xref: /freebsd/sys/x86/acpica/srat.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2010 Advanced Computing Technologies LLC
3  * Written by: John H. Baldwin <jhb@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/bus.h>
33 #include <sys/kernel.h>
34 #include <sys/smp.h>
35 #include <vm/vm.h>
36 #include <vm/pmap.h>
37 #include <vm/vm_param.h>
38 #include <vm/vm_phys.h>
39 
40 #include <contrib/dev/acpica/include/acpi.h>
41 #include <contrib/dev/acpica/include/actables.h>
42 
43 #include <machine/intr_machdep.h>
44 #include <machine/apicvar.h>
45 
46 #include <dev/acpica/acpivar.h>
47 
48 struct cpu_info {
49 	int enabled:1;
50 	int has_memory:1;
51 	int domain;
52 } cpus[MAX_APIC_ID + 1];
53 
54 struct mem_affinity mem_info[VM_PHYSSEG_MAX + 1];
55 int num_mem;
56 
57 static ACPI_TABLE_SRAT *srat;
58 static vm_paddr_t srat_physaddr;
59 
60 static void	srat_walk_table(acpi_subtable_handler *handler, void *arg);
61 
62 static void
63 srat_parse_entry(ACPI_SUBTABLE_HEADER *entry, void *arg)
64 {
65 	ACPI_SRAT_CPU_AFFINITY *cpu;
66 	ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic;
67 	ACPI_SRAT_MEM_AFFINITY *mem;
68 	int domain, i, slot;
69 
70 	switch (entry->Type) {
71 	case ACPI_SRAT_TYPE_CPU_AFFINITY:
72 		cpu = (ACPI_SRAT_CPU_AFFINITY *)entry;
73 		domain = cpu->ProximityDomainLo |
74 		    cpu->ProximityDomainHi[0] << 8 |
75 		    cpu->ProximityDomainHi[1] << 16 |
76 		    cpu->ProximityDomainHi[2] << 24;
77 		if (bootverbose)
78 			printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
79 			    cpu->ApicId, domain,
80 			    (cpu->Flags & ACPI_SRAT_CPU_ENABLED) ?
81 			    "enabled" : "disabled");
82 		if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
83 			break;
84 		KASSERT(!cpus[cpu->ApicId].enabled,
85 		    ("Duplicate local APIC ID %u", cpu->ApicId));
86 		cpus[cpu->ApicId].domain = domain;
87 		cpus[cpu->ApicId].enabled = 1;
88 		break;
89 	case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
90 		x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)entry;
91 		if (bootverbose)
92 			printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
93 			    x2apic->ApicId, x2apic->ProximityDomain,
94 			    (x2apic->Flags & ACPI_SRAT_CPU_ENABLED) ?
95 			    "enabled" : "disabled");
96 		if (!(x2apic->Flags & ACPI_SRAT_CPU_ENABLED))
97 			break;
98 		KASSERT(!cpus[x2apic->ApicId].enabled,
99 		    ("Duplicate local APIC ID %u", x2apic->ApicId));
100 		cpus[x2apic->ApicId].domain = x2apic->ProximityDomain;
101 		cpus[x2apic->ApicId].enabled = 1;
102 		break;
103 	case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
104 		mem = (ACPI_SRAT_MEM_AFFINITY *)entry;
105 		if (bootverbose)
106 			printf(
107 		    "SRAT: Found memory domain %d addr %jx len %jx: %s\n",
108 			    mem->ProximityDomain, (uintmax_t)mem->BaseAddress,
109 			    (uintmax_t)mem->Length,
110 			    (mem->Flags & ACPI_SRAT_MEM_ENABLED) ?
111 			    "enabled" : "disabled");
112 		if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
113 			break;
114 		if (num_mem == VM_PHYSSEG_MAX) {
115 			printf("SRAT: Too many memory regions\n");
116 			*(int *)arg = ENXIO;
117 			break;
118 		}
119 		slot = num_mem;
120 		for (i = 0; i < num_mem; i++) {
121 			if (mem_info[i].end <= mem->BaseAddress)
122 				continue;
123 			if (mem_info[i].start <
124 			    (mem->BaseAddress + mem->Length)) {
125 				printf("SRAT: Overlapping memory entries\n");
126 				*(int *)arg = ENXIO;
127 				return;
128 			}
129 			slot = i;
130 		}
131 		for (i = num_mem; i > slot; i--)
132 			mem_info[i] = mem_info[i - 1];
133 		mem_info[slot].start = mem->BaseAddress;
134 		mem_info[slot].end = mem->BaseAddress + mem->Length;
135 		mem_info[slot].domain = mem->ProximityDomain;
136 		num_mem++;
137 		break;
138 	}
139 }
140 
141 /*
142  * Ensure each memory domain has at least one CPU and that each CPU
143  * has at least one memory domain.
144  */
145 static int
146 check_domains(void)
147 {
148 	int found, i, j;
149 
150 	for (i = 0; i < num_mem; i++) {
151 		found = 0;
152 		for (j = 0; j <= MAX_APIC_ID; j++)
153 			if (cpus[j].enabled &&
154 			    cpus[j].domain == mem_info[i].domain) {
155 				cpus[j].has_memory = 1;
156 				found++;
157 			}
158 		if (!found) {
159 			printf("SRAT: No CPU found for memory domain %d\n",
160 			    mem_info[i].domain);
161 			return (ENXIO);
162 		}
163 	}
164 	for (i = 0; i <= MAX_APIC_ID; i++)
165 		if (cpus[i].enabled && !cpus[i].has_memory) {
166 			printf("SRAT: No memory found for CPU %d\n", i);
167 			return (ENXIO);
168 		}
169 	return (0);
170 }
171 
172 /*
173  * Check that the SRAT memory regions cover all of the regions in
174  * phys_avail[].
175  */
176 static int
177 check_phys_avail(void)
178 {
179 	vm_paddr_t address;
180 	int i, j;
181 
182 	/* j is the current offset into phys_avail[]. */
183 	address = phys_avail[0];
184 	j = 0;
185 	for (i = 0; i < num_mem; i++) {
186 		/*
187 		 * Consume as many phys_avail[] entries as fit in this
188 		 * region.
189 		 */
190 		while (address >= mem_info[i].start &&
191 		    address <= mem_info[i].end) {
192 			/*
193 			 * If we cover the rest of this phys_avail[] entry,
194 			 * advance to the next entry.
195 			 */
196 			if (phys_avail[j + 1] <= mem_info[i].end) {
197 				j += 2;
198 				if (phys_avail[j] == 0 &&
199 				    phys_avail[j + 1] == 0) {
200 					return (0);
201 				}
202 				address = phys_avail[j];
203 			} else
204 				address = mem_info[i].end + 1;
205 		}
206 	}
207 	printf("SRAT: No memory region found for %jx - %jx\n",
208 	    (uintmax_t)phys_avail[j], (uintmax_t)phys_avail[j + 1]);
209 	return (ENXIO);
210 }
211 
212 /*
213  * Renumber the memory domains to be compact and zero-based if not
214  * already.
215  */
216 static void
217 renumber_domains(void)
218 {
219 	int domains[VM_PHYSSEG_MAX];
220 	int ndomain, i, j, slot;
221 
222 	/* Enumerate all the domains. */
223 	ndomain = 0;
224 	for (i = 0; i < num_mem; i++) {
225 		/* See if this domain is already known. */
226 		for (j = 0; j < ndomain; j++) {
227 			if (domains[j] >= mem_info[i].domain)
228 				break;
229 		}
230 		if (j < ndomain && domains[j] == mem_info[i].domain)
231 			continue;
232 
233 		/* Insert the new domain at slot 'j'. */
234 		slot = j;
235 		for (j = ndomain; j > slot; j--)
236 			domains[j] = domains[j - 1];
237 		domains[slot] = mem_info[i].domain;
238 	}
239 
240 	/* Renumber each domain to its index in the sorted 'domains' list. */
241 	for (i = 0; i < ndomain; i++) {
242 		/*
243 		 * If the domain is already the right value, no need
244 		 * to renumber.
245 		 */
246 		if (domains[i] == i)
247 			continue;
248 
249 		/* Walk the cpu[] and mem_info[] arrays to renumber. */
250 		for (j = 0; j < num_mem; j++)
251 			if (mem_info[j].domain == domains[i])
252 				mem_info[j].domain = i;
253 		for (j = 0; j <= MAX_APIC_ID; j++)
254 			if (cpus[j].enabled && cpus[j].domain == domains[i])
255 				cpus[j].domain = i;
256 	}
257 }
258 
259 /*
260  * Look for an ACPI System Resource Affinity Table ("SRAT")
261  */
262 static void
263 parse_srat(void *dummy)
264 {
265 	int error;
266 
267 	if (resource_disabled("srat", 0))
268 		return;
269 
270 	srat_physaddr = acpi_find_table(ACPI_SIG_SRAT);
271 	if (srat_physaddr == 0)
272 		return;
273 
274 	/*
275 	 * Make a pass over the table to populate the cpus[] and
276 	 * mem_info[] tables.
277 	 */
278 	srat = acpi_map_table(srat_physaddr, ACPI_SIG_SRAT);
279 	error = 0;
280 	srat_walk_table(srat_parse_entry, &error);
281 	acpi_unmap_table(srat);
282 	srat = NULL;
283 	if (error || check_domains() != 0 || check_phys_avail() != 0) {
284 		srat_physaddr = 0;
285 		return;
286 	}
287 
288 	renumber_domains();
289 
290 	/* Point vm_phys at our memory affinity table. */
291 	mem_affinity = mem_info;
292 }
293 SYSINIT(parse_srat, SI_SUB_VM - 1, SI_ORDER_FIRST, parse_srat, NULL);
294 
295 static void
296 srat_walk_table(acpi_subtable_handler *handler, void *arg)
297 {
298 
299 	acpi_walk_subtables(srat + 1, (char *)srat + srat->Header.Length,
300 	    handler, arg);
301 }
302 
303 /*
304  * Setup per-CPU ACPI IDs.
305  */
306 static void
307 srat_set_cpus(void *dummy)
308 {
309 	struct cpu_info *cpu;
310 	struct pcpu *pc;
311 	u_int i;
312 
313 	if (srat_physaddr == 0)
314 		return;
315 	for (i = 0; i < MAXCPU; i++) {
316 		if (CPU_ABSENT(i))
317 			continue;
318 		pc = pcpu_find(i);
319 		KASSERT(pc != NULL, ("no pcpu data for CPU %u", i));
320 		cpu = &cpus[pc->pc_apic_id];
321 		if (!cpu->enabled)
322 			panic("SRAT: CPU with APIC ID %u is not known",
323 			    pc->pc_apic_id);
324 		pc->pc_domain = cpu->domain;
325 		if (bootverbose)
326 			printf("SRAT: CPU %u has memory domain %d\n", i,
327 			    cpu->domain);
328 	}
329 }
330 SYSINIT(srat_set_cpus, SI_SUB_CPU, SI_ORDER_ANY, srat_set_cpus, NULL);
331