1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2013-2015 The FreeBSD Foundation 5 * 6 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 7 * under sponsorship from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 #ifndef __X86_IOMMU_INTEL_DMAR_H 34 #define __X86_IOMMU_INTEL_DMAR_H 35 36 #include <dev/iommu/iommu.h> 37 38 struct dmar_unit; 39 40 /* 41 * Locking annotations: 42 * (u) - Protected by iommu unit lock 43 * (d) - Protected by domain lock 44 * (c) - Immutable after initialization 45 */ 46 47 /* 48 * The domain abstraction. Most non-constant members of the domain 49 * are protected by owning dmar unit lock, not by the domain lock. 50 * Most important, the dmar lock protects the contexts list. 51 * 52 * The domain lock protects the address map for the domain, and list 53 * of unload entries delayed. 54 * 55 * Page tables pages and pages content is protected by the vm object 56 * lock pgtbl_obj, which contains the page tables pages. 57 */ 58 struct dmar_domain { 59 struct iommu_domain iodom; 60 int domain; /* (c) DID, written in context entry */ 61 int mgaw; /* (c) Real max address width */ 62 int agaw; /* (c) Adjusted guest address width */ 63 int pglvl; /* (c) The pagelevel */ 64 int awlvl; /* (c) The pagelevel as the bitmask, 65 to set in context entry */ 66 u_int ctx_cnt; /* (u) Number of contexts owned */ 67 u_int refs; /* (u) Refs, including ctx */ 68 struct dmar_unit *dmar; /* (c) */ 69 LIST_ENTRY(dmar_domain) link; /* (u) Member in the dmar list */ 70 LIST_HEAD(, dmar_ctx) contexts; /* (u) */ 71 vm_object_t pgtbl_obj; /* (c) Page table pages */ 72 u_int batch_no; 73 }; 74 75 struct dmar_ctx { 76 struct iommu_ctx context; 77 uint64_t last_fault_rec[2]; /* Last fault reported */ 78 LIST_ENTRY(dmar_ctx) link; /* (u) Member in the domain list */ 79 u_int refs; /* (u) References from tags */ 80 }; 81 82 #define DMAR_DOMAIN_PGLOCK(dom) VM_OBJECT_WLOCK((dom)->pgtbl_obj) 83 #define DMAR_DOMAIN_PGTRYLOCK(dom) VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj) 84 #define DMAR_DOMAIN_PGUNLOCK(dom) VM_OBJECT_WUNLOCK((dom)->pgtbl_obj) 85 #define DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \ 86 VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj) 87 88 #define DMAR_DOMAIN_LOCK(dom) mtx_lock(&(dom)->iodom.lock) 89 #define DMAR_DOMAIN_UNLOCK(dom) mtx_unlock(&(dom)->iodom.lock) 90 #define DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->iodom.lock, MA_OWNED) 91 92 #define DMAR2IOMMU(dmar) &((dmar)->iommu) 93 #define IOMMU2DMAR(dmar) \ 94 __containerof((dmar), struct dmar_unit, iommu) 95 96 #define DOM2IODOM(domain) &((domain)->iodom) 97 #define IODOM2DOM(domain) \ 98 __containerof((domain), struct dmar_domain, iodom) 99 100 #define CTX2IOCTX(ctx) &((ctx)->context) 101 #define IOCTX2CTX(ctx) \ 102 __containerof((ctx), struct dmar_ctx, context) 103 104 #define CTX2DOM(ctx) IODOM2DOM((ctx)->context.domain) 105 #define CTX2DMAR(ctx) (CTX2DOM(ctx)->dmar) 106 #define DOM2DMAR(domain) ((domain)->dmar) 107 108 struct dmar_msi_data { 109 int irq; 110 int irq_rid; 111 struct resource *irq_res; 112 void *intr_handle; 113 int (*handler)(void *); 114 int msi_data_reg; 115 int msi_addr_reg; 116 int msi_uaddr_reg; 117 void (*enable_intr)(struct dmar_unit *); 118 void (*disable_intr)(struct dmar_unit *); 119 const char *name; 120 }; 121 122 #define DMAR_INTR_FAULT 0 123 #define DMAR_INTR_QI 1 124 #define DMAR_INTR_TOTAL 2 125 126 struct dmar_unit { 127 struct iommu_unit iommu; 128 device_t dev; 129 uint16_t segment; 130 uint64_t base; 131 132 /* Resources */ 133 int reg_rid; 134 struct resource *regs; 135 136 struct dmar_msi_data intrs[DMAR_INTR_TOTAL]; 137 138 /* Hardware registers cache */ 139 uint32_t hw_ver; 140 uint64_t hw_cap; 141 uint64_t hw_ecap; 142 uint32_t hw_gcmd; 143 144 /* Data for being a dmar */ 145 LIST_HEAD(, dmar_domain) domains; 146 struct unrhdr *domids; 147 vm_object_t ctx_obj; 148 u_int barrier_flags; 149 150 /* Fault handler data */ 151 struct mtx fault_lock; 152 uint64_t *fault_log; 153 int fault_log_head; 154 int fault_log_tail; 155 int fault_log_size; 156 struct task fault_task; 157 struct taskqueue *fault_taskqueue; 158 159 /* QI */ 160 int qi_enabled; 161 vm_offset_t inv_queue; 162 vm_size_t inv_queue_size; 163 uint32_t inv_queue_avail; 164 uint32_t inv_queue_tail; 165 volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait 166 descr completion */ 167 uint64_t inv_waitd_seq_hw_phys; 168 uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */ 169 u_int inv_waitd_gen; /* seq number generation AKA seq overflows */ 170 u_int inv_seq_waiters; /* count of waiters for seq */ 171 u_int inv_queue_full; /* informational counter */ 172 173 /* IR */ 174 int ir_enabled; 175 vm_paddr_t irt_phys; 176 dmar_irte_t *irt; 177 u_int irte_cnt; 178 vmem_t *irtids; 179 180 /* 181 * Delayed freeing of map entries queue processing: 182 * 183 * tlb_flush_head and tlb_flush_tail are used to implement a FIFO 184 * queue that supports concurrent dequeues and enqueues. However, 185 * there can only be a single dequeuer (accessing tlb_flush_head) and 186 * a single enqueuer (accessing tlb_flush_tail) at a time. Since the 187 * unit's qi_task is the only dequeuer, it can access tlb_flush_head 188 * without any locking. In contrast, there may be multiple enqueuers, 189 * so the enqueuers acquire the iommu unit lock to serialize their 190 * accesses to tlb_flush_tail. 191 * 192 * In this FIFO queue implementation, the key to enabling concurrent 193 * dequeues and enqueues is that the dequeuer never needs to access 194 * tlb_flush_tail and the enqueuer never needs to access 195 * tlb_flush_head. In particular, tlb_flush_head and tlb_flush_tail 196 * are never NULL, so neither a dequeuer nor an enqueuer ever needs to 197 * update both. Instead, tlb_flush_head always points to a "zombie" 198 * struct, which previously held the last dequeued item. Thus, the 199 * zombie's next field actually points to the struct holding the first 200 * item in the queue. When an item is dequeued, the current zombie is 201 * finally freed, and the struct that held the just dequeued item 202 * becomes the new zombie. When the queue is empty, tlb_flush_tail 203 * also points to the zombie. 204 */ 205 struct iommu_map_entry *tlb_flush_head; 206 struct iommu_map_entry *tlb_flush_tail; 207 struct task qi_task; 208 struct taskqueue *qi_taskqueue; 209 }; 210 211 #define DMAR_LOCK(dmar) mtx_lock(&(dmar)->iommu.lock) 212 #define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->iommu.lock) 213 #define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->iommu.lock, MA_OWNED) 214 215 #define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock) 216 #define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock) 217 #define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED) 218 219 #define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0) 220 #define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0) 221 #define DMAR_X2APIC(dmar) \ 222 (x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0) 223 224 /* Barrier ids */ 225 #define DMAR_BARRIER_RMRR 0 226 #define DMAR_BARRIER_USEQ 1 227 228 struct dmar_unit *dmar_find(device_t dev, bool verbose); 229 struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid); 230 struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid); 231 232 u_int dmar_nd2mask(u_int nd); 233 bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl); 234 int domain_set_agaw(struct dmar_domain *domain, int mgaw); 235 int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, 236 bool allow_less); 237 vm_pindex_t pglvl_max_pages(int pglvl); 238 int domain_is_sp_lvl(struct dmar_domain *domain, int lvl); 239 iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl); 240 iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl); 241 int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size, 242 iommu_gaddr_t *isizep); 243 struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags); 244 void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags); 245 void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, 246 struct sf_buf **sf); 247 void dmar_unmap_pgtbl(struct sf_buf *sf); 248 int dmar_load_root_entry_ptr(struct dmar_unit *unit); 249 int dmar_inv_ctx_glob(struct dmar_unit *unit); 250 int dmar_inv_iotlb_glob(struct dmar_unit *unit); 251 int dmar_flush_write_bufs(struct dmar_unit *unit); 252 void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst); 253 void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst); 254 void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst); 255 int dmar_disable_protected_regions(struct dmar_unit *unit); 256 int dmar_enable_translation(struct dmar_unit *unit); 257 int dmar_disable_translation(struct dmar_unit *unit); 258 int dmar_load_irt_ptr(struct dmar_unit *unit); 259 int dmar_enable_ir(struct dmar_unit *unit); 260 int dmar_disable_ir(struct dmar_unit *unit); 261 bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id); 262 void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id); 263 uint64_t dmar_get_timeout(void); 264 void dmar_update_timeout(uint64_t newval); 265 266 int dmar_fault_intr(void *arg); 267 void dmar_enable_fault_intr(struct dmar_unit *unit); 268 void dmar_disable_fault_intr(struct dmar_unit *unit); 269 int dmar_init_fault_log(struct dmar_unit *unit); 270 void dmar_fini_fault_log(struct dmar_unit *unit); 271 272 int dmar_qi_intr(void *arg); 273 void dmar_enable_qi_intr(struct dmar_unit *unit); 274 void dmar_disable_qi_intr(struct dmar_unit *unit); 275 int dmar_init_qi(struct dmar_unit *unit); 276 void dmar_fini_qi(struct dmar_unit *unit); 277 void dmar_qi_invalidate_locked(struct dmar_domain *domain, 278 struct iommu_map_entry *entry, bool emit_wait); 279 void dmar_qi_invalidate_sync(struct dmar_domain *domain, iommu_gaddr_t start, 280 iommu_gaddr_t size, bool cansleep); 281 void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit); 282 void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit); 283 void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit); 284 void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt); 285 286 vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain, 287 iommu_gaddr_t maxaddr); 288 void put_idmap_pgtbl(vm_object_t obj); 289 void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base, 290 iommu_gaddr_t size); 291 int domain_alloc_pgtbl(struct dmar_domain *domain); 292 void domain_free_pgtbl(struct dmar_domain *domain); 293 extern const struct iommu_domain_map_ops dmar_domain_map_ops; 294 295 int dmar_dev_depth(device_t child); 296 void dmar_dev_path(device_t child, int *busno, void *path1, int depth); 297 298 struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev, 299 uint16_t rid, bool id_mapped, bool rmrr_init); 300 struct dmar_ctx *dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid, 301 int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, 302 bool id_mapped, bool rmrr_init); 303 int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx); 304 void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx); 305 void dmar_free_ctx(struct dmar_ctx *ctx); 306 struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid); 307 void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free); 308 309 void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain, 310 int dev_busno, const void *dev_path, int dev_path_len, 311 struct iommu_map_entries_tailq *rmrr_entries); 312 int dmar_instantiate_rmrr_ctxs(struct iommu_unit *dmar); 313 314 void dmar_quirks_post_ident(struct dmar_unit *dmar); 315 void dmar_quirks_pre_use(struct iommu_unit *dmar); 316 317 int dmar_init_irt(struct dmar_unit *unit); 318 void dmar_fini_irt(struct dmar_unit *unit); 319 320 extern iommu_haddr_t dmar_high; 321 extern int haw; 322 extern int dmar_tbl_pagecnt; 323 extern int dmar_batch_coalesce; 324 325 static inline uint32_t 326 dmar_read4(const struct dmar_unit *unit, int reg) 327 { 328 329 return (bus_read_4(unit->regs, reg)); 330 } 331 332 static inline uint64_t 333 dmar_read8(const struct dmar_unit *unit, int reg) 334 { 335 #ifdef __i386__ 336 uint32_t high, low; 337 338 low = bus_read_4(unit->regs, reg); 339 high = bus_read_4(unit->regs, reg + 4); 340 return (low | ((uint64_t)high << 32)); 341 #else 342 return (bus_read_8(unit->regs, reg)); 343 #endif 344 } 345 346 static inline void 347 dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val) 348 { 349 350 KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) == 351 (unit->hw_gcmd & DMAR_GCMD_TE), 352 ("dmar%d clearing TE 0x%08x 0x%08x", unit->iommu.unit, 353 unit->hw_gcmd, val)); 354 bus_write_4(unit->regs, reg, val); 355 } 356 357 static inline void 358 dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val) 359 { 360 361 KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write")); 362 #ifdef __i386__ 363 uint32_t high, low; 364 365 low = val; 366 high = val >> 32; 367 bus_write_4(unit->regs, reg, low); 368 bus_write_4(unit->regs, reg + 4, high); 369 #else 370 bus_write_8(unit->regs, reg, val); 371 #endif 372 } 373 374 /* 375 * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes 376 * are issued in the correct order. For store, the lower word, 377 * containing the P or R and W bits, is set only after the high word 378 * is written. For clear, the P bit is cleared first, then the high 379 * word is cleared. 380 * 381 * dmar_pte_update updates the pte. For amd64, the update is atomic. 382 * For i386, it first disables the entry by clearing the word 383 * containing the P bit, and then defer to dmar_pte_store. The locked 384 * cmpxchg8b is probably available on any machine having DMAR support, 385 * but interrupt translation table may be mapped uncached. 386 */ 387 static inline void 388 dmar_pte_store1(volatile uint64_t *dst, uint64_t val) 389 { 390 #ifdef __i386__ 391 volatile uint32_t *p; 392 uint32_t hi, lo; 393 394 hi = val >> 32; 395 lo = val; 396 p = (volatile uint32_t *)dst; 397 *(p + 1) = hi; 398 *p = lo; 399 #else 400 *dst = val; 401 #endif 402 } 403 404 static inline void 405 dmar_pte_store(volatile uint64_t *dst, uint64_t val) 406 { 407 408 KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx", 409 dst, (uintmax_t)*dst, (uintmax_t)val)); 410 dmar_pte_store1(dst, val); 411 } 412 413 static inline void 414 dmar_pte_update(volatile uint64_t *dst, uint64_t val) 415 { 416 417 #ifdef __i386__ 418 volatile uint32_t *p; 419 420 p = (volatile uint32_t *)dst; 421 *p = 0; 422 #endif 423 dmar_pte_store1(dst, val); 424 } 425 426 static inline void 427 dmar_pte_clear(volatile uint64_t *dst) 428 { 429 #ifdef __i386__ 430 volatile uint32_t *p; 431 432 p = (volatile uint32_t *)dst; 433 *p = 0; 434 *(p + 1) = 0; 435 #else 436 *dst = 0; 437 #endif 438 } 439 440 extern struct timespec dmar_hw_timeout; 441 442 #define DMAR_WAIT_UNTIL(cond) \ 443 { \ 444 struct timespec last, curr; \ 445 bool forever; \ 446 \ 447 if (dmar_hw_timeout.tv_sec == 0 && \ 448 dmar_hw_timeout.tv_nsec == 0) { \ 449 forever = true; \ 450 } else { \ 451 forever = false; \ 452 nanouptime(&curr); \ 453 timespecadd(&curr, &dmar_hw_timeout, &last); \ 454 } \ 455 for (;;) { \ 456 if (cond) { \ 457 error = 0; \ 458 break; \ 459 } \ 460 nanouptime(&curr); \ 461 if (!forever && timespeccmp(&last, &curr, <)) { \ 462 error = ETIMEDOUT; \ 463 break; \ 464 } \ 465 cpu_spinwait(); \ 466 } \ 467 } 468 469 #ifdef INVARIANTS 470 #define TD_PREP_PINNED_ASSERT \ 471 int old_td_pinned; \ 472 old_td_pinned = curthread->td_pinned 473 #define TD_PINNED_ASSERT \ 474 KASSERT(curthread->td_pinned == old_td_pinned, \ 475 ("pin count leak: %d %d %s:%d", curthread->td_pinned, \ 476 old_td_pinned, __FILE__, __LINE__)) 477 #else 478 #define TD_PREP_PINNED_ASSERT 479 #define TD_PINNED_ASSERT 480 #endif 481 482 #endif 483