186be9f0dSKonstantin Belousov /*- 24d846d26SWarner Losh * SPDX-License-Identifier: BSD-2-Clause 3ebf5747bSPedro F. Giffuni * 40a110d5bSKonstantin Belousov * Copyright (c) 2013-2015 The FreeBSD Foundation 586be9f0dSKonstantin Belousov * 686be9f0dSKonstantin Belousov * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 786be9f0dSKonstantin Belousov * under sponsorship from the FreeBSD Foundation. 886be9f0dSKonstantin Belousov * 986be9f0dSKonstantin Belousov * Redistribution and use in source and binary forms, with or without 1086be9f0dSKonstantin Belousov * modification, are permitted provided that the following conditions 1186be9f0dSKonstantin Belousov * are met: 1286be9f0dSKonstantin Belousov * 1. Redistributions of source code must retain the above copyright 1386be9f0dSKonstantin Belousov * notice, this list of conditions and the following disclaimer. 1486be9f0dSKonstantin Belousov * 2. Redistributions in binary form must reproduce the above copyright 1586be9f0dSKonstantin Belousov * notice, this list of conditions and the following disclaimer in the 1686be9f0dSKonstantin Belousov * documentation and/or other materials provided with the distribution. 1786be9f0dSKonstantin Belousov * 1886be9f0dSKonstantin Belousov * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 1986be9f0dSKonstantin Belousov * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 2086be9f0dSKonstantin Belousov * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 2186be9f0dSKonstantin Belousov * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 2286be9f0dSKonstantin Belousov * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 2386be9f0dSKonstantin Belousov * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 2486be9f0dSKonstantin Belousov * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 2586be9f0dSKonstantin Belousov * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 2686be9f0dSKonstantin Belousov * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 2786be9f0dSKonstantin Belousov * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 2886be9f0dSKonstantin Belousov * SUCH DAMAGE. 2986be9f0dSKonstantin Belousov */ 3086be9f0dSKonstantin Belousov 3186be9f0dSKonstantin Belousov #ifndef __X86_IOMMU_INTEL_DMAR_H 3286be9f0dSKonstantin Belousov #define __X86_IOMMU_INTEL_DMAR_H 3386be9f0dSKonstantin Belousov 341238a28dSRuslan Bukin #include <dev/iommu/iommu.h> 3586be9f0dSKonstantin Belousov 3659e37c8aSRuslan Bukin struct dmar_unit; 3768eeb96aSKonstantin Belousov 381abfd355SKonstantin Belousov /* 391abfd355SKonstantin Belousov * Locking annotations: 4059e37c8aSRuslan Bukin * (u) - Protected by iommu unit lock 411abfd355SKonstantin Belousov * (d) - Protected by domain lock 421abfd355SKonstantin Belousov * (c) - Immutable after initialization 431abfd355SKonstantin Belousov */ 441abfd355SKonstantin Belousov 451abfd355SKonstantin Belousov /* 461abfd355SKonstantin Belousov * The domain abstraction. Most non-constant members of the domain 47ad969cb1SKonstantin Belousov * are protected by owning dmar unit lock, not by the domain lock. 48ad969cb1SKonstantin Belousov * Most important, the dmar lock protects the contexts list. 491abfd355SKonstantin Belousov * 501abfd355SKonstantin Belousov * The domain lock protects the address map for the domain, and list 511abfd355SKonstantin Belousov * of unload entries delayed. 521abfd355SKonstantin Belousov * 531abfd355SKonstantin Belousov * Page tables pages and pages content is protected by the vm object 541abfd355SKonstantin Belousov * lock pgtbl_obj, which contains the page tables pages. 551abfd355SKonstantin Belousov */ 561abfd355SKonstantin Belousov struct dmar_domain { 5759e37c8aSRuslan Bukin struct iommu_domain iodom; 581abfd355SKonstantin Belousov int domain; /* (c) DID, written in context entry */ 591abfd355SKonstantin Belousov int mgaw; /* (c) Real max address width */ 601abfd355SKonstantin Belousov int agaw; /* (c) Adjusted guest address width */ 611abfd355SKonstantin Belousov int pglvl; /* (c) The pagelevel */ 621abfd355SKonstantin Belousov int awlvl; /* (c) The pagelevel as the bitmask, 631abfd355SKonstantin Belousov to set in context entry */ 641abfd355SKonstantin Belousov u_int ctx_cnt; /* (u) Number of contexts owned */ 651abfd355SKonstantin Belousov u_int refs; /* (u) Refs, including ctx */ 661abfd355SKonstantin Belousov struct dmar_unit *dmar; /* (c) */ 671abfd355SKonstantin Belousov LIST_ENTRY(dmar_domain) link; /* (u) Member in the dmar list */ 681abfd355SKonstantin Belousov LIST_HEAD(, dmar_ctx) contexts; /* (u) */ 691abfd355SKonstantin Belousov vm_object_t pgtbl_obj; /* (c) Page table pages */ 70e164cafcSKonstantin Belousov u_int batch_no; 7186be9f0dSKonstantin Belousov }; 7286be9f0dSKonstantin Belousov 731abfd355SKonstantin Belousov struct dmar_ctx { 7459e37c8aSRuslan Bukin struct iommu_ctx context; 751abfd355SKonstantin Belousov uint64_t last_fault_rec[2]; /* Last fault reported */ 761abfd355SKonstantin Belousov LIST_ENTRY(dmar_ctx) link; /* (u) Member in the domain list */ 771abfd355SKonstantin Belousov u_int refs; /* (u) References from tags */ 781abfd355SKonstantin Belousov }; 791abfd355SKonstantin Belousov 801abfd355SKonstantin Belousov #define DMAR_DOMAIN_PGLOCK(dom) VM_OBJECT_WLOCK((dom)->pgtbl_obj) 811abfd355SKonstantin Belousov #define DMAR_DOMAIN_PGTRYLOCK(dom) VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj) 821abfd355SKonstantin Belousov #define DMAR_DOMAIN_PGUNLOCK(dom) VM_OBJECT_WUNLOCK((dom)->pgtbl_obj) 831abfd355SKonstantin Belousov #define DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \ 841abfd355SKonstantin Belousov VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj) 8586be9f0dSKonstantin Belousov 8659e37c8aSRuslan Bukin #define DMAR_DOMAIN_LOCK(dom) mtx_lock(&(dom)->iodom.lock) 8759e37c8aSRuslan Bukin #define DMAR_DOMAIN_UNLOCK(dom) mtx_unlock(&(dom)->iodom.lock) 8859e37c8aSRuslan Bukin #define DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->iodom.lock, MA_OWNED) 8986be9f0dSKonstantin Belousov 9078b51754SRuslan Bukin #define DMAR2IOMMU(dmar) &((dmar)->iommu) 9178b51754SRuslan Bukin #define IOMMU2DMAR(dmar) \ 9278b51754SRuslan Bukin __containerof((dmar), struct dmar_unit, iommu) 9378b51754SRuslan Bukin 9478b51754SRuslan Bukin #define DOM2IODOM(domain) &((domain)->iodom) 9578b51754SRuslan Bukin #define IODOM2DOM(domain) \ 9678b51754SRuslan Bukin __containerof((domain), struct dmar_domain, iodom) 9778b51754SRuslan Bukin 9878b51754SRuslan Bukin #define CTX2IOCTX(ctx) &((ctx)->context) 9978b51754SRuslan Bukin #define IOCTX2CTX(ctx) \ 10078b51754SRuslan Bukin __containerof((ctx), struct dmar_ctx, context) 10178b51754SRuslan Bukin 10278b51754SRuslan Bukin #define CTX2DOM(ctx) IODOM2DOM((ctx)->context.domain) 10378b51754SRuslan Bukin #define CTX2DMAR(ctx) (CTX2DOM(ctx)->dmar) 10478b51754SRuslan Bukin #define DOM2DMAR(domain) ((domain)->dmar) 10578b51754SRuslan Bukin 10668eeb96aSKonstantin Belousov struct dmar_msi_data { 10768eeb96aSKonstantin Belousov int irq; 10868eeb96aSKonstantin Belousov int irq_rid; 10968eeb96aSKonstantin Belousov struct resource *irq_res; 11068eeb96aSKonstantin Belousov void *intr_handle; 11168eeb96aSKonstantin Belousov int (*handler)(void *); 11268eeb96aSKonstantin Belousov int msi_data_reg; 11368eeb96aSKonstantin Belousov int msi_addr_reg; 11468eeb96aSKonstantin Belousov int msi_uaddr_reg; 11568eeb96aSKonstantin Belousov void (*enable_intr)(struct dmar_unit *); 11668eeb96aSKonstantin Belousov void (*disable_intr)(struct dmar_unit *); 11768eeb96aSKonstantin Belousov const char *name; 11868eeb96aSKonstantin Belousov }; 11968eeb96aSKonstantin Belousov 12068eeb96aSKonstantin Belousov #define DMAR_INTR_FAULT 0 12168eeb96aSKonstantin Belousov #define DMAR_INTR_QI 1 12268eeb96aSKonstantin Belousov #define DMAR_INTR_TOTAL 2 12368eeb96aSKonstantin Belousov 12486be9f0dSKonstantin Belousov struct dmar_unit { 12559e37c8aSRuslan Bukin struct iommu_unit iommu; 12686be9f0dSKonstantin Belousov device_t dev; 12786be9f0dSKonstantin Belousov uint16_t segment; 12886be9f0dSKonstantin Belousov uint64_t base; 12986be9f0dSKonstantin Belousov 13086be9f0dSKonstantin Belousov /* Resources */ 13186be9f0dSKonstantin Belousov int reg_rid; 13286be9f0dSKonstantin Belousov struct resource *regs; 13368eeb96aSKonstantin Belousov 13468eeb96aSKonstantin Belousov struct dmar_msi_data intrs[DMAR_INTR_TOTAL]; 13586be9f0dSKonstantin Belousov 13686be9f0dSKonstantin Belousov /* Hardware registers cache */ 13786be9f0dSKonstantin Belousov uint32_t hw_ver; 13886be9f0dSKonstantin Belousov uint64_t hw_cap; 13986be9f0dSKonstantin Belousov uint64_t hw_ecap; 14086be9f0dSKonstantin Belousov uint32_t hw_gcmd; 14186be9f0dSKonstantin Belousov 14286be9f0dSKonstantin Belousov /* Data for being a dmar */ 1431abfd355SKonstantin Belousov LIST_HEAD(, dmar_domain) domains; 14486be9f0dSKonstantin Belousov struct unrhdr *domids; 14586be9f0dSKonstantin Belousov vm_object_t ctx_obj; 14686be9f0dSKonstantin Belousov u_int barrier_flags; 14786be9f0dSKonstantin Belousov 14886be9f0dSKonstantin Belousov /* Fault handler data */ 14986be9f0dSKonstantin Belousov struct mtx fault_lock; 15086be9f0dSKonstantin Belousov uint64_t *fault_log; 15186be9f0dSKonstantin Belousov int fault_log_head; 15286be9f0dSKonstantin Belousov int fault_log_tail; 15386be9f0dSKonstantin Belousov int fault_log_size; 15486be9f0dSKonstantin Belousov struct task fault_task; 15586be9f0dSKonstantin Belousov struct taskqueue *fault_taskqueue; 15686be9f0dSKonstantin Belousov 15768eeb96aSKonstantin Belousov /* QI */ 15868eeb96aSKonstantin Belousov int qi_enabled; 159f49fd63aSJohn Baldwin char *inv_queue; 16068eeb96aSKonstantin Belousov vm_size_t inv_queue_size; 16168eeb96aSKonstantin Belousov uint32_t inv_queue_avail; 16268eeb96aSKonstantin Belousov uint32_t inv_queue_tail; 16368eeb96aSKonstantin Belousov volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait 16468eeb96aSKonstantin Belousov descr completion */ 16568eeb96aSKonstantin Belousov uint64_t inv_waitd_seq_hw_phys; 16668eeb96aSKonstantin Belousov uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */ 16768eeb96aSKonstantin Belousov u_int inv_waitd_gen; /* seq number generation AKA seq overflows */ 16868eeb96aSKonstantin Belousov u_int inv_seq_waiters; /* count of waiters for seq */ 16968eeb96aSKonstantin Belousov u_int inv_queue_full; /* informational counter */ 17068eeb96aSKonstantin Belousov 1710a110d5bSKonstantin Belousov /* IR */ 1720a110d5bSKonstantin Belousov int ir_enabled; 1730a110d5bSKonstantin Belousov vm_paddr_t irt_phys; 1740a110d5bSKonstantin Belousov dmar_irte_t *irt; 1750a110d5bSKonstantin Belousov u_int irte_cnt; 1760a110d5bSKonstantin Belousov vmem_t *irtids; 1770a110d5bSKonstantin Belousov 17842736dc4SAlan Cox /* 17942736dc4SAlan Cox * Delayed freeing of map entries queue processing: 18042736dc4SAlan Cox * 18142736dc4SAlan Cox * tlb_flush_head and tlb_flush_tail are used to implement a FIFO 18242736dc4SAlan Cox * queue that supports concurrent dequeues and enqueues. However, 18342736dc4SAlan Cox * there can only be a single dequeuer (accessing tlb_flush_head) and 18442736dc4SAlan Cox * a single enqueuer (accessing tlb_flush_tail) at a time. Since the 18542736dc4SAlan Cox * unit's qi_task is the only dequeuer, it can access tlb_flush_head 18642736dc4SAlan Cox * without any locking. In contrast, there may be multiple enqueuers, 18742736dc4SAlan Cox * so the enqueuers acquire the iommu unit lock to serialize their 18842736dc4SAlan Cox * accesses to tlb_flush_tail. 18942736dc4SAlan Cox * 19042736dc4SAlan Cox * In this FIFO queue implementation, the key to enabling concurrent 19142736dc4SAlan Cox * dequeues and enqueues is that the dequeuer never needs to access 19242736dc4SAlan Cox * tlb_flush_tail and the enqueuer never needs to access 19342736dc4SAlan Cox * tlb_flush_head. In particular, tlb_flush_head and tlb_flush_tail 19442736dc4SAlan Cox * are never NULL, so neither a dequeuer nor an enqueuer ever needs to 19542736dc4SAlan Cox * update both. Instead, tlb_flush_head always points to a "zombie" 19642736dc4SAlan Cox * struct, which previously held the last dequeued item. Thus, the 19742736dc4SAlan Cox * zombie's next field actually points to the struct holding the first 19842736dc4SAlan Cox * item in the queue. When an item is dequeued, the current zombie is 19942736dc4SAlan Cox * finally freed, and the struct that held the just dequeued item 20042736dc4SAlan Cox * becomes the new zombie. When the queue is empty, tlb_flush_tail 20142736dc4SAlan Cox * also points to the zombie. 20242736dc4SAlan Cox */ 20342736dc4SAlan Cox struct iommu_map_entry *tlb_flush_head; 20442736dc4SAlan Cox struct iommu_map_entry *tlb_flush_tail; 20568eeb96aSKonstantin Belousov struct task qi_task; 20668eeb96aSKonstantin Belousov struct taskqueue *qi_taskqueue; 20786be9f0dSKonstantin Belousov }; 20886be9f0dSKonstantin Belousov 20959e37c8aSRuslan Bukin #define DMAR_LOCK(dmar) mtx_lock(&(dmar)->iommu.lock) 21059e37c8aSRuslan Bukin #define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->iommu.lock) 21159e37c8aSRuslan Bukin #define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->iommu.lock, MA_OWNED) 21286be9f0dSKonstantin Belousov 21386be9f0dSKonstantin Belousov #define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock) 21486be9f0dSKonstantin Belousov #define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock) 21586be9f0dSKonstantin Belousov #define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED) 21686be9f0dSKonstantin Belousov 21786be9f0dSKonstantin Belousov #define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0) 21868eeb96aSKonstantin Belousov #define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0) 2190a110d5bSKonstantin Belousov #define DMAR_X2APIC(dmar) \ 2200a110d5bSKonstantin Belousov (x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0) 22186be9f0dSKonstantin Belousov 22286be9f0dSKonstantin Belousov /* Barrier ids */ 22386be9f0dSKonstantin Belousov #define DMAR_BARRIER_RMRR 0 22486be9f0dSKonstantin Belousov #define DMAR_BARRIER_USEQ 1 22586be9f0dSKonstantin Belousov 226f9feb091SKonstantin Belousov struct dmar_unit *dmar_find(device_t dev, bool verbose); 2270a110d5bSKonstantin Belousov struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid); 2280a110d5bSKonstantin Belousov struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid); 22986be9f0dSKonstantin Belousov 23086be9f0dSKonstantin Belousov u_int dmar_nd2mask(u_int nd); 23186be9f0dSKonstantin Belousov bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl); 2321abfd355SKonstantin Belousov int domain_set_agaw(struct dmar_domain *domain, int mgaw); 23359e37c8aSRuslan Bukin int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, 23486be9f0dSKonstantin Belousov bool allow_less); 23586be9f0dSKonstantin Belousov vm_pindex_t pglvl_max_pages(int pglvl); 2361abfd355SKonstantin Belousov int domain_is_sp_lvl(struct dmar_domain *domain, int lvl); 23759e37c8aSRuslan Bukin iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl); 23859e37c8aSRuslan Bukin iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl); 23959e37c8aSRuslan Bukin int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size, 24059e37c8aSRuslan Bukin iommu_gaddr_t *isizep); 24186be9f0dSKonstantin Belousov struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags); 24286be9f0dSKonstantin Belousov void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags); 24386be9f0dSKonstantin Belousov void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, 24486be9f0dSKonstantin Belousov struct sf_buf **sf); 2456b7c46afSKonstantin Belousov void dmar_unmap_pgtbl(struct sf_buf *sf); 24686be9f0dSKonstantin Belousov int dmar_load_root_entry_ptr(struct dmar_unit *unit); 24786be9f0dSKonstantin Belousov int dmar_inv_ctx_glob(struct dmar_unit *unit); 24886be9f0dSKonstantin Belousov int dmar_inv_iotlb_glob(struct dmar_unit *unit); 24986be9f0dSKonstantin Belousov int dmar_flush_write_bufs(struct dmar_unit *unit); 2506b7c46afSKonstantin Belousov void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst); 2516b7c46afSKonstantin Belousov void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst); 2526b7c46afSKonstantin Belousov void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst); 25306e6ca6dSKornel Duleba int dmar_disable_protected_regions(struct dmar_unit *unit); 25486be9f0dSKonstantin Belousov int dmar_enable_translation(struct dmar_unit *unit); 25586be9f0dSKonstantin Belousov int dmar_disable_translation(struct dmar_unit *unit); 2560a110d5bSKonstantin Belousov int dmar_load_irt_ptr(struct dmar_unit *unit); 2570a110d5bSKonstantin Belousov int dmar_enable_ir(struct dmar_unit *unit); 2580a110d5bSKonstantin Belousov int dmar_disable_ir(struct dmar_unit *unit); 25986be9f0dSKonstantin Belousov bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id); 26086be9f0dSKonstantin Belousov void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id); 261476358b3SKonstantin Belousov uint64_t dmar_get_timeout(void); 262476358b3SKonstantin Belousov void dmar_update_timeout(uint64_t newval); 26386be9f0dSKonstantin Belousov 26468eeb96aSKonstantin Belousov int dmar_fault_intr(void *arg); 26568eeb96aSKonstantin Belousov void dmar_enable_fault_intr(struct dmar_unit *unit); 26668eeb96aSKonstantin Belousov void dmar_disable_fault_intr(struct dmar_unit *unit); 26786be9f0dSKonstantin Belousov int dmar_init_fault_log(struct dmar_unit *unit); 26886be9f0dSKonstantin Belousov void dmar_fini_fault_log(struct dmar_unit *unit); 26986be9f0dSKonstantin Belousov 27068eeb96aSKonstantin Belousov int dmar_qi_intr(void *arg); 27168eeb96aSKonstantin Belousov void dmar_enable_qi_intr(struct dmar_unit *unit); 27268eeb96aSKonstantin Belousov void dmar_disable_qi_intr(struct dmar_unit *unit); 27368eeb96aSKonstantin Belousov int dmar_init_qi(struct dmar_unit *unit); 27468eeb96aSKonstantin Belousov void dmar_fini_qi(struct dmar_unit *unit); 27542736dc4SAlan Cox void dmar_qi_invalidate_locked(struct dmar_domain *domain, 27642736dc4SAlan Cox struct iommu_map_entry *entry, bool emit_wait); 277c2515634SAlan Cox void dmar_qi_invalidate_sync(struct dmar_domain *domain, iommu_gaddr_t start, 278c2515634SAlan Cox iommu_gaddr_t size, bool cansleep); 27968eeb96aSKonstantin Belousov void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit); 28068eeb96aSKonstantin Belousov void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit); 2810a110d5bSKonstantin Belousov void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit); 2820a110d5bSKonstantin Belousov void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt); 28368eeb96aSKonstantin Belousov 2841abfd355SKonstantin Belousov vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain, 28559e37c8aSRuslan Bukin iommu_gaddr_t maxaddr); 28686be9f0dSKonstantin Belousov void put_idmap_pgtbl(vm_object_t obj); 28759e37c8aSRuslan Bukin void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base, 28859e37c8aSRuslan Bukin iommu_gaddr_t size); 2891abfd355SKonstantin Belousov int domain_alloc_pgtbl(struct dmar_domain *domain); 2901abfd355SKonstantin Belousov void domain_free_pgtbl(struct dmar_domain *domain); 29116696f60SRuslan Bukin extern const struct iommu_domain_map_ops dmar_domain_map_ops; 29286be9f0dSKonstantin Belousov 293f9feb091SKonstantin Belousov int dmar_dev_depth(device_t child); 294f9feb091SKonstantin Belousov void dmar_dev_path(device_t child, int *busno, void *path1, int depth); 295f9feb091SKonstantin Belousov 2961abfd355SKonstantin Belousov struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev, 29767499354SRyan Stone uint16_t rid, bool id_mapped, bool rmrr_init); 298f9feb091SKonstantin Belousov struct dmar_ctx *dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid, 299f9feb091SKonstantin Belousov int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, 300f9feb091SKonstantin Belousov bool id_mapped, bool rmrr_init); 3011abfd355SKonstantin Belousov int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx); 30286be9f0dSKonstantin Belousov void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx); 30386be9f0dSKonstantin Belousov void dmar_free_ctx(struct dmar_ctx *ctx); 30467499354SRyan Stone struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid); 30559e37c8aSRuslan Bukin void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free); 30686be9f0dSKonstantin Belousov 307f9feb091SKonstantin Belousov void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain, 308f9feb091SKonstantin Belousov int dev_busno, const void *dev_path, int dev_path_len, 30959e37c8aSRuslan Bukin struct iommu_map_entries_tailq *rmrr_entries); 31059e37c8aSRuslan Bukin int dmar_instantiate_rmrr_ctxs(struct iommu_unit *dmar); 31186be9f0dSKonstantin Belousov 31286be9f0dSKonstantin Belousov void dmar_quirks_post_ident(struct dmar_unit *dmar); 31359e37c8aSRuslan Bukin void dmar_quirks_pre_use(struct iommu_unit *dmar); 31486be9f0dSKonstantin Belousov 3150a110d5bSKonstantin Belousov int dmar_init_irt(struct dmar_unit *unit); 3160a110d5bSKonstantin Belousov void dmar_fini_irt(struct dmar_unit *unit); 3170a110d5bSKonstantin Belousov 31859e37c8aSRuslan Bukin extern iommu_haddr_t dmar_high; 31986be9f0dSKonstantin Belousov extern int haw; 32086be9f0dSKonstantin Belousov extern int dmar_tbl_pagecnt; 321e164cafcSKonstantin Belousov extern int dmar_batch_coalesce; 322*24e38af6SKonstantin Belousov extern int dmar_rmrr_enable; 32386be9f0dSKonstantin Belousov 32486be9f0dSKonstantin Belousov static inline uint32_t 32586be9f0dSKonstantin Belousov dmar_read4(const struct dmar_unit *unit, int reg) 32686be9f0dSKonstantin Belousov { 32786be9f0dSKonstantin Belousov 32886be9f0dSKonstantin Belousov return (bus_read_4(unit->regs, reg)); 32986be9f0dSKonstantin Belousov } 33086be9f0dSKonstantin Belousov 33186be9f0dSKonstantin Belousov static inline uint64_t 33286be9f0dSKonstantin Belousov dmar_read8(const struct dmar_unit *unit, int reg) 33386be9f0dSKonstantin Belousov { 33486be9f0dSKonstantin Belousov #ifdef __i386__ 33586be9f0dSKonstantin Belousov uint32_t high, low; 33686be9f0dSKonstantin Belousov 33786be9f0dSKonstantin Belousov low = bus_read_4(unit->regs, reg); 33886be9f0dSKonstantin Belousov high = bus_read_4(unit->regs, reg + 4); 33986be9f0dSKonstantin Belousov return (low | ((uint64_t)high << 32)); 34086be9f0dSKonstantin Belousov #else 34186be9f0dSKonstantin Belousov return (bus_read_8(unit->regs, reg)); 34286be9f0dSKonstantin Belousov #endif 34386be9f0dSKonstantin Belousov } 34486be9f0dSKonstantin Belousov 34586be9f0dSKonstantin Belousov static inline void 34686be9f0dSKonstantin Belousov dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val) 34786be9f0dSKonstantin Belousov { 34886be9f0dSKonstantin Belousov 34986be9f0dSKonstantin Belousov KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) == 35086be9f0dSKonstantin Belousov (unit->hw_gcmd & DMAR_GCMD_TE), 35159e37c8aSRuslan Bukin ("dmar%d clearing TE 0x%08x 0x%08x", unit->iommu.unit, 35286be9f0dSKonstantin Belousov unit->hw_gcmd, val)); 35386be9f0dSKonstantin Belousov bus_write_4(unit->regs, reg, val); 35486be9f0dSKonstantin Belousov } 35586be9f0dSKonstantin Belousov 35686be9f0dSKonstantin Belousov static inline void 35786be9f0dSKonstantin Belousov dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val) 35886be9f0dSKonstantin Belousov { 35986be9f0dSKonstantin Belousov 36086be9f0dSKonstantin Belousov KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write")); 36186be9f0dSKonstantin Belousov #ifdef __i386__ 36286be9f0dSKonstantin Belousov uint32_t high, low; 36386be9f0dSKonstantin Belousov 36486be9f0dSKonstantin Belousov low = val; 36586be9f0dSKonstantin Belousov high = val >> 32; 36686be9f0dSKonstantin Belousov bus_write_4(unit->regs, reg, low); 36786be9f0dSKonstantin Belousov bus_write_4(unit->regs, reg + 4, high); 36886be9f0dSKonstantin Belousov #else 36986be9f0dSKonstantin Belousov bus_write_8(unit->regs, reg, val); 37086be9f0dSKonstantin Belousov #endif 37186be9f0dSKonstantin Belousov } 37286be9f0dSKonstantin Belousov 37386be9f0dSKonstantin Belousov /* 37486be9f0dSKonstantin Belousov * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes 37586be9f0dSKonstantin Belousov * are issued in the correct order. For store, the lower word, 37686be9f0dSKonstantin Belousov * containing the P or R and W bits, is set only after the high word 37786be9f0dSKonstantin Belousov * is written. For clear, the P bit is cleared first, then the high 37886be9f0dSKonstantin Belousov * word is cleared. 3790a110d5bSKonstantin Belousov * 3800a110d5bSKonstantin Belousov * dmar_pte_update updates the pte. For amd64, the update is atomic. 3810a110d5bSKonstantin Belousov * For i386, it first disables the entry by clearing the word 3820a110d5bSKonstantin Belousov * containing the P bit, and then defer to dmar_pte_store. The locked 3830a110d5bSKonstantin Belousov * cmpxchg8b is probably available on any machine having DMAR support, 3840a110d5bSKonstantin Belousov * but interrupt translation table may be mapped uncached. 38586be9f0dSKonstantin Belousov */ 38686be9f0dSKonstantin Belousov static inline void 3870a110d5bSKonstantin Belousov dmar_pte_store1(volatile uint64_t *dst, uint64_t val) 38886be9f0dSKonstantin Belousov { 38986be9f0dSKonstantin Belousov #ifdef __i386__ 39086be9f0dSKonstantin Belousov volatile uint32_t *p; 39186be9f0dSKonstantin Belousov uint32_t hi, lo; 39286be9f0dSKonstantin Belousov 39386be9f0dSKonstantin Belousov hi = val >> 32; 39486be9f0dSKonstantin Belousov lo = val; 39586be9f0dSKonstantin Belousov p = (volatile uint32_t *)dst; 39686be9f0dSKonstantin Belousov *(p + 1) = hi; 39786be9f0dSKonstantin Belousov *p = lo; 39886be9f0dSKonstantin Belousov #else 39986be9f0dSKonstantin Belousov *dst = val; 40086be9f0dSKonstantin Belousov #endif 40186be9f0dSKonstantin Belousov } 40286be9f0dSKonstantin Belousov 40386be9f0dSKonstantin Belousov static inline void 4040a110d5bSKonstantin Belousov dmar_pte_store(volatile uint64_t *dst, uint64_t val) 4050a110d5bSKonstantin Belousov { 4060a110d5bSKonstantin Belousov 4070a110d5bSKonstantin Belousov KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx", 4080a110d5bSKonstantin Belousov dst, (uintmax_t)*dst, (uintmax_t)val)); 4090a110d5bSKonstantin Belousov dmar_pte_store1(dst, val); 4100a110d5bSKonstantin Belousov } 4110a110d5bSKonstantin Belousov 4120a110d5bSKonstantin Belousov static inline void 4130a110d5bSKonstantin Belousov dmar_pte_update(volatile uint64_t *dst, uint64_t val) 4140a110d5bSKonstantin Belousov { 4150a110d5bSKonstantin Belousov 4160a110d5bSKonstantin Belousov #ifdef __i386__ 4170a110d5bSKonstantin Belousov volatile uint32_t *p; 4180a110d5bSKonstantin Belousov 4190a110d5bSKonstantin Belousov p = (volatile uint32_t *)dst; 4200a110d5bSKonstantin Belousov *p = 0; 4210a110d5bSKonstantin Belousov #endif 4220a110d5bSKonstantin Belousov dmar_pte_store1(dst, val); 4230a110d5bSKonstantin Belousov } 4240a110d5bSKonstantin Belousov 4250a110d5bSKonstantin Belousov static inline void 42686be9f0dSKonstantin Belousov dmar_pte_clear(volatile uint64_t *dst) 42786be9f0dSKonstantin Belousov { 42886be9f0dSKonstantin Belousov #ifdef __i386__ 42986be9f0dSKonstantin Belousov volatile uint32_t *p; 43086be9f0dSKonstantin Belousov 43186be9f0dSKonstantin Belousov p = (volatile uint32_t *)dst; 43286be9f0dSKonstantin Belousov *p = 0; 43386be9f0dSKonstantin Belousov *(p + 1) = 0; 43486be9f0dSKonstantin Belousov #else 43586be9f0dSKonstantin Belousov *dst = 0; 43686be9f0dSKonstantin Belousov #endif 43786be9f0dSKonstantin Belousov } 43886be9f0dSKonstantin Belousov 439476358b3SKonstantin Belousov extern struct timespec dmar_hw_timeout; 440476358b3SKonstantin Belousov 441476358b3SKonstantin Belousov #define DMAR_WAIT_UNTIL(cond) \ 442476358b3SKonstantin Belousov { \ 443476358b3SKonstantin Belousov struct timespec last, curr; \ 444476358b3SKonstantin Belousov bool forever; \ 445476358b3SKonstantin Belousov \ 446476358b3SKonstantin Belousov if (dmar_hw_timeout.tv_sec == 0 && \ 447476358b3SKonstantin Belousov dmar_hw_timeout.tv_nsec == 0) { \ 448476358b3SKonstantin Belousov forever = true; \ 449476358b3SKonstantin Belousov } else { \ 450476358b3SKonstantin Belousov forever = false; \ 451476358b3SKonstantin Belousov nanouptime(&curr); \ 4526040822cSAlan Somers timespecadd(&curr, &dmar_hw_timeout, &last); \ 453476358b3SKonstantin Belousov } \ 454476358b3SKonstantin Belousov for (;;) { \ 455476358b3SKonstantin Belousov if (cond) { \ 456476358b3SKonstantin Belousov error = 0; \ 457476358b3SKonstantin Belousov break; \ 458476358b3SKonstantin Belousov } \ 459476358b3SKonstantin Belousov nanouptime(&curr); \ 460476358b3SKonstantin Belousov if (!forever && timespeccmp(&last, &curr, <)) { \ 461476358b3SKonstantin Belousov error = ETIMEDOUT; \ 462476358b3SKonstantin Belousov break; \ 463476358b3SKonstantin Belousov } \ 464476358b3SKonstantin Belousov cpu_spinwait(); \ 465476358b3SKonstantin Belousov } \ 466476358b3SKonstantin Belousov } 467476358b3SKonstantin Belousov 46886be9f0dSKonstantin Belousov #ifdef INVARIANTS 46986be9f0dSKonstantin Belousov #define TD_PREP_PINNED_ASSERT \ 47086be9f0dSKonstantin Belousov int old_td_pinned; \ 47186be9f0dSKonstantin Belousov old_td_pinned = curthread->td_pinned 47286be9f0dSKonstantin Belousov #define TD_PINNED_ASSERT \ 47386be9f0dSKonstantin Belousov KASSERT(curthread->td_pinned == old_td_pinned, \ 47486be9f0dSKonstantin Belousov ("pin count leak: %d %d %s:%d", curthread->td_pinned, \ 47586be9f0dSKonstantin Belousov old_td_pinned, __FILE__, __LINE__)) 47686be9f0dSKonstantin Belousov #else 47786be9f0dSKonstantin Belousov #define TD_PREP_PINNED_ASSERT 47886be9f0dSKonstantin Belousov #define TD_PINNED_ASSERT 47986be9f0dSKonstantin Belousov #endif 48086be9f0dSKonstantin Belousov 48186be9f0dSKonstantin Belousov #endif 482