs are identical and have 75 * the same capabilities. Still, cache records the information needed 76 * to match DMAR capabilities and page table format, to correctly 77 * handle different DMARs. 78 */ 79 80 struct idpgtbl { 81 dmar_gaddr_t maxaddr; /* Page table covers the guest address 82 range [0..maxaddr) */ 83 int pglvl; /* Total page table levels ignoring 84 superpages */ 85 int leaf; /* The last materialized page table 86 level, it is non-zero if superpages 87 are supported */ 88 vm_object_t pgtbl_obj; /* The page table pages */ 89 LIST_ENTRY(idpgtbl) link; 90 }; 91 92 static struct sx idpgtbl_lock; 93 SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl"); 94 static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls); 95 static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl", 96 "Intel DMAR Identity mappings cache elements"); 97 98 /* 99 * Build the next level of the page tables for the identity mapping. 100 * - lvl is the level to build; 101 * - idx is the index of the page table page in the pgtbl_obj, which is 102 * being allocated filled now; 103 * - addr is the starting address in the bus address space which is 104 * mapped by the page table page. 105 */ 106 static void 107 ctx_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx, 108 dmar_gaddr_t addr) 109 { 110 vm_page_t m, m1; 111 dmar_pte_t *pte; 112 struct sf_buf *sf; 113 dmar_gaddr_t f, pg_sz; 114 vm_pindex_t base; 115 int i; 116 117 VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj); 118 if (addr >= tbl->maxaddr) 119 return; 120 m = dmar_pgalloc(tbl->pgtbl_obj, idx, DMAR_PGF_OBJL | DMAR_PGF_WAITOK | 121 DMAR_PGF_ZERO); 122 base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */ 123 pg_sz = pglvl_page_size(tbl->pglvl, lvl); 124 if (lvl != tbl->leaf) { 125 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) 126 ctx_idmap_nextlvl(tbl, lvl + 1, base + i, f); 127 } 128 VM_OBJECT_WUNLOCK(tbl->pgtbl_obj); 129 pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, DMAR_PGF_WAITOK, &sf); 130 if (lvl == tbl->leaf) { 131 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) { 132 if (f >= tbl->maxaddr) 133 break; 134 pte[i].pte = (DMAR_PTE_ADDR_MASK & f) | 135 DMAR_PTE_R | DMAR_PTE_W; 136 } 137 } else { 138 for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) { 139 if (f >= tbl->maxaddr) 140 break; 141 m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i, 142 DMAR_PGF_NOALLOC); 143 KASSERT(m1 != NULL, ("lost page table page")); 144 pte[i].pte = (DMAR_PTE_ADDR_MASK & 145 VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W; 146 } 147 } 148 /* ctx_get_idmap_pgtbl flushes CPU cache if needed. */ 149 dmar_unmap_pgtbl(sf); 150 VM_OBJECT_WLOCK(tbl->pgtbl_obj); 151 } 152 153 /* 154 * Find a ready and compatible identity-mapping page table in the 155 * cache. If not found, populate the identity-mapping page table for 156 * the context, up to the maxaddr. The maxaddr byte is allowed to be 157 * not mapped, which is aligned with the definition of Maxmem as the 158 * highest usable physical address + 1. If superpages are used, the 159 * maxaddr is typically mapped. 160 */ 161 vm_object_t 162 ctx_get_idmap_pgtbl(struct dmar_ctx *ctx, dmar_gaddr_t maxaddr) 163 { 164 struct dmar_unit *unit; 165 struct idpgtbl *tbl; 166 vm_object_t res; 167 vm_page_t m; 168 int leaf, i; 169 170 leaf = 0; /* silence gcc */ 171 172 /* 173 * First, determine where to stop the paging structures. 174 */ 175 for (i = 0; i < ctx->pglvl; i++) { 176 if (i == ctx->pglvl - 1 || ctx_is_sp_lvl(ctx, i)) { 177 leaf = i; 178 break; 179 } 180 } 181 182 /* 183 * Search the cache for a compatible page table. Qualified 184 * page table must map up to maxaddr, its level must be 185 * supported by the DMAR and leaf should be equal to the 186 * calculated value. The later restriction could be lifted 187 * but I believe it is currently impossible to have any 188 * deviations for existing hardware. 189 */ 190 sx_slock(&idpgtbl_lock); 191 LIST_FOREACH(tbl, &idpgtbls, link) { 192 if (tbl->maxaddr >= maxaddr && 193 dmar_pglvl_supported(ctx->dmar, tbl->pglvl) && 194 tbl->leaf == leaf) { 195 res = tbl->pgtbl_obj; 196 vm_object_reference(res); 197 sx_sunlock(&idpgtbl_lock); 198 ctx->pglvl = tbl->pglvl; /* XXXKIB ? */ 199 goto end; 200 } 201 } 202 203 /* 204 * Not found in cache, relock the cache into exclusive mode to 205 * be able to add element, and recheck cache again after the 206 * relock. 207 */ 208 sx_sunlock(&idpgtbl_lock); 209 sx_xlock(&idpgtbl_lock); 210 LIST_FOREACH(tbl, &idpgtbls, link) { 211 if (tbl->maxaddr >= maxaddr && 212 dmar_pglvl_supported(ctx->dmar, tbl->pglvl) && 213 tbl->leaf == leaf) { 214 res = tbl->pgtbl_obj; 215 vm_object_reference(res); 216 sx_xunlock(&idpgtbl_lock); 217 ctx->pglvl = tbl->pglvl; /* XXXKIB ? */ 218 return (res); 219 } 220 } 221 222 /* 223 * Still not found, create new page table. 224 */ 225 tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK); 226 tbl->pglvl = ctx->pglvl; 227 tbl->leaf = leaf; 228 tbl->maxaddr = maxaddr; 229 tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL, 230 IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL); 231 VM_OBJECT_WLOCK(tbl->pgtbl_obj); 232 ctx_idmap_nextlvl(tbl, 0, 0, 0); 233 VM_OBJECT_WUNLOCK(tbl->pgtbl_obj); 234 LIST_INSERT_HEAD(&idpgtbls, tbl, link); 235 res = tbl->pgtbl_obj; 236 vm_object_reference(res); 237 sx_xunlock(&idpgtbl_lock); 238 239 end: 240 /* 241 * Table was found or created. 242 * 243 * If DMAR does not snoop paging structures accesses, flush 244 * CPU cache to memory. Note that dmar_unmap_pgtbl() coherent 245 * argument was possibly invalid at the time of the identity 246 * page table creation, since DMAR which was passed at the 247 * time of creation could be coherent, while current DMAR is 248 * not. 249 * 250 * If DMAR cannot look into the chipset write buffer, flush it 251 * as well. 252 */ 253 unit = ctx->dmar; 254 if (!DMAR_IS_COHERENT(unit)) { 255 VM_OBJECT_WLOCK(res); 256 for (m = vm_page_lookup(res, 0); m != NULL; 257 m = vm_page_next(m)) 258 pmap_invalidate_cache_pages(&m, 1); 259 VM_OBJECT_WUNLOCK(res); 260 } 261 if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) { 262 DMAR_LOCK(unit); 263 dmar_flush_write_bufs(unit); 264 DMAR_UNLOCK(unit); 265 } 266 267 return (res); 268 } 269 270 /* 271 * Return a reference to the identity mapping page table to the cache. 272 */ 273 void 274 put_idmap_pgtbl(vm_object_t obj) 275 { 276 struct idpgtbl *tbl, *tbl1; 277 vm_object_t rmobj; 278 279 sx_slock(&idpgtbl_lock); 280 KASSERT(obj->ref_count >= 2, ("lost cache reference")); 281 vm_object_deallocate(obj); 282 283 /* 284 * Cache always owns one last reference on the page table object. 285 * If there is an additional reference, object must stay. 286 */ 287 if (obj->ref_count > 1) { 288 sx_sunlock(&idpgtbl_lock); 289 return; 290 } 291 292 /* 293 * Cache reference is the last, remove cache element and free 294 * page table object, returning the page table pages to the 295 * system. 296 */ 297 sx_sunlock(&idpgtbl_lock); 298 sx_xlock(&idpgtbl_lock); 299 LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) { 300 rmobj = tbl->pgtbl_obj; 301 if (rmobj->ref_count == 1) { 302 LIST_REMOVE(tbl, link); 303 atomic_subtract_int(&dmar_tbl_pagecnt, 304 rmobj->resident_page_count); 305 vm_object_deallocate(rmobj); 306 free(tbl, M_DMAR_IDPGTBL); 307 } 308 } 309 sx_xunlock(&idpgtbl_lock); 310 } 311 312 /* 313 * The core routines to map and unmap host pages at the given guest 314 * address. Support superpages. 315 */ 316 317 /* 318 * Index of the pte for the guest address base in the page table at 319 * the level lvl. 320 */ 321 static int 322 ctx_pgtbl_pte_off(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl) 323 { 324 325 base >>= DMAR_PAGE_SHIFT + (ctx->pglvl - lvl - 1) * DMAR_NPTEPGSHIFT; 326 return (base & DMAR_PTEMASK); 327 } 328 329 /* 330 * Returns the page index of the page table page in the page table 331 * object, which maps the given address base at the page table level 332 * lvl. 333 */ 334 static vm_pindex_t 335 ctx_pgtbl_get_pindex(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl) 336 { 337 vm_pindex_t idx, pidx; 338 int i; 339 340 KASSERT(lvl >= 0 && lvl < ctx->pglvl, ("wrong lvl %p %d", ctx, lvl)); 341 342 for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx) 343 idx = ctx_pgtbl_pte_off(ctx, base, i) + pidx * DMAR_NPTEPG + 1; 344 return (idx); 345 } 346 347 static dmar_pte_t * 348 ctx_pgtbl_map_pte(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl, int flags, 349 vm_pindex_t *idxp, struct sf_buf **sf) 350 { 351 vm_page_t m; 352 struct sf_buf *sfp; 353 dmar_pte_t *pte, *ptep; 354 vm_pindex_t idx, idx1; 355 356 DMAR_CTX_ASSERT_PGLOCKED(ctx); 357 KASSERT((flags & DMAR_PGF_OBJL) != 0, ("lost PGF_OBJL")); 358 359 idx = ctx_pgtbl_get_pindex(ctx, base, lvl); 360 if (*sf != NULL && idx == *idxp) { 361 pte = (dmar_pte_t *)sf_buf_kva(*sf); 362 } else { 363 if (*sf != NULL) 364 dmar_unmap_pgtbl(*sf); 365 *idxp = idx; 366 retry: 367 pte = dmar_map_pgtbl(ctx->pgtbl_obj, idx, flags, sf); 368 if (pte == NULL) { 369 KASSERT(lvl > 0, ("lost root page table page %p", ctx)); 370 /* 371 * Page table page does not exists, allocate 372 * it and create pte in the up level. 373 */ 374 m = dmar_pgalloc(ctx->pgtbl_obj, idx, flags | 375 DMAR_PGF_ZERO); 376 if (m == NULL) 377 return (NULL); 378 379 /* 380 * Prevent potential free while pgtbl_obj is 381 * unlocked in the recursive call to 382 * ctx_pgtbl_map_pte(), if other thread did 383 * pte write and clean while the lock if 384 * dropped. 385 */ 386 m->wire_count++; 387 388 sfp = NULL; 389 ptep = ctx_pgtbl_map_pte(ctx, base, lvl - 1, flags, 390 &idx1, &sfp); 391 if (ptep == NULL) { 392 KASSERT(m->pindex != 0, 393 ("loosing root page %p", ctx)); 394 m->wire_count--; 395 dmar_pgfree(ctx->pgtbl_obj, m->pindex, flags); 396 return (NULL); 397 } 398 dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W | 399 VM_PAGE_TO_PHYS(m)); 400 dmar_flush_pte_to_ram(ctx->dmar, ptep); 401 sf_buf_page(sfp)->wire_count += 1; 402 m->wire_count--; 403 dmar_unmap_pgtbl(sfp); 404 /* Only executed once. */ 405 goto retry; 406 } 407 } 408 pte += ctx_pgtbl_pte_off(ctx, base, lvl); 409 return (pte); 410 } 411 412 static int 413 ctx_map_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size, 414 vm_page_t *ma, uint64_t pflags, int flags) 415 { 416 dmar_pte_t *pte; 417 struct sf_buf *sf; 418 dmar_gaddr_t pg_sz, base1, size1; 419 vm_pindex_t pi, c, idx, run_sz; 420 int lvl; 421 bool superpage; 422 423 DMAR_CTX_ASSERT_PGLOCKED(ctx); 424 425 base1 = base; 426 size1 = size; 427 flags |= DMAR_PGF_OBJL; 428 TD_PREP_PINNED_ASSERT; 429 430 for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz, 431 pi += run_sz) { 432 for (lvl = 0, c = 0, superpage = false;; lvl++) { 433 pg_sz = ctx_page_size(ctx, lvl); 434 run_sz = pg_sz >> DMAR_PAGE_SHIFT; 435 if (lvl == ctx->pglvl - 1) 436 break; 437 /* 438 * Check if the current base suitable for the 439 * superpage mapping. First, verify the level. 440 */ 441 if (!ctx_is_sp_lvl(ctx, lvl)) 442 continue; 443 /* 444 * Next, look at the size of the mapping and 445 * alignment of both guest and host addresses. 446 */ 447 if (size < pg_sz || (base & (pg_sz - 1)) != 0 || 448 (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0) 449 continue; 450 /* All passed, check host pages contiguouty. */ 451 if (c == 0) { 452 for (c = 1; c < run_sz; c++) { 453 if (VM_PAGE_TO_PHYS(ma[pi + c]) != 454 VM_PAGE_TO_PHYS(ma[pi + c - 1]) + 455 PAGE_SIZE) 456 break; 457 } 458 } 459 if (c >= run_sz) { 460 superpage = true; 461 break; 462 } 463 } 464 KASSERT(size >= pg_sz, 465 ("mapping loop overflow %p %jx %jx %jx", ctx, 466 (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz)); 467 pte = ctx_pgtbl_map_pte(ctx, base, lvl, flags, &idx, &sf); 468 if (pte == NULL) { 469 KASSERT((flags & DMAR_PGF_WAITOK) == 0, 470 ("failed waitable pte alloc %p", ctx)); 471 if (sf != NULL) 472 dmar_unmap_pgtbl(sf); 473 ctx_unmap_buf_locked(ctx, base1, base - base1, flags); 474 TD_PINNED_ASSERT; 475 return (ENOMEM); 476 } 477 dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags | 478 (superpage ? DMAR_PTE_SP : 0)); 479 dmar_flush_pte_to_ram(ctx->dmar, pte); 480 sf_buf_page(sf)->wire_count += 1; 481 } 482 if (sf != NULL) 483 dmar_unmap_pgtbl(sf); 484 TD_PINNED_ASSERT; 485 return (0); 486 } 487 488 int 489 ctx_map_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size, 490 vm_page_t *ma, uint64_t pflags, int flags) 491 { 492 struct dmar_unit *unit; 493 int error; 494 495 unit = ctx->dmar; 496 497 KASSERT((ctx->flags & DMAR_CTX_IDMAP) == 0, 498 ("modifying idmap pagetable ctx %p", ctx)); 499 KASSERT((base & DMAR_PAGE_MASK) == 0, 500 ("non-aligned base %p %jx %jx", ctx, (uintmax_t)base, 501 (uintmax_t)size)); 502 KASSERT((size & DMAR_PAGE_MASK) == 0, 503 ("non-aligned size %p %jx %jx", ctx, (uintmax_t)base, 504 (uintmax_t)size)); 505 KASSERT(size > 0, ("zero size %p %jx %jx", ctx, (uintmax_t)base, 506 (uintmax_t)size)); 507 KASSERT(base < (1ULL << ctx->agaw), 508 ("base too high %p %jx %jx agaw %d", ctx, (uintmax_t)base, 509 (uintmax_t)size, ctx->agaw)); 510 KASSERT(base + size < (1ULL << ctx->agaw), 511 ("end too high %p %jx %jx agaw %d", ctx, (uintmax_t)base, 512 (uintmax_t)size, ctx->agaw)); 513 KASSERT(base + size > base, 514 ("size overflow %p %jx %jx", ctx, (uintmax_t)base, 515 (uintmax_t)size)); 516 KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0, 517 ("neither read nor write %jx", (uintmax_t)pflags)); 518 KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP | 519 DMAR_PTE_TM)) == 0, 520 ("invalid pte flags %jx", (uintmax_t)pflags)); 521 KASSERT((pflags & DMAR_PTE_SNP) == 0 || 522 (unit->hw_ecap & DMAR_ECAP_SC) != 0, 523 ("PTE_SNP for dmar without snoop control %p %jx", 524 ctx, (uintmax_t)pflags)); 525 KASSERT((pflags & DMAR_PTE_TM) == 0 || 526 (unit->hw_ecap & DMAR_ECAP_DI) != 0, 527 ("PTE_TM for dmar without DIOTLB %p %jx", 528 ctx, (uintmax_t)pflags)); 529 KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags)); 530 531 DMAR_CTX_PGLOCK(ctx); 532 error = ctx_map_buf_locked(ctx, base, size, ma, pflags, flags); 533 DMAR_CTX_PGUNLOCK(ctx); 534 if (error != 0) 535 return (error); 536 537 if ((unit->hw_cap & DMAR_CAP_CM) != 0) 538 ctx_flush_iotlb_sync(ctx, base, size); 539 else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) { 540 /* See 11.1 Write Buffer Flushing. */ 541 DMAR_LOCK(unit); 542 dmar_flush_write_bufs(unit); 543 DMAR_UNLOCK(unit); 544 } 545 return (0); 546 } 547 548 static void ctx_unmap_clear_pte(struct dmar_ctx *ctx, dmar_gaddr_t base, 549 int lvl, int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_fs); 550 551 static void 552 ctx_free_pgtbl_pde(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl, int flags) 553 { 554 struct sf_buf *sf; 555 dmar_pte_t *pde; 556 vm_pindex_t idx; 557 558 sf = NULL; 559 pde = ctx_pgtbl_map_pte(ctx, base, lvl, flags, &idx, &sf); 560 ctx_unmap_clear_pte(ctx, base, lvl, flags, pde, &sf, true); 561 } 562 563 static void 564 ctx_unmap_clear_pte(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl, 565 int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf) 566 { 567 vm_page_t m; 568 569 dmar_pte_clear(&pte->pte); 570 dmar_flush_pte_to_ram(ctx->dmar, pte); 571 m = sf_buf_page(*sf); 572 if (free_sf) { 573 dmar_unmap_pgtbl(*sf); 574 *sf = NULL; 575 } 576 m->wire_count--; 577 if (m->wire_count != 0) 578 return; 579 KASSERT(lvl != 0, 580 ("lost reference (lvl) on root pg ctx %p base %jx lvl %d", 581 ctx, (uintmax_t)base, lvl)); 582 KASSERT(m->pindex != 0, 583 ("lost reference (idx) on root pg ctx %p base %jx lvl %d", 584 ctx, (uintmax_t)base, lvl)); 585 dmar_pgfree(ctx->pgtbl_obj, m->pindex, flags); 586 ctx_free_pgtbl_pde(ctx, base, lvl - 1, flags); 587 } 588 589 /* 590 * Assumes that the unmap is never partial. 591 */ 592 static int 593 ctx_unmap_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base, 594 dmar_gaddr_t size, int flags) 595 { 596 dmar_pte_t *pte; 597 struct sf_buf *sf; 598 vm_pindex_t idx; 599 dmar_gaddr_t pg_sz, base1, size1; 600 int lvl; 601 602 DMAR_CTX_ASSERT_PGLOCKED(ctx); 603 if (size == 0) 604 return (0); 605 606 KASSERT((ctx->flags & DMAR_CTX_IDMAP) == 0, 607 ("modifying idmap pagetable ctx %p", ctx)); 608 KASSERT((base & DMAR_PAGE_MASK) == 0, 609 ("non-aligned base %p %jx %jx", ctx, (uintmax_t)base, 610 (uintmax_t)size)); 611 KASSERT((size & DMAR_PAGE_MASK) == 0, 612 ("non-aligned size %p %jx %jx", ctx, (uintmax_t)base, 613 (uintmax_t)size)); 614 KASSERT(base < (1ULL << ctx->agaw), 615 ("base too high %p %jx %jx agaw %d", ctx, (uintmax_t)base, 616 (uintmax_t)size, ctx->agaw)); 617 KASSERT(base + size < (1ULL << ctx->agaw), 618 ("end too high %p %jx %jx agaw %d", ctx, (uintmax_t)base, 619 (uintmax_t)size, ctx->agaw)); 620 KASSERT(base + size > base, 621 ("size overflow %p %jx %jx", ctx, (uintmax_t)base, 622 (uintmax_t)size)); 623 KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags)); 624 625 pg_sz = 0; /* silence gcc */ 626 base1 = base; 627 size1 = size; 628 flags |= DMAR_PGF_OBJL; 629 TD_PREP_PINNED_ASSERT; 630 631 for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) { 632 for (lvl = 0; lvl < ctx->pglvl; lvl++) { 633 if (lvl != ctx->pglvl - 1 && !ctx_is_sp_lvl(ctx, lvl)) 634 continue; 635 pg_sz = ctx_page_size(ctx, lvl); 636 if (pg_sz > size) 637 continue; 638 pte = ctx_pgtbl_map_pte(ctx, base, lvl, flags, 639 &idx, &sf); 640 KASSERT(pte != NULL, 641 ("sleeping or page missed %p %jx %d 0x%x", 642 ctx, (uintmax_t)base, lvl, flags)); 643 if ((pte->pte & DMAR_PTE_SP) != 0 || 644 lvl == ctx->pglvl - 1) { 645 ctx_unmap_clear_pte(ctx, base, lvl, flags, 646 pte, &sf, false); 647 break; 648 } 649 } 650 KASSERT(size >= pg_sz, 651 ("unmapping loop overflow %p %jx %jx %jx", ctx, 652 (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz)); 653 } 654 if (sf != NULL) 655 dmar_unmap_pgtbl(sf); 656 /* 657 * See 11.1 Write Buffer Flushing for an explanation why RWBF 658 * can be ignored there. 659 */ 660 661 TD_PINNED_ASSERT; 662 return (0); 663 } 664 665 int 666 ctx_unmap_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size, 667 int flags) 668 { 669 int error; 670 671 DMAR_CTX_PGLOCK(ctx); 672 error = ctx_unmap_buf_locked(ctx, base, size, flags); 673 DMAR_CTX_PGUNLOCK(ctx); 674 return (error); 675 } 676 677 int 678 ctx_alloc_pgtbl(struct dmar_ctx *ctx) 679 { 680 vm_page_t m; 681 682 KASSERT(ctx->pgtbl_obj == NULL, ("already initialized %p", ctx)); 683 684 ctx->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL, 685 IDX_TO_OFF(pglvl_max_pages(ctx->pglvl)), 0, 0, NULL); 686 DMAR_CTX_PGLOCK(ctx); 687 m = dmar_pgalloc(ctx->pgtbl_obj, 0, DMAR_PGF_WAITOK | 688 DMAR_PGF_ZERO | DMAR_PGF_OBJL); 689 /* No implicit free of the top level page table page. */ 690 m->wire_count = 1; 691 DMAR_CTX_PGUNLOCK(ctx); 692 return (0); 693 } 694 695 void 696 ctx_free_pgtbl(struct dmar_ctx *ctx) 697 { 698 vm_object_t obj; 699 vm_page_t m; 700 701 obj = ctx->pgtbl_obj; 702 if (obj == NULL) { 703 KASSERT((ctx->dmar->hw_ecap & DMAR_ECAP_PT) != 0 && 704 (ctx->flags & DMAR_CTX_IDMAP) != 0, 705 ("lost pagetable object ctx %p", ctx)); 706 return; 707 } 708 DMAR_CTX_ASSERT_PGLOCKED(ctx); 709 ctx->pgtbl_obj = NULL; 710 711 if ((ctx->flags & DMAR_CTX_IDMAP) != 0) { 712 put_idmap_pgtbl(obj); 713 ctx->flags &= ~DMAR_CTX_IDMAP; 714 return; 715 } 716 717 /* Obliterate wire_counts */ 718 VM_OBJECT_ASSERT_WLOCKED(obj); 719 for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m)) 720 m->wire_count = 0; 721 VM_OBJECT_WUNLOCK(obj); 722 vm_object_deallocate(obj); 723 } 724 725 static inline uint64_t 726 ctx_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro) 727 { 728 uint64_t iotlbr; 729 730 dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT | 731 DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt); 732 for (;;) { 733 iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF); 734 if ((iotlbr & DMAR_IOTLB_IVT) == 0) 735 break; 736 cpu_spinwait(); 737 } 738 return (iotlbr); 739 } 740 741 void 742 ctx_flush_iotlb_sync(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size) 743 { 744 struct dmar_unit *unit; 745 dmar_gaddr_t isize; 746 uint64_t iotlbr; 747 int am, iro; 748 749 unit = ctx->dmar; 750 KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call", 751 unit->unit)); 752 iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16; 753 DMAR_LOCK(unit); 754 if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) { 755 iotlbr = ctx_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM | 756 DMAR_IOTLB_DID(ctx->domain), iro); 757 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) != 758 DMAR_IOTLB_IAIG_INVLD, 759 ("dmar%d: invalidation failed %jx", unit->unit, 760 (uintmax_t)iotlbr)); 761 } else { 762 for (; size > 0; base += isize, size -= isize) { 763 am = calc_am(unit, base, size, &isize); 764 dmar_write8(unit, iro, base | am); 765 iotlbr = ctx_wait_iotlb_flush(unit, 766 DMAR_IOTLB_IIRG_PAGE | DMAR_IOTLB_DID(ctx->domain), 767 iro); 768 KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) != 769 DMAR_IOTLB_IAIG_INVLD, 770 ("dmar%d: PSI invalidation failed " 771 "iotlbr 0x%jx base 0x%jx size 0x%jx am %d", 772 unit->unit, (uintmax_t)iotlbr, 773 (uintmax_t)base, (uintmax_t)size, am)); 774 /* 775 * Any non-page granularity covers whole guest 776 * address space for the domain. 777 */ 778 if ((iotlbr & DMAR_IOTLB_IAIG_MASK) != 779 DMAR_IOTLB_IAIG_PAGE) 780 break; 781 } 782 } 783 DMAR_UNLOCK(unit); 784 } 785