xref: /freebsd/sys/x86/iommu/intel_dmar.h (revision 81b22a9892b1047e551fc3f1d6d58031bc59a4c3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013-2015 The FreeBSD Foundation
5  *
6  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #ifndef __X86_IOMMU_INTEL_DMAR_H
34 #define	__X86_IOMMU_INTEL_DMAR_H
35 
36 #include <dev/iommu/iommu.h>
37 
38 struct dmar_unit;
39 
40 /*
41  * Locking annotations:
42  * (u) - Protected by iommu unit lock
43  * (d) - Protected by domain lock
44  * (c) - Immutable after initialization
45  */
46 
47 /*
48  * The domain abstraction.  Most non-constant members of the domain
49  * are protected by owning dmar unit lock, not by the domain lock.
50  * Most important, the dmar lock protects the contexts list.
51  *
52  * The domain lock protects the address map for the domain, and list
53  * of unload entries delayed.
54  *
55  * Page tables pages and pages content is protected by the vm object
56  * lock pgtbl_obj, which contains the page tables pages.
57  */
58 struct dmar_domain {
59 	struct iommu_domain iodom;
60 	int domain;			/* (c) DID, written in context entry */
61 	int mgaw;			/* (c) Real max address width */
62 	int agaw;			/* (c) Adjusted guest address width */
63 	int pglvl;			/* (c) The pagelevel */
64 	int awlvl;			/* (c) The pagelevel as the bitmask,
65 					   to set in context entry */
66 	u_int ctx_cnt;			/* (u) Number of contexts owned */
67 	u_int refs;			/* (u) Refs, including ctx */
68 	struct dmar_unit *dmar;		/* (c) */
69 	LIST_ENTRY(dmar_domain) link;	/* (u) Member in the dmar list */
70 	LIST_HEAD(, dmar_ctx) contexts;	/* (u) */
71 	vm_object_t pgtbl_obj;		/* (c) Page table pages */
72 	u_int batch_no;
73 };
74 
75 struct dmar_ctx {
76 	struct iommu_ctx context;
77 	uint64_t last_fault_rec[2];	/* Last fault reported */
78 	LIST_ENTRY(dmar_ctx) link;	/* (u) Member in the domain list */
79 	u_int refs;			/* (u) References from tags */
80 };
81 
82 #define	DMAR_DOMAIN_PGLOCK(dom)		VM_OBJECT_WLOCK((dom)->pgtbl_obj)
83 #define	DMAR_DOMAIN_PGTRYLOCK(dom)	VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj)
84 #define	DMAR_DOMAIN_PGUNLOCK(dom)	VM_OBJECT_WUNLOCK((dom)->pgtbl_obj)
85 #define	DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \
86 	VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj)
87 
88 #define	DMAR_DOMAIN_LOCK(dom)	mtx_lock(&(dom)->iodom.lock)
89 #define	DMAR_DOMAIN_UNLOCK(dom)	mtx_unlock(&(dom)->iodom.lock)
90 #define	DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->iodom.lock, MA_OWNED)
91 
92 #define	DMAR2IOMMU(dmar)	&((dmar)->iommu)
93 #define	IOMMU2DMAR(dmar)	\
94 	__containerof((dmar), struct dmar_unit, iommu)
95 
96 #define	DOM2IODOM(domain)	&((domain)->iodom)
97 #define	IODOM2DOM(domain)	\
98 	__containerof((domain), struct dmar_domain, iodom)
99 
100 #define	CTX2IOCTX(ctx)		&((ctx)->context)
101 #define	IOCTX2CTX(ctx)		\
102 	__containerof((ctx), struct dmar_ctx, context)
103 
104 #define	CTX2DOM(ctx)		IODOM2DOM((ctx)->context.domain)
105 #define	CTX2DMAR(ctx)		(CTX2DOM(ctx)->dmar)
106 #define	DOM2DMAR(domain)	((domain)->dmar)
107 
108 struct dmar_msi_data {
109 	int irq;
110 	int irq_rid;
111 	struct resource *irq_res;
112 	void *intr_handle;
113 	int (*handler)(void *);
114 	int msi_data_reg;
115 	int msi_addr_reg;
116 	int msi_uaddr_reg;
117 	void (*enable_intr)(struct dmar_unit *);
118 	void (*disable_intr)(struct dmar_unit *);
119 	const char *name;
120 };
121 
122 #define	DMAR_INTR_FAULT		0
123 #define	DMAR_INTR_QI		1
124 #define	DMAR_INTR_TOTAL		2
125 
126 struct dmar_unit {
127 	struct iommu_unit iommu;
128 	device_t dev;
129 	uint16_t segment;
130 	uint64_t base;
131 
132 	/* Resources */
133 	int reg_rid;
134 	struct resource *regs;
135 
136 	struct dmar_msi_data intrs[DMAR_INTR_TOTAL];
137 
138 	/* Hardware registers cache */
139 	uint32_t hw_ver;
140 	uint64_t hw_cap;
141 	uint64_t hw_ecap;
142 	uint32_t hw_gcmd;
143 
144 	/* Data for being a dmar */
145 	LIST_HEAD(, dmar_domain) domains;
146 	struct unrhdr *domids;
147 	vm_object_t ctx_obj;
148 	u_int barrier_flags;
149 
150 	/* Fault handler data */
151 	struct mtx fault_lock;
152 	uint64_t *fault_log;
153 	int fault_log_head;
154 	int fault_log_tail;
155 	int fault_log_size;
156 	struct task fault_task;
157 	struct taskqueue *fault_taskqueue;
158 
159 	/* QI */
160 	int qi_enabled;
161 	vm_offset_t inv_queue;
162 	vm_size_t inv_queue_size;
163 	uint32_t inv_queue_avail;
164 	uint32_t inv_queue_tail;
165 	volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait
166 					       descr completion */
167 	uint64_t inv_waitd_seq_hw_phys;
168 	uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */
169 	u_int inv_waitd_gen;	/* seq number generation AKA seq overflows */
170 	u_int inv_seq_waiters;	/* count of waiters for seq */
171 	u_int inv_queue_full;	/* informational counter */
172 
173 	/* IR */
174 	int ir_enabled;
175 	vm_paddr_t irt_phys;
176 	dmar_irte_t *irt;
177 	u_int irte_cnt;
178 	vmem_t *irtids;
179 
180 	/* Delayed freeing of map entries queue processing */
181 	struct iommu_map_entries_tailq tlb_flush_entries;
182 	struct task qi_task;
183 	struct taskqueue *qi_taskqueue;
184 };
185 
186 #define	DMAR_LOCK(dmar)		mtx_lock(&(dmar)->iommu.lock)
187 #define	DMAR_UNLOCK(dmar)	mtx_unlock(&(dmar)->iommu.lock)
188 #define	DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->iommu.lock, MA_OWNED)
189 
190 #define	DMAR_FAULT_LOCK(dmar)	mtx_lock_spin(&(dmar)->fault_lock)
191 #define	DMAR_FAULT_UNLOCK(dmar)	mtx_unlock_spin(&(dmar)->fault_lock)
192 #define	DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED)
193 
194 #define	DMAR_IS_COHERENT(dmar)	(((dmar)->hw_ecap & DMAR_ECAP_C) != 0)
195 #define	DMAR_HAS_QI(dmar)	(((dmar)->hw_ecap & DMAR_ECAP_QI) != 0)
196 #define	DMAR_X2APIC(dmar) \
197 	(x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0)
198 
199 /* Barrier ids */
200 #define	DMAR_BARRIER_RMRR	0
201 #define	DMAR_BARRIER_USEQ	1
202 
203 struct dmar_unit *dmar_find(device_t dev, bool verbose);
204 struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid);
205 struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid);
206 
207 u_int dmar_nd2mask(u_int nd);
208 bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl);
209 int domain_set_agaw(struct dmar_domain *domain, int mgaw);
210 int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr,
211     bool allow_less);
212 vm_pindex_t pglvl_max_pages(int pglvl);
213 int domain_is_sp_lvl(struct dmar_domain *domain, int lvl);
214 iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl);
215 iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl);
216 int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size,
217     iommu_gaddr_t *isizep);
218 struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags);
219 void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags);
220 void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
221     struct sf_buf **sf);
222 void dmar_unmap_pgtbl(struct sf_buf *sf);
223 int dmar_load_root_entry_ptr(struct dmar_unit *unit);
224 int dmar_inv_ctx_glob(struct dmar_unit *unit);
225 int dmar_inv_iotlb_glob(struct dmar_unit *unit);
226 int dmar_flush_write_bufs(struct dmar_unit *unit);
227 void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst);
228 void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst);
229 void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst);
230 int dmar_disable_protected_regions(struct dmar_unit *unit);
231 int dmar_enable_translation(struct dmar_unit *unit);
232 int dmar_disable_translation(struct dmar_unit *unit);
233 int dmar_load_irt_ptr(struct dmar_unit *unit);
234 int dmar_enable_ir(struct dmar_unit *unit);
235 int dmar_disable_ir(struct dmar_unit *unit);
236 bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id);
237 void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id);
238 uint64_t dmar_get_timeout(void);
239 void dmar_update_timeout(uint64_t newval);
240 
241 int dmar_fault_intr(void *arg);
242 void dmar_enable_fault_intr(struct dmar_unit *unit);
243 void dmar_disable_fault_intr(struct dmar_unit *unit);
244 int dmar_init_fault_log(struct dmar_unit *unit);
245 void dmar_fini_fault_log(struct dmar_unit *unit);
246 
247 int dmar_qi_intr(void *arg);
248 void dmar_enable_qi_intr(struct dmar_unit *unit);
249 void dmar_disable_qi_intr(struct dmar_unit *unit);
250 int dmar_init_qi(struct dmar_unit *unit);
251 void dmar_fini_qi(struct dmar_unit *unit);
252 void dmar_qi_invalidate_locked(struct dmar_domain *domain, iommu_gaddr_t start,
253     iommu_gaddr_t size, struct iommu_qi_genseq *psec, bool emit_wait);
254 void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit);
255 void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit);
256 void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit);
257 void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt);
258 
259 vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain,
260     iommu_gaddr_t maxaddr);
261 void put_idmap_pgtbl(vm_object_t obj);
262 void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base,
263     iommu_gaddr_t size);
264 int domain_alloc_pgtbl(struct dmar_domain *domain);
265 void domain_free_pgtbl(struct dmar_domain *domain);
266 extern const struct iommu_domain_map_ops dmar_domain_map_ops;
267 
268 int dmar_dev_depth(device_t child);
269 void dmar_dev_path(device_t child, int *busno, void *path1, int depth);
270 
271 struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev,
272     uint16_t rid, bool id_mapped, bool rmrr_init);
273 struct dmar_ctx *dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid,
274     int dev_domain, int dev_busno, const void *dev_path, int dev_path_len,
275     bool id_mapped, bool rmrr_init);
276 int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx);
277 void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx);
278 void dmar_free_ctx(struct dmar_ctx *ctx);
279 struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid);
280 void dmar_domain_unload_entry(struct iommu_map_entry *entry, bool free);
281 void dmar_domain_unload(struct dmar_domain *domain,
282     struct iommu_map_entries_tailq *entries, bool cansleep);
283 void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free);
284 
285 void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain,
286     int dev_busno, const void *dev_path, int dev_path_len,
287     struct iommu_map_entries_tailq *rmrr_entries);
288 int dmar_instantiate_rmrr_ctxs(struct iommu_unit *dmar);
289 
290 void dmar_quirks_post_ident(struct dmar_unit *dmar);
291 void dmar_quirks_pre_use(struct iommu_unit *dmar);
292 
293 int dmar_init_irt(struct dmar_unit *unit);
294 void dmar_fini_irt(struct dmar_unit *unit);
295 
296 extern iommu_haddr_t dmar_high;
297 extern int haw;
298 extern int dmar_tbl_pagecnt;
299 extern int dmar_batch_coalesce;
300 
301 static inline uint32_t
302 dmar_read4(const struct dmar_unit *unit, int reg)
303 {
304 
305 	return (bus_read_4(unit->regs, reg));
306 }
307 
308 static inline uint64_t
309 dmar_read8(const struct dmar_unit *unit, int reg)
310 {
311 #ifdef __i386__
312 	uint32_t high, low;
313 
314 	low = bus_read_4(unit->regs, reg);
315 	high = bus_read_4(unit->regs, reg + 4);
316 	return (low | ((uint64_t)high << 32));
317 #else
318 	return (bus_read_8(unit->regs, reg));
319 #endif
320 }
321 
322 static inline void
323 dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val)
324 {
325 
326 	KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) ==
327 	    (unit->hw_gcmd & DMAR_GCMD_TE),
328 	    ("dmar%d clearing TE 0x%08x 0x%08x", unit->iommu.unit,
329 	    unit->hw_gcmd, val));
330 	bus_write_4(unit->regs, reg, val);
331 }
332 
333 static inline void
334 dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val)
335 {
336 
337 	KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write"));
338 #ifdef __i386__
339 	uint32_t high, low;
340 
341 	low = val;
342 	high = val >> 32;
343 	bus_write_4(unit->regs, reg, low);
344 	bus_write_4(unit->regs, reg + 4, high);
345 #else
346 	bus_write_8(unit->regs, reg, val);
347 #endif
348 }
349 
350 /*
351  * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes
352  * are issued in the correct order.  For store, the lower word,
353  * containing the P or R and W bits, is set only after the high word
354  * is written.  For clear, the P bit is cleared first, then the high
355  * word is cleared.
356  *
357  * dmar_pte_update updates the pte.  For amd64, the update is atomic.
358  * For i386, it first disables the entry by clearing the word
359  * containing the P bit, and then defer to dmar_pte_store.  The locked
360  * cmpxchg8b is probably available on any machine having DMAR support,
361  * but interrupt translation table may be mapped uncached.
362  */
363 static inline void
364 dmar_pte_store1(volatile uint64_t *dst, uint64_t val)
365 {
366 #ifdef __i386__
367 	volatile uint32_t *p;
368 	uint32_t hi, lo;
369 
370 	hi = val >> 32;
371 	lo = val;
372 	p = (volatile uint32_t *)dst;
373 	*(p + 1) = hi;
374 	*p = lo;
375 #else
376 	*dst = val;
377 #endif
378 }
379 
380 static inline void
381 dmar_pte_store(volatile uint64_t *dst, uint64_t val)
382 {
383 
384 	KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx",
385 	    dst, (uintmax_t)*dst, (uintmax_t)val));
386 	dmar_pte_store1(dst, val);
387 }
388 
389 static inline void
390 dmar_pte_update(volatile uint64_t *dst, uint64_t val)
391 {
392 
393 #ifdef __i386__
394 	volatile uint32_t *p;
395 
396 	p = (volatile uint32_t *)dst;
397 	*p = 0;
398 #endif
399 	dmar_pte_store1(dst, val);
400 }
401 
402 static inline void
403 dmar_pte_clear(volatile uint64_t *dst)
404 {
405 #ifdef __i386__
406 	volatile uint32_t *p;
407 
408 	p = (volatile uint32_t *)dst;
409 	*p = 0;
410 	*(p + 1) = 0;
411 #else
412 	*dst = 0;
413 #endif
414 }
415 
416 extern struct timespec dmar_hw_timeout;
417 
418 #define	DMAR_WAIT_UNTIL(cond)					\
419 {								\
420 	struct timespec last, curr;				\
421 	bool forever;						\
422 								\
423 	if (dmar_hw_timeout.tv_sec == 0 &&			\
424 	    dmar_hw_timeout.tv_nsec == 0) {			\
425 		forever = true;					\
426 	} else {						\
427 		forever = false;				\
428 		nanouptime(&curr);				\
429 		timespecadd(&curr, &dmar_hw_timeout, &last);	\
430 	}							\
431 	for (;;) {						\
432 		if (cond) {					\
433 			error = 0;				\
434 			break;					\
435 		}						\
436 		nanouptime(&curr);				\
437 		if (!forever && timespeccmp(&last, &curr, <)) {	\
438 			error = ETIMEDOUT;			\
439 			break;					\
440 		}						\
441 		cpu_spinwait();					\
442 	}							\
443 }
444 
445 #ifdef INVARIANTS
446 #define	TD_PREP_PINNED_ASSERT						\
447 	int old_td_pinned;						\
448 	old_td_pinned = curthread->td_pinned
449 #define	TD_PINNED_ASSERT						\
450 	KASSERT(curthread->td_pinned == old_td_pinned,			\
451 	    ("pin count leak: %d %d %s:%d", curthread->td_pinned,	\
452 	    old_td_pinned, __FILE__, __LINE__))
453 #else
454 #define	TD_PREP_PINNED_ASSERT
455 #define	TD_PINNED_ASSERT
456 #endif
457 
458 #endif
459