xref: /freebsd/sys/x86/iommu/intel_dmar.h (revision 6ef6ba9950260f42b47499d17874d00ca9290955)
1 /*-
2  * Copyright (c) 2013 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
6  * under sponsorship from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 #ifndef __X86_IOMMU_INTEL_DMAR_H
33 #define	__X86_IOMMU_INTEL_DMAR_H
34 
35 /* Host or physical memory address, after translation. */
36 typedef uint64_t dmar_haddr_t;
37 /* Guest or bus address, before translation. */
38 typedef uint64_t dmar_gaddr_t;
39 
40 struct dmar_qi_genseq {
41 	u_int gen;
42 	uint32_t seq;
43 };
44 
45 struct dmar_map_entry {
46 	dmar_gaddr_t start;
47 	dmar_gaddr_t end;
48 	dmar_gaddr_t free_after;	/* Free space after the entry */
49 	dmar_gaddr_t free_down;		/* Max free space below the
50 					   current R/B tree node */
51 	u_int flags;
52 	TAILQ_ENTRY(dmar_map_entry) dmamap_link; /* Link for dmamap entries */
53 	RB_ENTRY(dmar_map_entry) rb_entry;	 /* Links for ctx entries */
54 	TAILQ_ENTRY(dmar_map_entry) unroll_link; /* Link for unroll after
55 						    dmamap_load failure */
56 	struct dmar_ctx *ctx;
57 	struct dmar_qi_genseq gseq;
58 };
59 
60 RB_HEAD(dmar_gas_entries_tree, dmar_map_entry);
61 RB_PROTOTYPE(dmar_gas_entries_tree, dmar_map_entry, rb_entry,
62     dmar_gas_cmp_entries);
63 
64 #define	DMAR_MAP_ENTRY_PLACE	0x0001	/* Fake entry */
65 #define	DMAR_MAP_ENTRY_RMRR	0x0002	/* Permanent, not linked by
66 					   dmamap_link */
67 #define	DMAR_MAP_ENTRY_MAP	0x0004	/* Busdma created, linked by
68 					   dmamap_link */
69 #define	DMAR_MAP_ENTRY_UNMAPPED	0x0010	/* No backing pages */
70 #define	DMAR_MAP_ENTRY_QI_NF	0x0020	/* qi task, do not free entry */
71 #define	DMAR_MAP_ENTRY_READ	0x1000	/* Read permitted */
72 #define	DMAR_MAP_ENTRY_WRITE	0x2000	/* Write permitted */
73 #define	DMAR_MAP_ENTRY_SNOOP	0x4000	/* Snoop */
74 #define	DMAR_MAP_ENTRY_TM	0x8000	/* Transient */
75 
76 struct dmar_ctx {
77 	int bus;	/* pci bus/slot/func */
78 	int slot;
79 	int func;
80 	int domain;	/* DID */
81 	int mgaw;	/* Real max address width */
82 	int agaw;	/* Adjusted guest address width */
83 	int pglvl;	/* The pagelevel */
84 	int awlvl;	/* The pagelevel as the bitmask, to set in
85 			   context entry */
86 	dmar_gaddr_t end;/* Highest address + 1 in the guest AS */
87 	u_int refs;	/* References to the context, from tags */
88 	struct dmar_unit *dmar;
89 	struct bus_dma_tag_dmar ctx_tag; /* Root tag */
90 	struct mtx lock;
91 	LIST_ENTRY(dmar_ctx) link;	/* Member in the dmar list */
92 	vm_object_t pgtbl_obj;		/* Page table pages */
93 	u_int flags;			/* Protected by dmar lock */
94 	uint64_t last_fault_rec[2];	/* Last fault reported */
95 	u_int entries_cnt;
96 	u_long loads;
97 	u_long unloads;
98 	struct dmar_gas_entries_tree rb_root;
99 	struct dmar_map_entries_tailq unload_entries; /* Entries to unload */
100 	struct dmar_map_entry *first_place, *last_place;
101 	struct task unload_task;
102 };
103 
104 /* struct dmar_ctx flags */
105 #define	DMAR_CTX_FAULTED	0x0001	/* Fault was reported,
106 					   last_fault_rec is valid */
107 #define	DMAR_CTX_IDMAP		0x0002	/* Context uses identity page table */
108 #define	DMAR_CTX_RMRR		0x0004	/* Context contains RMRR entry,
109 					   cannot be turned off */
110 #define	DMAR_CTX_DISABLED	0x0008	/* Device is disabled, the
111 					   ephemeral reference is kept
112 					   to prevent context destruction */
113 
114 #define	DMAR_CTX_PGLOCK(ctx)	VM_OBJECT_WLOCK((ctx)->pgtbl_obj)
115 #define	DMAR_CTX_PGTRYLOCK(ctx)	VM_OBJECT_TRYWLOCK((ctx)->pgtbl_obj)
116 #define	DMAR_CTX_PGUNLOCK(ctx)	VM_OBJECT_WUNLOCK((ctx)->pgtbl_obj)
117 #define	DMAR_CTX_ASSERT_PGLOCKED(ctx) \
118 	VM_OBJECT_ASSERT_WLOCKED((ctx)->pgtbl_obj)
119 
120 #define	DMAR_CTX_LOCK(ctx)	mtx_lock(&(ctx)->lock)
121 #define	DMAR_CTX_UNLOCK(ctx)	mtx_unlock(&(ctx)->lock)
122 #define	DMAR_CTX_ASSERT_LOCKED(ctx) mtx_assert(&(ctx)->lock, MA_OWNED)
123 
124 struct dmar_msi_data {
125 	int irq;
126 	int irq_rid;
127 	struct resource *irq_res;
128 	void *intr_handle;
129 	int (*handler)(void *);
130 	int msi_data_reg;
131 	int msi_addr_reg;
132 	int msi_uaddr_reg;
133 	void (*enable_intr)(struct dmar_unit *);
134 	void (*disable_intr)(struct dmar_unit *);
135 	const char *name;
136 };
137 
138 #define	DMAR_INTR_FAULT		0
139 #define	DMAR_INTR_QI		1
140 #define	DMAR_INTR_TOTAL		2
141 
142 struct dmar_unit {
143 	device_t dev;
144 	int unit;
145 	uint16_t segment;
146 	uint64_t base;
147 
148 	/* Resources */
149 	int reg_rid;
150 	struct resource *regs;
151 
152 	struct dmar_msi_data intrs[DMAR_INTR_TOTAL];
153 
154 	/* Hardware registers cache */
155 	uint32_t hw_ver;
156 	uint64_t hw_cap;
157 	uint64_t hw_ecap;
158 	uint32_t hw_gcmd;
159 
160 	/* Data for being a dmar */
161 	struct mtx lock;
162 	LIST_HEAD(, dmar_ctx) contexts;
163 	struct unrhdr *domids;
164 	vm_object_t ctx_obj;
165 	u_int barrier_flags;
166 
167 	/* Fault handler data */
168 	struct mtx fault_lock;
169 	uint64_t *fault_log;
170 	int fault_log_head;
171 	int fault_log_tail;
172 	int fault_log_size;
173 	struct task fault_task;
174 	struct taskqueue *fault_taskqueue;
175 
176 	/* QI */
177 	int qi_enabled;
178 	vm_offset_t inv_queue;
179 	vm_size_t inv_queue_size;
180 	uint32_t inv_queue_avail;
181 	uint32_t inv_queue_tail;
182 	volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait
183 					       descr completion */
184 	uint64_t inv_waitd_seq_hw_phys;
185 	uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */
186 	u_int inv_waitd_gen;	/* seq number generation AKA seq overflows */
187 	u_int inv_seq_waiters;	/* count of waiters for seq */
188 	u_int inv_queue_full;	/* informational counter */
189 
190 	/* Delayed freeing of map entries queue processing */
191 	struct dmar_map_entries_tailq tlb_flush_entries;
192 	struct task qi_task;
193 	struct taskqueue *qi_taskqueue;
194 
195 	/* Busdma delayed map load */
196 	struct task dmamap_load_task;
197 	TAILQ_HEAD(, bus_dmamap_dmar) delayed_maps;
198 	struct taskqueue *delayed_taskqueue;
199 };
200 
201 #define	DMAR_LOCK(dmar)		mtx_lock(&(dmar)->lock)
202 #define	DMAR_UNLOCK(dmar)	mtx_unlock(&(dmar)->lock)
203 #define	DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->lock, MA_OWNED)
204 
205 #define	DMAR_FAULT_LOCK(dmar)	mtx_lock_spin(&(dmar)->fault_lock)
206 #define	DMAR_FAULT_UNLOCK(dmar)	mtx_unlock_spin(&(dmar)->fault_lock)
207 #define	DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED)
208 
209 #define	DMAR_IS_COHERENT(dmar)	(((dmar)->hw_ecap & DMAR_ECAP_C) != 0)
210 #define	DMAR_HAS_QI(dmar)	(((dmar)->hw_ecap & DMAR_ECAP_QI) != 0)
211 
212 /* Barrier ids */
213 #define	DMAR_BARRIER_RMRR	0
214 #define	DMAR_BARRIER_USEQ	1
215 
216 struct dmar_unit *dmar_find(device_t dev);
217 
218 u_int dmar_nd2mask(u_int nd);
219 bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl);
220 int ctx_set_agaw(struct dmar_ctx *ctx, int mgaw);
221 int dmar_maxaddr2mgaw(struct dmar_unit* unit, dmar_gaddr_t maxaddr,
222     bool allow_less);
223 vm_pindex_t pglvl_max_pages(int pglvl);
224 int ctx_is_sp_lvl(struct dmar_ctx *ctx, int lvl);
225 dmar_gaddr_t pglvl_page_size(int total_pglvl, int lvl);
226 dmar_gaddr_t ctx_page_size(struct dmar_ctx *ctx, int lvl);
227 int calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
228     dmar_gaddr_t *isizep);
229 struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags);
230 void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags);
231 void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
232     struct sf_buf **sf);
233 void dmar_unmap_pgtbl(struct sf_buf *sf, bool coherent);
234 int dmar_load_root_entry_ptr(struct dmar_unit *unit);
235 int dmar_inv_ctx_glob(struct dmar_unit *unit);
236 int dmar_inv_iotlb_glob(struct dmar_unit *unit);
237 int dmar_flush_write_bufs(struct dmar_unit *unit);
238 int dmar_enable_translation(struct dmar_unit *unit);
239 int dmar_disable_translation(struct dmar_unit *unit);
240 bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id);
241 void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id);
242 
243 int dmar_fault_intr(void *arg);
244 void dmar_enable_fault_intr(struct dmar_unit *unit);
245 void dmar_disable_fault_intr(struct dmar_unit *unit);
246 int dmar_init_fault_log(struct dmar_unit *unit);
247 void dmar_fini_fault_log(struct dmar_unit *unit);
248 
249 int dmar_qi_intr(void *arg);
250 void dmar_enable_qi_intr(struct dmar_unit *unit);
251 void dmar_disable_qi_intr(struct dmar_unit *unit);
252 int dmar_init_qi(struct dmar_unit *unit);
253 void dmar_fini_qi(struct dmar_unit *unit);
254 void dmar_qi_invalidate_locked(struct dmar_ctx *ctx, dmar_gaddr_t start,
255     dmar_gaddr_t size, struct dmar_qi_genseq *pseq);
256 void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit);
257 void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit);
258 
259 vm_object_t ctx_get_idmap_pgtbl(struct dmar_ctx *ctx, dmar_gaddr_t maxaddr);
260 void put_idmap_pgtbl(vm_object_t obj);
261 int ctx_map_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
262     vm_page_t *ma, uint64_t pflags, int flags);
263 int ctx_unmap_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
264     int flags);
265 void ctx_flush_iotlb_sync(struct dmar_ctx *ctx, dmar_gaddr_t base,
266     dmar_gaddr_t size);
267 int ctx_alloc_pgtbl(struct dmar_ctx *ctx);
268 void ctx_free_pgtbl(struct dmar_ctx *ctx);
269 
270 struct dmar_ctx *dmar_instantiate_ctx(struct dmar_unit *dmar, device_t dev,
271     bool rmrr);
272 struct dmar_ctx *dmar_get_ctx(struct dmar_unit *dmar, device_t dev,
273     bool id_mapped, bool rmrr_init);
274 void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx);
275 void dmar_free_ctx(struct dmar_ctx *ctx);
276 struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, int bus,
277     int slot, int func);
278 void dmar_ctx_unload_entry(struct dmar_map_entry *entry, bool free);
279 void dmar_ctx_unload(struct dmar_ctx *ctx,
280     struct dmar_map_entries_tailq *entries, bool cansleep);
281 void dmar_ctx_free_entry(struct dmar_map_entry *entry, bool free);
282 
283 int dmar_init_busdma(struct dmar_unit *unit);
284 void dmar_fini_busdma(struct dmar_unit *unit);
285 
286 void dmar_gas_init_ctx(struct dmar_ctx *ctx);
287 void dmar_gas_fini_ctx(struct dmar_ctx *ctx);
288 struct dmar_map_entry *dmar_gas_alloc_entry(struct dmar_ctx *ctx, u_int flags);
289 void dmar_gas_free_entry(struct dmar_ctx *ctx, struct dmar_map_entry *entry);
290 void dmar_gas_free_space(struct dmar_ctx *ctx, struct dmar_map_entry *entry);
291 int dmar_gas_map(struct dmar_ctx *ctx, const struct bus_dma_tag_common *common,
292     dmar_gaddr_t size, u_int eflags, u_int flags, vm_page_t *ma,
293     struct dmar_map_entry **res);
294 void dmar_gas_free_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry);
295 int dmar_gas_map_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry,
296     u_int eflags, u_int flags, vm_page_t *ma);
297 int dmar_gas_reserve_region(struct dmar_ctx *ctx, dmar_gaddr_t start,
298     dmar_gaddr_t end);
299 
300 void dmar_ctx_parse_rmrr(struct dmar_ctx *ctx, device_t dev,
301     struct dmar_map_entries_tailq *rmrr_entries);
302 int dmar_instantiate_rmrr_ctxs(struct dmar_unit *dmar);
303 
304 void dmar_quirks_post_ident(struct dmar_unit *dmar);
305 void dmar_quirks_pre_use(struct dmar_unit *dmar);
306 
307 #define	DMAR_GM_CANWAIT	0x0001
308 #define	DMAR_GM_CANSPLIT 0x0002
309 
310 #define	DMAR_PGF_WAITOK	0x0001
311 #define	DMAR_PGF_ZERO	0x0002
312 #define	DMAR_PGF_ALLOC	0x0004
313 #define	DMAR_PGF_NOALLOC 0x0008
314 #define	DMAR_PGF_OBJL	0x0010
315 
316 extern dmar_haddr_t dmar_high;
317 extern int haw;
318 extern int dmar_tbl_pagecnt;
319 extern int dmar_match_verbose;
320 extern int dmar_check_free;
321 
322 static inline uint32_t
323 dmar_read4(const struct dmar_unit *unit, int reg)
324 {
325 
326 	return (bus_read_4(unit->regs, reg));
327 }
328 
329 static inline uint64_t
330 dmar_read8(const struct dmar_unit *unit, int reg)
331 {
332 #ifdef __i386__
333 	uint32_t high, low;
334 
335 	low = bus_read_4(unit->regs, reg);
336 	high = bus_read_4(unit->regs, reg + 4);
337 	return (low | ((uint64_t)high << 32));
338 #else
339 	return (bus_read_8(unit->regs, reg));
340 #endif
341 }
342 
343 static inline void
344 dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val)
345 {
346 
347 	KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) ==
348 	    (unit->hw_gcmd & DMAR_GCMD_TE),
349 	    ("dmar%d clearing TE 0x%08x 0x%08x", unit->unit,
350 	    unit->hw_gcmd, val));
351 	bus_write_4(unit->regs, reg, val);
352 }
353 
354 static inline void
355 dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val)
356 {
357 
358 	KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write"));
359 #ifdef __i386__
360 	uint32_t high, low;
361 
362 	low = val;
363 	high = val >> 32;
364 	bus_write_4(unit->regs, reg, low);
365 	bus_write_4(unit->regs, reg + 4, high);
366 #else
367 	bus_write_8(unit->regs, reg, val);
368 #endif
369 }
370 
371 /*
372  * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes
373  * are issued in the correct order.  For store, the lower word,
374  * containing the P or R and W bits, is set only after the high word
375  * is written.  For clear, the P bit is cleared first, then the high
376  * word is cleared.
377  */
378 static inline void
379 dmar_pte_store(volatile uint64_t *dst, uint64_t val)
380 {
381 
382 	KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx",
383 	    dst, (uintmax_t)*dst, (uintmax_t)val));
384 #ifdef __i386__
385 	volatile uint32_t *p;
386 	uint32_t hi, lo;
387 
388 	hi = val >> 32;
389 	lo = val;
390 	p = (volatile uint32_t *)dst;
391 	*(p + 1) = hi;
392 	*p = lo;
393 #else
394 	*dst = val;
395 #endif
396 }
397 
398 static inline void
399 dmar_pte_clear(volatile uint64_t *dst)
400 {
401 #ifdef __i386__
402 	volatile uint32_t *p;
403 
404 	p = (volatile uint32_t *)dst;
405 	*p = 0;
406 	*(p + 1) = 0;
407 #else
408 	*dst = 0;
409 #endif
410 }
411 
412 static inline bool
413 dmar_test_boundary(dmar_gaddr_t start, dmar_gaddr_t size,
414     dmar_gaddr_t boundary)
415 {
416 
417 	if (boundary == 0)
418 		return (true);
419 	return (start + size <= ((start + boundary) & ~(boundary - 1)));
420 }
421 
422 #ifdef INVARIANTS
423 #define	TD_PREP_PINNED_ASSERT						\
424 	int old_td_pinned;						\
425 	old_td_pinned = curthread->td_pinned
426 #define	TD_PINNED_ASSERT						\
427 	KASSERT(curthread->td_pinned == old_td_pinned,			\
428 	    ("pin count leak: %d %d %s:%d", curthread->td_pinned,	\
429 	    old_td_pinned, __FILE__, __LINE__))
430 #else
431 #define	TD_PREP_PINNED_ASSERT
432 #define	TD_PINNED_ASSERT
433 #endif
434 
435 #endif
436