xref: /freebsd/sys/x86/iommu/intel_idpgtbl.c (revision 4c9e27bd0a5f7fda85b0c0bf750575aee300a172)
1 /*-
2  * Copyright (c) 2013 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
6  * under sponsorship from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/kernel.h>
39 #include <sys/ktr.h>
40 #include <sys/lock.h>
41 #include <sys/memdesc.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/rwlock.h>
45 #include <sys/rman.h>
46 #include <sys/sf_buf.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 #include <sys/tree.h>
50 #include <sys/uio.h>
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_page.h>
56 #include <vm/vm_pager.h>
57 #include <vm/vm_map.h>
58 #include <machine/atomic.h>
59 #include <machine/bus.h>
60 #include <machine/cpu.h>
61 #include <machine/md_var.h>
62 #include <machine/specialreg.h>
63 #include <x86/include/busdma_impl.h>
64 #include <x86/iommu/intel_reg.h>
65 #include <x86/iommu/busdma_dmar.h>
66 #include <x86/iommu/intel_dmar.h>
67 
68 static int ctx_unmap_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base,
69     dmar_gaddr_t size, int flags);
70 
71 /*
72  * The cache of the identity mapping page tables for the DMARs.  Using
73  * the cache saves significant amount of memory for page tables by
74  * reusing the page tables, since usually DMARs are identical and have
75  * the same capabilities.  Still, cache records the information needed
76  * to match DMAR capabilities and page table format, to correctly
77  * handle different DMARs.
78  */
79 
80 struct idpgtbl {
81 	dmar_gaddr_t maxaddr;	/* Page table covers the guest address
82 				   range [0..maxaddr) */
83 	int pglvl;		/* Total page table levels ignoring
84 				   superpages */
85 	int leaf;		/* The last materialized page table
86 				   level, it is non-zero if superpages
87 				   are supported */
88 	vm_object_t pgtbl_obj;	/* The page table pages */
89 	LIST_ENTRY(idpgtbl) link;
90 };
91 
92 static struct sx idpgtbl_lock;
93 SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl");
94 static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls);
95 static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl",
96     "Intel DMAR Identity mappings cache elements");
97 
98 /*
99  * Build the next level of the page tables for the identity mapping.
100  * - lvl is the level to build;
101  * - idx is the index of the page table page in the pgtbl_obj, which is
102  *   being allocated filled now;
103  * - addr is the starting address in the bus address space which is
104  *   mapped by the page table page.
105  */
106 static void
107 ctx_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx,
108     dmar_gaddr_t addr)
109 {
110 	vm_page_t m, m1;
111 	dmar_pte_t *pte;
112 	struct sf_buf *sf;
113 	dmar_gaddr_t f, pg_sz;
114 	vm_pindex_t base;
115 	int i;
116 
117 	VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj);
118 	if (addr >= tbl->maxaddr)
119 		return;
120 	m = dmar_pgalloc(tbl->pgtbl_obj, idx, DMAR_PGF_OBJL | DMAR_PGF_WAITOK |
121 	    DMAR_PGF_ZERO);
122 	base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */
123 	pg_sz = pglvl_page_size(tbl->pglvl, lvl);
124 	if (lvl != tbl->leaf) {
125 		for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz)
126 			ctx_idmap_nextlvl(tbl, lvl + 1, base + i, f);
127 	}
128 	VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
129 	pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, DMAR_PGF_WAITOK, &sf);
130 	if (lvl == tbl->leaf) {
131 		for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
132 			if (f >= tbl->maxaddr)
133 				break;
134 			pte[i].pte = (DMAR_PTE_ADDR_MASK & f) |
135 			    DMAR_PTE_R | DMAR_PTE_W;
136 		}
137 	} else {
138 		for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
139 			if (f >= tbl->maxaddr)
140 				break;
141 			m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i,
142 			    DMAR_PGF_NOALLOC);
143 			KASSERT(m1 != NULL, ("lost page table page"));
144 			pte[i].pte = (DMAR_PTE_ADDR_MASK &
145 			    VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W;
146 		}
147 	}
148 	/* ctx_get_idmap_pgtbl flushes CPU cache if needed. */
149 	dmar_unmap_pgtbl(sf, true);
150 	VM_OBJECT_WLOCK(tbl->pgtbl_obj);
151 }
152 
153 /*
154  * Find a ready and compatible identity-mapping page table in the
155  * cache. If not found, populate the identity-mapping page table for
156  * the context, up to the maxaddr. The maxaddr byte is allowed to be
157  * not mapped, which is aligned with the definition of Maxmem as the
158  * highest usable physical address + 1.  If superpages are used, the
159  * maxaddr is typically mapped.
160  */
161 vm_object_t
162 ctx_get_idmap_pgtbl(struct dmar_ctx *ctx, dmar_gaddr_t maxaddr)
163 {
164 	struct dmar_unit *unit;
165 	struct idpgtbl *tbl;
166 	vm_object_t res;
167 	vm_page_t m;
168 	int leaf, i;
169 
170 	leaf = 0; /* silence gcc */
171 
172 	/*
173 	 * First, determine where to stop the paging structures.
174 	 */
175 	for (i = 0; i < ctx->pglvl; i++) {
176 		if (i == ctx->pglvl - 1 || ctx_is_sp_lvl(ctx, i)) {
177 			leaf = i;
178 			break;
179 		}
180 	}
181 
182 	/*
183 	 * Search the cache for a compatible page table.  Qualified
184 	 * page table must map up to maxaddr, its level must be
185 	 * supported by the DMAR and leaf should be equal to the
186 	 * calculated value.  The later restriction could be lifted
187 	 * but I believe it is currently impossible to have any
188 	 * deviations for existing hardware.
189 	 */
190 	sx_slock(&idpgtbl_lock);
191 	LIST_FOREACH(tbl, &idpgtbls, link) {
192 		if (tbl->maxaddr >= maxaddr &&
193 		    dmar_pglvl_supported(ctx->dmar, tbl->pglvl) &&
194 		    tbl->leaf == leaf) {
195 			res = tbl->pgtbl_obj;
196 			vm_object_reference(res);
197 			sx_sunlock(&idpgtbl_lock);
198 			ctx->pglvl = tbl->pglvl; /* XXXKIB ? */
199 			goto end;
200 		}
201 	}
202 
203 	/*
204 	 * Not found in cache, relock the cache into exclusive mode to
205 	 * be able to add element, and recheck cache again after the
206 	 * relock.
207 	 */
208 	sx_sunlock(&idpgtbl_lock);
209 	sx_xlock(&idpgtbl_lock);
210 	LIST_FOREACH(tbl, &idpgtbls, link) {
211 		if (tbl->maxaddr >= maxaddr &&
212 		    dmar_pglvl_supported(ctx->dmar, tbl->pglvl) &&
213 		    tbl->leaf == leaf) {
214 			res = tbl->pgtbl_obj;
215 			vm_object_reference(res);
216 			sx_xunlock(&idpgtbl_lock);
217 			ctx->pglvl = tbl->pglvl; /* XXXKIB ? */
218 			return (res);
219 		}
220 	}
221 
222 	/*
223 	 * Still not found, create new page table.
224 	 */
225 	tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK);
226 	tbl->pglvl = ctx->pglvl;
227 	tbl->leaf = leaf;
228 	tbl->maxaddr = maxaddr;
229 	tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
230 	    IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL);
231 	VM_OBJECT_WLOCK(tbl->pgtbl_obj);
232 	ctx_idmap_nextlvl(tbl, 0, 0, 0);
233 	VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
234 	LIST_INSERT_HEAD(&idpgtbls, tbl, link);
235 	res = tbl->pgtbl_obj;
236 	vm_object_reference(res);
237 	sx_xunlock(&idpgtbl_lock);
238 
239 end:
240 	/*
241 	 * Table was found or created.
242 	 *
243 	 * If DMAR does not snoop paging structures accesses, flush
244 	 * CPU cache to memory.  Note that dmar_unmap_pgtbl() coherent
245 	 * argument was possibly invalid at the time of the identity
246 	 * page table creation, since DMAR which was passed at the
247 	 * time of creation could be coherent, while current DMAR is
248 	 * not.
249 	 *
250 	 * If DMAR cannot look into the chipset write buffer, flush it
251 	 * as well.
252 	 */
253 	unit = ctx->dmar;
254 	if (!DMAR_IS_COHERENT(unit)) {
255 		VM_OBJECT_WLOCK(res);
256 		for (m = vm_page_lookup(res, 0); m != NULL;
257 		     m = vm_page_next(m))
258 			pmap_invalidate_cache_pages(&m, 1);
259 		VM_OBJECT_WUNLOCK(res);
260 	}
261 	if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
262 		DMAR_LOCK(unit);
263 		dmar_flush_write_bufs(unit);
264 		DMAR_UNLOCK(unit);
265 	}
266 
267 	return (res);
268 }
269 
270 /*
271  * Return a reference to the identity mapping page table to the cache.
272  */
273 void
274 put_idmap_pgtbl(vm_object_t obj)
275 {
276 	struct idpgtbl *tbl, *tbl1;
277 	vm_object_t rmobj;
278 
279 	sx_slock(&idpgtbl_lock);
280 	KASSERT(obj->ref_count >= 2, ("lost cache reference"));
281 	vm_object_deallocate(obj);
282 
283 	/*
284 	 * Cache always owns one last reference on the page table object.
285 	 * If there is an additional reference, object must stay.
286 	 */
287 	if (obj->ref_count > 1) {
288 		sx_sunlock(&idpgtbl_lock);
289 		return;
290 	}
291 
292 	/*
293 	 * Cache reference is the last, remove cache element and free
294 	 * page table object, returning the page table pages to the
295 	 * system.
296 	 */
297 	sx_sunlock(&idpgtbl_lock);
298 	sx_xlock(&idpgtbl_lock);
299 	LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) {
300 		rmobj = tbl->pgtbl_obj;
301 		if (rmobj->ref_count == 1) {
302 			LIST_REMOVE(tbl, link);
303 			atomic_subtract_int(&dmar_tbl_pagecnt,
304 			    rmobj->resident_page_count);
305 			vm_object_deallocate(rmobj);
306 			free(tbl, M_DMAR_IDPGTBL);
307 		}
308 	}
309 	sx_xunlock(&idpgtbl_lock);
310 }
311 
312 /*
313  * The core routines to map and unmap host pages at the given guest
314  * address.  Support superpages.
315  */
316 
317 /*
318  * Index of the pte for the guest address base in the page table at
319  * the level lvl.
320  */
321 static int
322 ctx_pgtbl_pte_off(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl)
323 {
324 
325 	base >>= DMAR_PAGE_SHIFT + (ctx->pglvl - lvl - 1) * DMAR_NPTEPGSHIFT;
326 	return (base & DMAR_PTEMASK);
327 }
328 
329 /*
330  * Returns the page index of the page table page in the page table
331  * object, which maps the given address base at the page table level
332  * lvl.
333  */
334 static vm_pindex_t
335 ctx_pgtbl_get_pindex(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl)
336 {
337 	vm_pindex_t idx, pidx;
338 	int i;
339 
340 	KASSERT(lvl >= 0 && lvl < ctx->pglvl, ("wrong lvl %p %d", ctx, lvl));
341 
342 	for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx)
343 		idx = ctx_pgtbl_pte_off(ctx, base, i) + pidx * DMAR_NPTEPG + 1;
344 	return (idx);
345 }
346 
347 static dmar_pte_t *
348 ctx_pgtbl_map_pte(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl, int flags,
349     vm_pindex_t *idxp, struct sf_buf **sf)
350 {
351 	vm_page_t m;
352 	struct sf_buf *sfp;
353 	dmar_pte_t *pte, *ptep;
354 	vm_pindex_t idx, idx1;
355 
356 	DMAR_CTX_ASSERT_PGLOCKED(ctx);
357 	KASSERT((flags & DMAR_PGF_OBJL) != 0, ("lost PGF_OBJL"));
358 
359 	idx = ctx_pgtbl_get_pindex(ctx, base, lvl);
360 	if (*sf != NULL && idx == *idxp) {
361 		pte = (dmar_pte_t *)sf_buf_kva(*sf);
362 	} else {
363 		if (*sf != NULL)
364 			dmar_unmap_pgtbl(*sf, DMAR_IS_COHERENT(ctx->dmar));
365 		*idxp = idx;
366 retry:
367 		pte = dmar_map_pgtbl(ctx->pgtbl_obj, idx, flags, sf);
368 		if (pte == NULL) {
369 			KASSERT(lvl > 0, ("lost root page table page %p", ctx));
370 			/*
371 			 * Page table page does not exists, allocate
372 			 * it and create pte in the up level.
373 			 */
374 			m = dmar_pgalloc(ctx->pgtbl_obj, idx, flags |
375 			    DMAR_PGF_ZERO);
376 			if (m == NULL)
377 				return (NULL);
378 
379 			/*
380 			 * Prevent potential free while pgtbl_obj is
381 			 * unlocked in the recursive call to
382 			 * ctx_pgtbl_map_pte(), if other thread did
383 			 * pte write and clean while the lock if
384 			 * dropped.
385 			 */
386 			m->wire_count++;
387 
388 			sfp = NULL;
389 			ptep = ctx_pgtbl_map_pte(ctx, base, lvl - 1, flags,
390 			    &idx1, &sfp);
391 			if (ptep == NULL) {
392 				KASSERT(m->pindex != 0,
393 				    ("loosing root page %p", ctx));
394 				m->wire_count--;
395 				dmar_pgfree(ctx->pgtbl_obj, m->pindex, flags);
396 				return (NULL);
397 			}
398 			dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W |
399 			    VM_PAGE_TO_PHYS(m));
400 			sf_buf_page(sfp)->wire_count += 1;
401 			m->wire_count--;
402 			dmar_unmap_pgtbl(sfp, DMAR_IS_COHERENT(ctx->dmar));
403 			/* Only executed once. */
404 			goto retry;
405 		}
406 	}
407 	pte += ctx_pgtbl_pte_off(ctx, base, lvl);
408 	return (pte);
409 }
410 
411 static int
412 ctx_map_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
413     vm_page_t *ma, uint64_t pflags, int flags)
414 {
415 	dmar_pte_t *pte;
416 	struct sf_buf *sf;
417 	dmar_gaddr_t pg_sz, base1, size1;
418 	vm_pindex_t pi, c, idx, run_sz;
419 	int lvl;
420 	bool superpage;
421 
422 	DMAR_CTX_ASSERT_PGLOCKED(ctx);
423 
424 	base1 = base;
425 	size1 = size;
426 	flags |= DMAR_PGF_OBJL;
427 	TD_PREP_PINNED_ASSERT;
428 
429 	for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz,
430 	    pi += run_sz) {
431 		for (lvl = 0, c = 0, superpage = false;; lvl++) {
432 			pg_sz = ctx_page_size(ctx, lvl);
433 			run_sz = pg_sz >> DMAR_PAGE_SHIFT;
434 			if (lvl == ctx->pglvl - 1)
435 				break;
436 			/*
437 			 * Check if the current base suitable for the
438 			 * superpage mapping.  First, verify the level.
439 			 */
440 			if (!ctx_is_sp_lvl(ctx, lvl))
441 				continue;
442 			/*
443 			 * Next, look at the size of the mapping and
444 			 * alignment of both guest and host addresses.
445 			 */
446 			if (size < pg_sz || (base & (pg_sz - 1)) != 0 ||
447 			    (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0)
448 				continue;
449 			/* All passed, check host pages contiguouty. */
450 			if (c == 0) {
451 				for (c = 1; c < run_sz; c++) {
452 					if (VM_PAGE_TO_PHYS(ma[pi + c]) !=
453 					    VM_PAGE_TO_PHYS(ma[pi + c - 1]) +
454 					    PAGE_SIZE)
455 						break;
456 				}
457 			}
458 			if (c >= run_sz) {
459 				superpage = true;
460 				break;
461 			}
462 		}
463 		KASSERT(size >= pg_sz,
464 		    ("mapping loop overflow %p %jx %jx %jx", ctx,
465 		    (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
466 		pte = ctx_pgtbl_map_pte(ctx, base, lvl, flags, &idx, &sf);
467 		if (pte == NULL) {
468 			KASSERT((flags & DMAR_PGF_WAITOK) == 0,
469 			    ("failed waitable pte alloc %p", ctx));
470 			if (sf != NULL) {
471 				dmar_unmap_pgtbl(sf,
472 				    DMAR_IS_COHERENT(ctx->dmar));
473 			}
474 			ctx_unmap_buf_locked(ctx, base1, base - base1, flags);
475 			TD_PINNED_ASSERT;
476 			return (ENOMEM);
477 		}
478 		dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags |
479 		    (superpage ? DMAR_PTE_SP : 0));
480 		sf_buf_page(sf)->wire_count += 1;
481 	}
482 	if (sf != NULL)
483 		dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(ctx->dmar));
484 	TD_PINNED_ASSERT;
485 	return (0);
486 }
487 
488 int
489 ctx_map_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
490     vm_page_t *ma, uint64_t pflags, int flags)
491 {
492 	struct dmar_unit *unit;
493 	int error;
494 
495 	unit = ctx->dmar;
496 
497 	KASSERT((ctx->flags & DMAR_CTX_IDMAP) == 0,
498 	    ("modifying idmap pagetable ctx %p", ctx));
499 	KASSERT((base & DMAR_PAGE_MASK) == 0,
500 	    ("non-aligned base %p %jx %jx", ctx, (uintmax_t)base,
501 	    (uintmax_t)size));
502 	KASSERT((size & DMAR_PAGE_MASK) == 0,
503 	    ("non-aligned size %p %jx %jx", ctx, (uintmax_t)base,
504 	    (uintmax_t)size));
505 	KASSERT(size > 0, ("zero size %p %jx %jx", ctx, (uintmax_t)base,
506 	    (uintmax_t)size));
507 	KASSERT(base < (1ULL << ctx->agaw),
508 	    ("base too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
509 	    (uintmax_t)size, ctx->agaw));
510 	KASSERT(base + size < (1ULL << ctx->agaw),
511 	    ("end too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
512 	    (uintmax_t)size, ctx->agaw));
513 	KASSERT(base + size > base,
514 	    ("size overflow %p %jx %jx", ctx, (uintmax_t)base,
515 	    (uintmax_t)size));
516 	KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0,
517 	    ("neither read nor write %jx", (uintmax_t)pflags));
518 	KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP |
519 	    DMAR_PTE_TM)) == 0,
520 	    ("invalid pte flags %jx", (uintmax_t)pflags));
521 	KASSERT((pflags & DMAR_PTE_SNP) == 0 ||
522 	    (unit->hw_ecap & DMAR_ECAP_SC) != 0,
523 	    ("PTE_SNP for dmar without snoop control %p %jx",
524 	    ctx, (uintmax_t)pflags));
525 	KASSERT((pflags & DMAR_PTE_TM) == 0 ||
526 	    (unit->hw_ecap & DMAR_ECAP_DI) != 0,
527 	    ("PTE_TM for dmar without DIOTLB %p %jx",
528 	    ctx, (uintmax_t)pflags));
529 	KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
530 
531 	DMAR_CTX_PGLOCK(ctx);
532 	error = ctx_map_buf_locked(ctx, base, size, ma, pflags, flags);
533 	DMAR_CTX_PGUNLOCK(ctx);
534 	if (error != 0)
535 		return (error);
536 
537 	if ((unit->hw_cap & DMAR_CAP_CM) != 0)
538 		ctx_flush_iotlb_sync(ctx, base, size);
539 	else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
540 		/* See 11.1 Write Buffer Flushing. */
541 		DMAR_LOCK(unit);
542 		dmar_flush_write_bufs(unit);
543 		DMAR_UNLOCK(unit);
544 	}
545 	return (0);
546 }
547 
548 static void ctx_unmap_clear_pte(struct dmar_ctx *ctx, dmar_gaddr_t base,
549     int lvl, int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_fs);
550 
551 static void
552 ctx_free_pgtbl_pde(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl, int flags)
553 {
554 	struct sf_buf *sf;
555 	dmar_pte_t *pde;
556 	vm_pindex_t idx;
557 
558 	sf = NULL;
559 	pde = ctx_pgtbl_map_pte(ctx, base, lvl, flags, &idx, &sf);
560 	ctx_unmap_clear_pte(ctx, base, lvl, flags, pde, &sf, true);
561 }
562 
563 static void
564 ctx_unmap_clear_pte(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl,
565     int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf)
566 {
567 	vm_page_t m;
568 
569 	dmar_pte_clear(&pte->pte);
570 	m = sf_buf_page(*sf);
571 	if (free_sf) {
572 		dmar_unmap_pgtbl(*sf, DMAR_IS_COHERENT(ctx->dmar));
573 		*sf = NULL;
574 	}
575 	m->wire_count--;
576 	if (m->wire_count != 0)
577 		return;
578 	KASSERT(lvl != 0,
579 	    ("lost reference (lvl) on root pg ctx %p base %jx lvl %d",
580 	    ctx, (uintmax_t)base, lvl));
581 	KASSERT(m->pindex != 0,
582 	    ("lost reference (idx) on root pg ctx %p base %jx lvl %d",
583 	    ctx, (uintmax_t)base, lvl));
584 	dmar_pgfree(ctx->pgtbl_obj, m->pindex, flags);
585 	ctx_free_pgtbl_pde(ctx, base, lvl - 1, flags);
586 }
587 
588 /*
589  * Assumes that the unmap is never partial.
590  */
591 static int
592 ctx_unmap_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base,
593     dmar_gaddr_t size, int flags)
594 {
595 	dmar_pte_t *pte;
596 	struct sf_buf *sf;
597 	vm_pindex_t idx;
598 	dmar_gaddr_t pg_sz, base1, size1;
599 	int lvl;
600 
601 	DMAR_CTX_ASSERT_PGLOCKED(ctx);
602 	if (size == 0)
603 		return (0);
604 
605 	KASSERT((ctx->flags & DMAR_CTX_IDMAP) == 0,
606 	    ("modifying idmap pagetable ctx %p", ctx));
607 	KASSERT((base & DMAR_PAGE_MASK) == 0,
608 	    ("non-aligned base %p %jx %jx", ctx, (uintmax_t)base,
609 	    (uintmax_t)size));
610 	KASSERT((size & DMAR_PAGE_MASK) == 0,
611 	    ("non-aligned size %p %jx %jx", ctx, (uintmax_t)base,
612 	    (uintmax_t)size));
613 	KASSERT(base < (1ULL << ctx->agaw),
614 	    ("base too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
615 	    (uintmax_t)size, ctx->agaw));
616 	KASSERT(base + size < (1ULL << ctx->agaw),
617 	    ("end too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
618 	    (uintmax_t)size, ctx->agaw));
619 	KASSERT(base + size > base,
620 	    ("size overflow %p %jx %jx", ctx, (uintmax_t)base,
621 	    (uintmax_t)size));
622 	KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
623 
624 	pg_sz = 0; /* silence gcc */
625 	base1 = base;
626 	size1 = size;
627 	flags |= DMAR_PGF_OBJL;
628 	TD_PREP_PINNED_ASSERT;
629 
630 	for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) {
631 		for (lvl = 0; lvl < ctx->pglvl; lvl++) {
632 			if (lvl != ctx->pglvl - 1 && !ctx_is_sp_lvl(ctx, lvl))
633 				continue;
634 			pg_sz = ctx_page_size(ctx, lvl);
635 			if (pg_sz > size)
636 				continue;
637 			pte = ctx_pgtbl_map_pte(ctx, base, lvl, flags,
638 			    &idx, &sf);
639 			KASSERT(pte != NULL,
640 			    ("sleeping or page missed %p %jx %d 0x%x",
641 			    ctx, (uintmax_t)base, lvl, flags));
642 			if ((pte->pte & DMAR_PTE_SP) != 0 ||
643 			    lvl == ctx->pglvl - 1) {
644 				ctx_unmap_clear_pte(ctx, base, lvl, flags,
645 				    pte, &sf, false);
646 				break;
647 			}
648 		}
649 		KASSERT(size >= pg_sz,
650 		    ("unmapping loop overflow %p %jx %jx %jx", ctx,
651 		    (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
652 	}
653 	if (sf != NULL)
654 		dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(ctx->dmar));
655 	/*
656 	 * See 11.1 Write Buffer Flushing for an explanation why RWBF
657 	 * can be ignored there.
658 	 */
659 
660 	TD_PINNED_ASSERT;
661 	return (0);
662 }
663 
664 int
665 ctx_unmap_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
666     int flags)
667 {
668 	int error;
669 
670 	DMAR_CTX_PGLOCK(ctx);
671 	error = ctx_unmap_buf_locked(ctx, base, size, flags);
672 	DMAR_CTX_PGUNLOCK(ctx);
673 	return (error);
674 }
675 
676 int
677 ctx_alloc_pgtbl(struct dmar_ctx *ctx)
678 {
679 	vm_page_t m;
680 
681 	KASSERT(ctx->pgtbl_obj == NULL, ("already initialized %p", ctx));
682 
683 	ctx->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
684 	    IDX_TO_OFF(pglvl_max_pages(ctx->pglvl)), 0, 0, NULL);
685 	DMAR_CTX_PGLOCK(ctx);
686 	m = dmar_pgalloc(ctx->pgtbl_obj, 0, DMAR_PGF_WAITOK |
687 	    DMAR_PGF_ZERO | DMAR_PGF_OBJL);
688 	/* No implicit free of the top level page table page. */
689 	m->wire_count = 1;
690 	DMAR_CTX_PGUNLOCK(ctx);
691 	return (0);
692 }
693 
694 void
695 ctx_free_pgtbl(struct dmar_ctx *ctx)
696 {
697 	vm_object_t obj;
698 	vm_page_t m;
699 
700 	obj = ctx->pgtbl_obj;
701 	if (obj == NULL) {
702 		KASSERT((ctx->dmar->hw_ecap & DMAR_ECAP_PT) != 0 &&
703 		    (ctx->flags & DMAR_CTX_IDMAP) != 0,
704 		    ("lost pagetable object ctx %p", ctx));
705 		return;
706 	}
707 	DMAR_CTX_ASSERT_PGLOCKED(ctx);
708 	ctx->pgtbl_obj = NULL;
709 
710 	if ((ctx->flags & DMAR_CTX_IDMAP) != 0) {
711 		put_idmap_pgtbl(obj);
712 		ctx->flags &= ~DMAR_CTX_IDMAP;
713 		return;
714 	}
715 
716 	/* Obliterate wire_counts */
717 	VM_OBJECT_ASSERT_WLOCKED(obj);
718 	for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m))
719 		m->wire_count = 0;
720 	VM_OBJECT_WUNLOCK(obj);
721 	vm_object_deallocate(obj);
722 }
723 
724 static inline uint64_t
725 ctx_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro)
726 {
727 	uint64_t iotlbr;
728 
729 	dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
730 	    DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt);
731 	for (;;) {
732 		iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF);
733 		if ((iotlbr & DMAR_IOTLB_IVT) == 0)
734 			break;
735 		cpu_spinwait();
736 	}
737 	return (iotlbr);
738 }
739 
740 void
741 ctx_flush_iotlb_sync(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size)
742 {
743 	struct dmar_unit *unit;
744 	dmar_gaddr_t isize;
745 	uint64_t iotlbr;
746 	int am, iro;
747 
748 	unit = ctx->dmar;
749 	KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call",
750 	    unit->unit));
751 	iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16;
752 	DMAR_LOCK(unit);
753 	if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) {
754 		iotlbr = ctx_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM |
755 		    DMAR_IOTLB_DID(ctx->domain), iro);
756 		KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
757 		    DMAR_IOTLB_IAIG_INVLD,
758 		    ("dmar%d: invalidation failed %jx", unit->unit,
759 		    (uintmax_t)iotlbr));
760 	} else {
761 		for (; size > 0; base += isize, size -= isize) {
762 			am = calc_am(unit, base, size, &isize);
763 			dmar_write8(unit, iro, base | am);
764 			iotlbr = ctx_wait_iotlb_flush(unit,
765 			    DMAR_IOTLB_IIRG_PAGE | DMAR_IOTLB_DID(ctx->domain),
766 			    iro);
767 			KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
768 			    DMAR_IOTLB_IAIG_INVLD,
769 			    ("dmar%d: PSI invalidation failed "
770 			    "iotlbr 0x%jx base 0x%jx size 0x%jx am %d",
771 			    unit->unit, (uintmax_t)iotlbr,
772 			    (uintmax_t)base, (uintmax_t)size, am));
773 			/*
774 			 * Any non-page granularity covers whole guest
775 			 * address space for the domain.
776 			 */
777 			if ((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
778 			    DMAR_IOTLB_IAIG_PAGE)
779 				break;
780 		}
781 	}
782 	DMAR_UNLOCK(unit);
783 }
784