1 /*- 2 * Copyright (c) 2013 The FreeBSD Foundation 3 * All rights reserved. 4 * 5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 6 * under sponsorship from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #ifndef __X86_IOMMU_INTEL_DMAR_H 33 #define __X86_IOMMU_INTEL_DMAR_H 34 35 /* Host or physical memory address, after translation. */ 36 typedef uint64_t dmar_haddr_t; 37 /* Guest or bus address, before translation. */ 38 typedef uint64_t dmar_gaddr_t; 39 40 struct dmar_qi_genseq { 41 u_int gen; 42 uint32_t seq; 43 }; 44 45 struct dmar_map_entry { 46 dmar_gaddr_t start; 47 dmar_gaddr_t end; 48 dmar_gaddr_t free_after; /* Free space after the entry */ 49 dmar_gaddr_t free_down; /* Max free space below the 50 current R/B tree node */ 51 u_int flags; 52 TAILQ_ENTRY(dmar_map_entry) dmamap_link; /* Link for dmamap entries */ 53 RB_ENTRY(dmar_map_entry) rb_entry; /* Links for ctx entries */ 54 TAILQ_ENTRY(dmar_map_entry) unroll_link; /* Link for unroll after 55 dmamap_load failure */ 56 struct dmar_ctx *ctx; 57 struct dmar_qi_genseq gseq; 58 }; 59 60 RB_HEAD(dmar_gas_entries_tree, dmar_map_entry); 61 RB_PROTOTYPE(dmar_gas_entries_tree, dmar_map_entry, rb_entry, 62 dmar_gas_cmp_entries); 63 64 #define DMAR_MAP_ENTRY_PLACE 0x0001 /* Fake entry */ 65 #define DMAR_MAP_ENTRY_RMRR 0x0002 /* Permanent, not linked by 66 dmamap_link */ 67 #define DMAR_MAP_ENTRY_MAP 0x0004 /* Busdma created, linked by 68 dmamap_link */ 69 #define DMAR_MAP_ENTRY_UNMAPPED 0x0010 /* No backing pages */ 70 #define DMAR_MAP_ENTRY_QI_NF 0x0020 /* qi task, do not free entry */ 71 #define DMAR_MAP_ENTRY_READ 0x1000 /* Read permitted */ 72 #define DMAR_MAP_ENTRY_WRITE 0x2000 /* Write permitted */ 73 #define DMAR_MAP_ENTRY_SNOOP 0x4000 /* Snoop */ 74 #define DMAR_MAP_ENTRY_TM 0x8000 /* Transient */ 75 76 struct dmar_ctx { 77 uint16_t rid; /* pci RID */ 78 int domain; /* DID */ 79 int mgaw; /* Real max address width */ 80 int agaw; /* Adjusted guest address width */ 81 int pglvl; /* The pagelevel */ 82 int awlvl; /* The pagelevel as the bitmask, to set in 83 context entry */ 84 dmar_gaddr_t end;/* Highest address + 1 in the guest AS */ 85 u_int refs; /* References to the context, from tags */ 86 struct dmar_unit *dmar; 87 struct bus_dma_tag_dmar ctx_tag; /* Root tag */ 88 struct mtx lock; 89 LIST_ENTRY(dmar_ctx) link; /* Member in the dmar list */ 90 vm_object_t pgtbl_obj; /* Page table pages */ 91 u_int flags; /* Protected by dmar lock */ 92 uint64_t last_fault_rec[2]; /* Last fault reported */ 93 u_int entries_cnt; 94 u_long loads; 95 u_long unloads; 96 struct dmar_gas_entries_tree rb_root; 97 struct dmar_map_entries_tailq unload_entries; /* Entries to unload */ 98 struct dmar_map_entry *first_place, *last_place; 99 struct task unload_task; 100 }; 101 102 /* struct dmar_ctx flags */ 103 #define DMAR_CTX_FAULTED 0x0001 /* Fault was reported, 104 last_fault_rec is valid */ 105 #define DMAR_CTX_IDMAP 0x0002 /* Context uses identity page table */ 106 #define DMAR_CTX_RMRR 0x0004 /* Context contains RMRR entry, 107 cannot be turned off */ 108 #define DMAR_CTX_DISABLED 0x0008 /* Device is disabled, the 109 ephemeral reference is kept 110 to prevent context destruction */ 111 112 #define DMAR_CTX_PGLOCK(ctx) VM_OBJECT_WLOCK((ctx)->pgtbl_obj) 113 #define DMAR_CTX_PGTRYLOCK(ctx) VM_OBJECT_TRYWLOCK((ctx)->pgtbl_obj) 114 #define DMAR_CTX_PGUNLOCK(ctx) VM_OBJECT_WUNLOCK((ctx)->pgtbl_obj) 115 #define DMAR_CTX_ASSERT_PGLOCKED(ctx) \ 116 VM_OBJECT_ASSERT_WLOCKED((ctx)->pgtbl_obj) 117 118 #define DMAR_CTX_LOCK(ctx) mtx_lock(&(ctx)->lock) 119 #define DMAR_CTX_UNLOCK(ctx) mtx_unlock(&(ctx)->lock) 120 #define DMAR_CTX_ASSERT_LOCKED(ctx) mtx_assert(&(ctx)->lock, MA_OWNED) 121 122 struct dmar_msi_data { 123 int irq; 124 int irq_rid; 125 struct resource *irq_res; 126 void *intr_handle; 127 int (*handler)(void *); 128 int msi_data_reg; 129 int msi_addr_reg; 130 int msi_uaddr_reg; 131 void (*enable_intr)(struct dmar_unit *); 132 void (*disable_intr)(struct dmar_unit *); 133 const char *name; 134 }; 135 136 #define DMAR_INTR_FAULT 0 137 #define DMAR_INTR_QI 1 138 #define DMAR_INTR_TOTAL 2 139 140 struct dmar_unit { 141 device_t dev; 142 int unit; 143 uint16_t segment; 144 uint64_t base; 145 146 /* Resources */ 147 int reg_rid; 148 struct resource *regs; 149 150 struct dmar_msi_data intrs[DMAR_INTR_TOTAL]; 151 152 /* Hardware registers cache */ 153 uint32_t hw_ver; 154 uint64_t hw_cap; 155 uint64_t hw_ecap; 156 uint32_t hw_gcmd; 157 158 /* Data for being a dmar */ 159 struct mtx lock; 160 LIST_HEAD(, dmar_ctx) contexts; 161 struct unrhdr *domids; 162 vm_object_t ctx_obj; 163 u_int barrier_flags; 164 165 /* Fault handler data */ 166 struct mtx fault_lock; 167 uint64_t *fault_log; 168 int fault_log_head; 169 int fault_log_tail; 170 int fault_log_size; 171 struct task fault_task; 172 struct taskqueue *fault_taskqueue; 173 174 /* QI */ 175 int qi_enabled; 176 vm_offset_t inv_queue; 177 vm_size_t inv_queue_size; 178 uint32_t inv_queue_avail; 179 uint32_t inv_queue_tail; 180 volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait 181 descr completion */ 182 uint64_t inv_waitd_seq_hw_phys; 183 uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */ 184 u_int inv_waitd_gen; /* seq number generation AKA seq overflows */ 185 u_int inv_seq_waiters; /* count of waiters for seq */ 186 u_int inv_queue_full; /* informational counter */ 187 188 /* Delayed freeing of map entries queue processing */ 189 struct dmar_map_entries_tailq tlb_flush_entries; 190 struct task qi_task; 191 struct taskqueue *qi_taskqueue; 192 193 /* Busdma delayed map load */ 194 struct task dmamap_load_task; 195 TAILQ_HEAD(, bus_dmamap_dmar) delayed_maps; 196 struct taskqueue *delayed_taskqueue; 197 }; 198 199 #define DMAR_LOCK(dmar) mtx_lock(&(dmar)->lock) 200 #define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->lock) 201 #define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->lock, MA_OWNED) 202 203 #define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock) 204 #define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock) 205 #define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED) 206 207 #define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0) 208 #define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0) 209 210 /* Barrier ids */ 211 #define DMAR_BARRIER_RMRR 0 212 #define DMAR_BARRIER_USEQ 1 213 214 struct dmar_unit *dmar_find(device_t dev); 215 216 u_int dmar_nd2mask(u_int nd); 217 bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl); 218 int ctx_set_agaw(struct dmar_ctx *ctx, int mgaw); 219 int dmar_maxaddr2mgaw(struct dmar_unit* unit, dmar_gaddr_t maxaddr, 220 bool allow_less); 221 vm_pindex_t pglvl_max_pages(int pglvl); 222 int ctx_is_sp_lvl(struct dmar_ctx *ctx, int lvl); 223 dmar_gaddr_t pglvl_page_size(int total_pglvl, int lvl); 224 dmar_gaddr_t ctx_page_size(struct dmar_ctx *ctx, int lvl); 225 int calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size, 226 dmar_gaddr_t *isizep); 227 struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags); 228 void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags); 229 void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, 230 struct sf_buf **sf); 231 void dmar_unmap_pgtbl(struct sf_buf *sf, bool coherent); 232 int dmar_load_root_entry_ptr(struct dmar_unit *unit); 233 int dmar_inv_ctx_glob(struct dmar_unit *unit); 234 int dmar_inv_iotlb_glob(struct dmar_unit *unit); 235 int dmar_flush_write_bufs(struct dmar_unit *unit); 236 int dmar_enable_translation(struct dmar_unit *unit); 237 int dmar_disable_translation(struct dmar_unit *unit); 238 bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id); 239 void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id); 240 241 int dmar_fault_intr(void *arg); 242 void dmar_enable_fault_intr(struct dmar_unit *unit); 243 void dmar_disable_fault_intr(struct dmar_unit *unit); 244 int dmar_init_fault_log(struct dmar_unit *unit); 245 void dmar_fini_fault_log(struct dmar_unit *unit); 246 247 int dmar_qi_intr(void *arg); 248 void dmar_enable_qi_intr(struct dmar_unit *unit); 249 void dmar_disable_qi_intr(struct dmar_unit *unit); 250 int dmar_init_qi(struct dmar_unit *unit); 251 void dmar_fini_qi(struct dmar_unit *unit); 252 void dmar_qi_invalidate_locked(struct dmar_ctx *ctx, dmar_gaddr_t start, 253 dmar_gaddr_t size, struct dmar_qi_genseq *pseq); 254 void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit); 255 void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit); 256 257 vm_object_t ctx_get_idmap_pgtbl(struct dmar_ctx *ctx, dmar_gaddr_t maxaddr); 258 void put_idmap_pgtbl(vm_object_t obj); 259 int ctx_map_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size, 260 vm_page_t *ma, uint64_t pflags, int flags); 261 int ctx_unmap_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size, 262 int flags); 263 void ctx_flush_iotlb_sync(struct dmar_ctx *ctx, dmar_gaddr_t base, 264 dmar_gaddr_t size); 265 int ctx_alloc_pgtbl(struct dmar_ctx *ctx); 266 void ctx_free_pgtbl(struct dmar_ctx *ctx); 267 268 struct dmar_ctx *dmar_instantiate_ctx(struct dmar_unit *dmar, device_t dev, 269 bool rmrr); 270 struct dmar_ctx *dmar_get_ctx(struct dmar_unit *dmar, device_t dev, 271 uint16_t rid, bool id_mapped, bool rmrr_init); 272 void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx); 273 void dmar_free_ctx(struct dmar_ctx *ctx); 274 struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid); 275 void dmar_ctx_unload_entry(struct dmar_map_entry *entry, bool free); 276 void dmar_ctx_unload(struct dmar_ctx *ctx, 277 struct dmar_map_entries_tailq *entries, bool cansleep); 278 void dmar_ctx_free_entry(struct dmar_map_entry *entry, bool free); 279 280 int dmar_init_busdma(struct dmar_unit *unit); 281 void dmar_fini_busdma(struct dmar_unit *unit); 282 283 void dmar_gas_init_ctx(struct dmar_ctx *ctx); 284 void dmar_gas_fini_ctx(struct dmar_ctx *ctx); 285 struct dmar_map_entry *dmar_gas_alloc_entry(struct dmar_ctx *ctx, u_int flags); 286 void dmar_gas_free_entry(struct dmar_ctx *ctx, struct dmar_map_entry *entry); 287 void dmar_gas_free_space(struct dmar_ctx *ctx, struct dmar_map_entry *entry); 288 int dmar_gas_map(struct dmar_ctx *ctx, const struct bus_dma_tag_common *common, 289 dmar_gaddr_t size, u_int eflags, u_int flags, vm_page_t *ma, 290 struct dmar_map_entry **res); 291 void dmar_gas_free_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry); 292 int dmar_gas_map_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry, 293 u_int eflags, u_int flags, vm_page_t *ma); 294 int dmar_gas_reserve_region(struct dmar_ctx *ctx, dmar_gaddr_t start, 295 dmar_gaddr_t end); 296 297 void dmar_ctx_parse_rmrr(struct dmar_ctx *ctx, device_t dev, 298 struct dmar_map_entries_tailq *rmrr_entries); 299 int dmar_instantiate_rmrr_ctxs(struct dmar_unit *dmar); 300 301 void dmar_quirks_post_ident(struct dmar_unit *dmar); 302 void dmar_quirks_pre_use(struct dmar_unit *dmar); 303 304 #define DMAR_GM_CANWAIT 0x0001 305 #define DMAR_GM_CANSPLIT 0x0002 306 307 #define DMAR_PGF_WAITOK 0x0001 308 #define DMAR_PGF_ZERO 0x0002 309 #define DMAR_PGF_ALLOC 0x0004 310 #define DMAR_PGF_NOALLOC 0x0008 311 #define DMAR_PGF_OBJL 0x0010 312 313 extern dmar_haddr_t dmar_high; 314 extern int haw; 315 extern int dmar_tbl_pagecnt; 316 extern int dmar_match_verbose; 317 extern int dmar_check_free; 318 319 static inline uint32_t 320 dmar_read4(const struct dmar_unit *unit, int reg) 321 { 322 323 return (bus_read_4(unit->regs, reg)); 324 } 325 326 static inline uint64_t 327 dmar_read8(const struct dmar_unit *unit, int reg) 328 { 329 #ifdef __i386__ 330 uint32_t high, low; 331 332 low = bus_read_4(unit->regs, reg); 333 high = bus_read_4(unit->regs, reg + 4); 334 return (low | ((uint64_t)high << 32)); 335 #else 336 return (bus_read_8(unit->regs, reg)); 337 #endif 338 } 339 340 static inline void 341 dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val) 342 { 343 344 KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) == 345 (unit->hw_gcmd & DMAR_GCMD_TE), 346 ("dmar%d clearing TE 0x%08x 0x%08x", unit->unit, 347 unit->hw_gcmd, val)); 348 bus_write_4(unit->regs, reg, val); 349 } 350 351 static inline void 352 dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val) 353 { 354 355 KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write")); 356 #ifdef __i386__ 357 uint32_t high, low; 358 359 low = val; 360 high = val >> 32; 361 bus_write_4(unit->regs, reg, low); 362 bus_write_4(unit->regs, reg + 4, high); 363 #else 364 bus_write_8(unit->regs, reg, val); 365 #endif 366 } 367 368 /* 369 * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes 370 * are issued in the correct order. For store, the lower word, 371 * containing the P or R and W bits, is set only after the high word 372 * is written. For clear, the P bit is cleared first, then the high 373 * word is cleared. 374 */ 375 static inline void 376 dmar_pte_store(volatile uint64_t *dst, uint64_t val) 377 { 378 379 KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx", 380 dst, (uintmax_t)*dst, (uintmax_t)val)); 381 #ifdef __i386__ 382 volatile uint32_t *p; 383 uint32_t hi, lo; 384 385 hi = val >> 32; 386 lo = val; 387 p = (volatile uint32_t *)dst; 388 *(p + 1) = hi; 389 *p = lo; 390 #else 391 *dst = val; 392 #endif 393 } 394 395 static inline void 396 dmar_pte_clear(volatile uint64_t *dst) 397 { 398 #ifdef __i386__ 399 volatile uint32_t *p; 400 401 p = (volatile uint32_t *)dst; 402 *p = 0; 403 *(p + 1) = 0; 404 #else 405 *dst = 0; 406 #endif 407 } 408 409 static inline bool 410 dmar_test_boundary(dmar_gaddr_t start, dmar_gaddr_t size, 411 dmar_gaddr_t boundary) 412 { 413 414 if (boundary == 0) 415 return (true); 416 return (start + size <= ((start + boundary) & ~(boundary - 1))); 417 } 418 419 #ifdef INVARIANTS 420 #define TD_PREP_PINNED_ASSERT \ 421 int old_td_pinned; \ 422 old_td_pinned = curthread->td_pinned 423 #define TD_PINNED_ASSERT \ 424 KASSERT(curthread->td_pinned == old_td_pinned, \ 425 ("pin count leak: %d %d %s:%d", curthread->td_pinned, \ 426 old_td_pinned, __FILE__, __LINE__)) 427 #else 428 #define TD_PREP_PINNED_ASSERT 429 #define TD_PINNED_ASSERT 430 #endif 431 432 #endif 433