xref: /freebsd/sys/x86/acpica/srat.c (revision e9b1dc32c9bd2ebae5f9e140bfa0e0321bc366b5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010 Hudson River Trading LLC
5  * Written by: John H. Baldwin <jhb@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_vm.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/smp.h>
42 #include <sys/vmmeter.h>
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_param.h>
46 #include <vm/vm_page.h>
47 #include <vm/vm_phys.h>
48 
49 #include <contrib/dev/acpica/include/acpi.h>
50 #include <contrib/dev/acpica/include/aclocal.h>
51 #include <contrib/dev/acpica/include/actables.h>
52 
53 #include <machine/intr_machdep.h>
54 #include <machine/md_var.h>
55 #include <x86/apicvar.h>
56 
57 #include <dev/acpica/acpivar.h>
58 
59 #if MAXMEMDOM > 1
60 static struct cpu_info {
61 	int enabled:1;
62 	int has_memory:1;
63 	int domain;
64 } *cpus;
65 
66 struct mem_affinity mem_info[VM_PHYSSEG_MAX + 1];
67 int num_mem;
68 
69 static ACPI_TABLE_SRAT *srat;
70 static vm_paddr_t srat_physaddr;
71 
72 static int domain_pxm[MAXMEMDOM];
73 static int ndomain;
74 
75 static ACPI_TABLE_SLIT *slit;
76 static vm_paddr_t slit_physaddr;
77 static int vm_locality_table[MAXMEMDOM * MAXMEMDOM];
78 
79 static void	srat_walk_table(acpi_subtable_handler *handler, void *arg);
80 
81 /*
82  * SLIT parsing.
83  */
84 
85 static void
86 slit_parse_table(ACPI_TABLE_SLIT *s)
87 {
88 	int i, j;
89 	int i_domain, j_domain;
90 	int offset = 0;
91 	uint8_t e;
92 
93 	/*
94 	 * This maps the SLIT data into the VM-domain centric view.
95 	 * There may be sparse entries in the PXM namespace, so
96 	 * remap them to a VM-domain ID and if it doesn't exist,
97 	 * skip it.
98 	 *
99 	 * It should result in a packed 2d array of VM-domain
100 	 * locality information entries.
101 	 */
102 
103 	if (bootverbose)
104 		printf("SLIT.Localities: %d\n", (int) s->LocalityCount);
105 	for (i = 0; i < s->LocalityCount; i++) {
106 		i_domain = acpi_map_pxm_to_vm_domainid(i);
107 		if (i_domain < 0)
108 			continue;
109 
110 		if (bootverbose)
111 			printf("%d: ", i);
112 		for (j = 0; j < s->LocalityCount; j++) {
113 			j_domain = acpi_map_pxm_to_vm_domainid(j);
114 			if (j_domain < 0)
115 				continue;
116 			e = s->Entry[i * s->LocalityCount + j];
117 			if (bootverbose)
118 				printf("%d ", (int) e);
119 			/* 255 == "no locality information" */
120 			if (e == 255)
121 				vm_locality_table[offset] = -1;
122 			else
123 				vm_locality_table[offset] = e;
124 			offset++;
125 		}
126 		if (bootverbose)
127 			printf("\n");
128 	}
129 }
130 
131 /*
132  * Look for an ACPI System Locality Distance Information Table ("SLIT")
133  */
134 static int
135 parse_slit(void)
136 {
137 
138 	if (resource_disabled("slit", 0)) {
139 		return (-1);
140 	}
141 
142 	slit_physaddr = acpi_find_table(ACPI_SIG_SLIT);
143 	if (slit_physaddr == 0) {
144 		return (-1);
145 	}
146 
147 	/*
148 	 * Make a pass over the table to populate the cpus[] and
149 	 * mem_info[] tables.
150 	 */
151 	slit = acpi_map_table(slit_physaddr, ACPI_SIG_SLIT);
152 	slit_parse_table(slit);
153 	acpi_unmap_table(slit);
154 	slit = NULL;
155 
156 	return (0);
157 }
158 
159 /*
160  * SRAT parsing.
161  */
162 
163 /*
164  * Returns true if a memory range overlaps with at least one range in
165  * phys_avail[].
166  */
167 static int
168 overlaps_phys_avail(vm_paddr_t start, vm_paddr_t end)
169 {
170 	int i;
171 
172 	for (i = 0; phys_avail[i] != 0 && phys_avail[i + 1] != 0; i += 2) {
173 		if (phys_avail[i + 1] <= start)
174 			continue;
175 		if (phys_avail[i] < end)
176 			return (1);
177 		break;
178 	}
179 	return (0);
180 
181 }
182 
183 static void
184 srat_parse_entry(ACPI_SUBTABLE_HEADER *entry, void *arg)
185 {
186 	ACPI_SRAT_CPU_AFFINITY *cpu;
187 	ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic;
188 	ACPI_SRAT_MEM_AFFINITY *mem;
189 	int domain, i, slot;
190 
191 	switch (entry->Type) {
192 	case ACPI_SRAT_TYPE_CPU_AFFINITY:
193 		cpu = (ACPI_SRAT_CPU_AFFINITY *)entry;
194 		domain = cpu->ProximityDomainLo |
195 		    cpu->ProximityDomainHi[0] << 8 |
196 		    cpu->ProximityDomainHi[1] << 16 |
197 		    cpu->ProximityDomainHi[2] << 24;
198 		if (bootverbose)
199 			printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
200 			    cpu->ApicId, domain,
201 			    (cpu->Flags & ACPI_SRAT_CPU_ENABLED) ?
202 			    "enabled" : "disabled");
203 		if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
204 			break;
205 		if (cpu->ApicId > max_apic_id) {
206 			printf("SRAT: Ignoring local APIC ID %u (too high)\n",
207 			    cpu->ApicId);
208 			break;
209 		}
210 
211 		if (cpus[cpu->ApicId].enabled) {
212 			printf("SRAT: Duplicate local APIC ID %u\n",
213 			    cpu->ApicId);
214 			*(int *)arg = ENXIO;
215 			break;
216 		}
217 		cpus[cpu->ApicId].domain = domain;
218 		cpus[cpu->ApicId].enabled = 1;
219 		break;
220 	case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
221 		x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)entry;
222 		if (bootverbose)
223 			printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
224 			    x2apic->ApicId, x2apic->ProximityDomain,
225 			    (x2apic->Flags & ACPI_SRAT_CPU_ENABLED) ?
226 			    "enabled" : "disabled");
227 		if (!(x2apic->Flags & ACPI_SRAT_CPU_ENABLED))
228 			break;
229 		if (x2apic->ApicId > max_apic_id) {
230 			printf("SRAT: Ignoring local APIC ID %u (too high)\n",
231 			    x2apic->ApicId);
232 			break;
233 		}
234 
235 		KASSERT(!cpus[x2apic->ApicId].enabled,
236 		    ("Duplicate local APIC ID %u", x2apic->ApicId));
237 		cpus[x2apic->ApicId].domain = x2apic->ProximityDomain;
238 		cpus[x2apic->ApicId].enabled = 1;
239 		break;
240 	case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
241 		mem = (ACPI_SRAT_MEM_AFFINITY *)entry;
242 		if (bootverbose)
243 			printf(
244 		    "SRAT: Found memory domain %d addr 0x%jx len 0x%jx: %s\n",
245 			    mem->ProximityDomain, (uintmax_t)mem->BaseAddress,
246 			    (uintmax_t)mem->Length,
247 			    (mem->Flags & ACPI_SRAT_MEM_ENABLED) ?
248 			    "enabled" : "disabled");
249 		if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
250 			break;
251 		if (mem->BaseAddress >= cpu_getmaxphyaddr() ||
252 		    !overlaps_phys_avail(mem->BaseAddress,
253 		    mem->BaseAddress + mem->Length)) {
254 			printf("SRAT: Ignoring memory at addr 0x%jx\n",
255 			    (uintmax_t)mem->BaseAddress);
256 			break;
257 		}
258 		if (num_mem == VM_PHYSSEG_MAX) {
259 			printf("SRAT: Too many memory regions\n");
260 			*(int *)arg = ENXIO;
261 			break;
262 		}
263 		slot = num_mem;
264 		for (i = 0; i < num_mem; i++) {
265 			if (mem_info[i].end <= mem->BaseAddress)
266 				continue;
267 			if (mem_info[i].start <
268 			    (mem->BaseAddress + mem->Length)) {
269 				printf("SRAT: Overlapping memory entries\n");
270 				*(int *)arg = ENXIO;
271 				return;
272 			}
273 			slot = i;
274 		}
275 		for (i = num_mem; i > slot; i--)
276 			mem_info[i] = mem_info[i - 1];
277 		mem_info[slot].start = mem->BaseAddress;
278 		mem_info[slot].end = mem->BaseAddress + mem->Length;
279 		mem_info[slot].domain = mem->ProximityDomain;
280 		num_mem++;
281 		break;
282 	}
283 }
284 
285 /*
286  * Ensure each memory domain has at least one CPU and that each CPU
287  * has at least one memory domain.
288  */
289 static int
290 check_domains(void)
291 {
292 	int found, i, j;
293 
294 	for (i = 0; i < num_mem; i++) {
295 		found = 0;
296 		for (j = 0; j <= max_apic_id; j++)
297 			if (cpus[j].enabled &&
298 			    cpus[j].domain == mem_info[i].domain) {
299 				cpus[j].has_memory = 1;
300 				found++;
301 			}
302 		if (!found) {
303 			printf("SRAT: No CPU found for memory domain %d\n",
304 			    mem_info[i].domain);
305 			return (ENXIO);
306 		}
307 	}
308 	for (i = 0; i <= max_apic_id; i++)
309 		if (cpus[i].enabled && !cpus[i].has_memory) {
310 			found = 0;
311 			for (j = 0; j < num_mem && !found; j++) {
312 				if (mem_info[j].domain == cpus[i].domain)
313 					found = 1;
314 			}
315 			if (!found) {
316 				if (bootverbose)
317 					printf("SRAT: mem dom %d is empty\n",
318 					    cpus[i].domain);
319 				mem_info[num_mem].start = 0;
320 				mem_info[num_mem].end = 0;
321 				mem_info[num_mem].domain = cpus[i].domain;
322 				num_mem++;
323 			}
324 		}
325 	return (0);
326 }
327 
328 /*
329  * Check that the SRAT memory regions cover all of the regions in
330  * phys_avail[].
331  */
332 static int
333 check_phys_avail(void)
334 {
335 	vm_paddr_t address;
336 	int i, j;
337 
338 	/* j is the current offset into phys_avail[]. */
339 	address = phys_avail[0];
340 	j = 0;
341 	for (i = 0; i < num_mem; i++) {
342 		/*
343 		 * Consume as many phys_avail[] entries as fit in this
344 		 * region.
345 		 */
346 		while (address >= mem_info[i].start &&
347 		    address <= mem_info[i].end) {
348 			/*
349 			 * If we cover the rest of this phys_avail[] entry,
350 			 * advance to the next entry.
351 			 */
352 			if (phys_avail[j + 1] <= mem_info[i].end) {
353 				j += 2;
354 				if (phys_avail[j] == 0 &&
355 				    phys_avail[j + 1] == 0) {
356 					return (0);
357 				}
358 				address = phys_avail[j];
359 			} else
360 				address = mem_info[i].end + 1;
361 		}
362 	}
363 	printf("SRAT: No memory region found for 0x%jx - 0x%jx\n",
364 	    (uintmax_t)phys_avail[j], (uintmax_t)phys_avail[j + 1]);
365 	return (ENXIO);
366 }
367 
368 /*
369  * Renumber the memory domains to be compact and zero-based if not
370  * already.  Returns an error if there are too many domains.
371  */
372 static int
373 renumber_domains(void)
374 {
375 	int i, j, slot;
376 
377 	/* Enumerate all the domains. */
378 	ndomain = 0;
379 	for (i = 0; i < num_mem; i++) {
380 		/* See if this domain is already known. */
381 		for (j = 0; j < ndomain; j++) {
382 			if (domain_pxm[j] >= mem_info[i].domain)
383 				break;
384 		}
385 		if (j < ndomain && domain_pxm[j] == mem_info[i].domain)
386 			continue;
387 
388 		if (ndomain >= MAXMEMDOM) {
389 			ndomain = 1;
390 			printf("SRAT: Too many memory domains\n");
391 			return (EFBIG);
392 		}
393 
394 		/* Insert the new domain at slot 'j'. */
395 		slot = j;
396 		for (j = ndomain; j > slot; j--)
397 			domain_pxm[j] = domain_pxm[j - 1];
398 		domain_pxm[slot] = mem_info[i].domain;
399 		ndomain++;
400 	}
401 
402 	/* Renumber each domain to its index in the sorted 'domain_pxm' list. */
403 	for (i = 0; i < ndomain; i++) {
404 		/*
405 		 * If the domain is already the right value, no need
406 		 * to renumber.
407 		 */
408 		if (domain_pxm[i] == i)
409 			continue;
410 
411 		/* Walk the cpu[] and mem_info[] arrays to renumber. */
412 		for (j = 0; j < num_mem; j++)
413 			if (mem_info[j].domain == domain_pxm[i])
414 				mem_info[j].domain = i;
415 		for (j = 0; j <= max_apic_id; j++)
416 			if (cpus[j].enabled && cpus[j].domain == domain_pxm[i])
417 				cpus[j].domain = i;
418 	}
419 
420 	return (0);
421 }
422 
423 /*
424  * Look for an ACPI System Resource Affinity Table ("SRAT")
425  */
426 static int
427 parse_srat(void)
428 {
429 	unsigned int idx, size;
430 	vm_paddr_t addr;
431 	int error;
432 
433 	if (resource_disabled("srat", 0))
434 		return (-1);
435 
436 	srat_physaddr = acpi_find_table(ACPI_SIG_SRAT);
437 	if (srat_physaddr == 0)
438 		return (-1);
439 
440 	/*
441 	 * Allocate data structure:
442 	 *
443 	 * Find the last physical memory region and steal some memory from
444 	 * it. This is done because at this point in the boot process
445 	 * malloc is still not usable.
446 	 */
447 	for (idx = 0; phys_avail[idx + 1] != 0; idx += 2);
448 	KASSERT(idx != 0, ("phys_avail is empty!"));
449 	idx -= 2;
450 
451 	size =  sizeof(*cpus) * (max_apic_id + 1);
452 	addr = trunc_page(phys_avail[idx + 1] - size);
453 	KASSERT(addr >= phys_avail[idx],
454 	    ("Not enough memory for SRAT table items"));
455 	phys_avail[idx + 1] = addr - 1;
456 
457 	/*
458 	 * We cannot rely on PHYS_TO_DMAP because this code is also used in
459 	 * i386, so use pmap_mapbios to map the memory, this will end up using
460 	 * the default memory attribute (WB), and the DMAP when available.
461 	 */
462 	cpus = (struct cpu_info *)pmap_mapbios(addr, size);
463 	bzero(cpus, size);
464 
465 	/*
466 	 * Make a pass over the table to populate the cpus[] and
467 	 * mem_info[] tables.
468 	 */
469 	srat = acpi_map_table(srat_physaddr, ACPI_SIG_SRAT);
470 	error = 0;
471 	srat_walk_table(srat_parse_entry, &error);
472 	acpi_unmap_table(srat);
473 	srat = NULL;
474 	if (error || check_domains() != 0 || check_phys_avail() != 0 ||
475 	    renumber_domains() != 0) {
476 		srat_physaddr = 0;
477 		return (-1);
478 	}
479 
480 	return (0);
481 }
482 
483 static void
484 init_mem_locality(void)
485 {
486 	int i;
487 
488 	/*
489 	 * For now, assume -1 == "no locality information for
490 	 * this pairing.
491 	 */
492 	for (i = 0; i < MAXMEMDOM * MAXMEMDOM; i++)
493 		vm_locality_table[i] = -1;
494 }
495 
496 static void
497 parse_acpi_tables(void *dummy)
498 {
499 
500 	if (parse_srat() < 0)
501 		return;
502 	init_mem_locality();
503 	(void)parse_slit();
504 	vm_phys_register_domains(ndomain, mem_info, vm_locality_table);
505 }
506 SYSINIT(parse_acpi_tables, SI_SUB_VM - 1, SI_ORDER_FIRST, parse_acpi_tables,
507     NULL);
508 
509 static void
510 srat_walk_table(acpi_subtable_handler *handler, void *arg)
511 {
512 
513 	acpi_walk_subtables(srat + 1, (char *)srat + srat->Header.Length,
514 	    handler, arg);
515 }
516 
517 /*
518  * Setup per-CPU domain IDs.
519  */
520 static void
521 srat_set_cpus(void *dummy)
522 {
523 	struct cpu_info *cpu;
524 	struct pcpu *pc;
525 	u_int i;
526 
527 	if (srat_physaddr == 0)
528 		return;
529 	for (i = 0; i < MAXCPU; i++) {
530 		if (CPU_ABSENT(i))
531 			continue;
532 		pc = pcpu_find(i);
533 		KASSERT(pc != NULL, ("no pcpu data for CPU %u", i));
534 		cpu = &cpus[pc->pc_apic_id];
535 		if (!cpu->enabled)
536 			panic("SRAT: CPU with APIC ID %u is not known",
537 			    pc->pc_apic_id);
538 		pc->pc_domain = vm_ndomains > 1 ? cpu->domain : 0;
539 		CPU_SET(i, &cpuset_domain[pc->pc_domain]);
540 		if (bootverbose)
541 			printf("SRAT: CPU %u has memory domain %d\n", i,
542 			    pc->pc_domain);
543 	}
544 
545 	/* Last usage of the cpus array, unmap it. */
546 	pmap_unmapbios((vm_offset_t)cpus, sizeof(*cpus) * (max_apic_id + 1));
547 	cpus = NULL;
548 }
549 SYSINIT(srat_set_cpus, SI_SUB_CPU, SI_ORDER_ANY, srat_set_cpus, NULL);
550 
551 /*
552  * Map a _PXM value to a VM domain ID.
553  *
554  * Returns the domain ID, or -1 if no domain ID was found.
555  */
556 int
557 acpi_map_pxm_to_vm_domainid(int pxm)
558 {
559 	int i;
560 
561 	for (i = 0; i < ndomain; i++) {
562 		if (domain_pxm[i] == pxm)
563 			return (vm_ndomains > 1 ? i : 0);
564 	}
565 
566 	return (-1);
567 }
568 
569 #else /* MAXMEMDOM == 1 */
570 
571 int
572 acpi_map_pxm_to_vm_domainid(int pxm)
573 {
574 
575 	return (-1);
576 }
577 
578 #endif /* MAXMEMDOM > 1 */
579