xref: /freebsd/sys/vm/vnode_pager.c (revision fed1ca4b719c56c930f2259d80663cd34be812bb)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include "opt_vm.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/vnode.h>
62 #include <sys/mount.h>
63 #include <sys/bio.h>
64 #include <sys/buf.h>
65 #include <sys/vmmeter.h>
66 #include <sys/limits.h>
67 #include <sys/conf.h>
68 #include <sys/rwlock.h>
69 #include <sys/sf_buf.h>
70 
71 #include <machine/atomic.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vm_map.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_extern.h>
81 
82 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
83     daddr_t *rtaddress, int *run);
84 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
85 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
86 static void vnode_pager_dealloc(vm_object_t);
87 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
88 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
89     int *, vop_getpages_iodone_t, void *);
90 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
91 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
92 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
93     vm_ooffset_t, struct ucred *cred);
94 static int vnode_pager_generic_getpages_done(struct buf *);
95 static void vnode_pager_generic_getpages_done_async(struct buf *);
96 
97 struct pagerops vnodepagerops = {
98 	.pgo_alloc =	vnode_pager_alloc,
99 	.pgo_dealloc =	vnode_pager_dealloc,
100 	.pgo_getpages =	vnode_pager_getpages,
101 	.pgo_getpages_async = vnode_pager_getpages_async,
102 	.pgo_putpages =	vnode_pager_putpages,
103 	.pgo_haspage =	vnode_pager_haspage,
104 };
105 
106 int vnode_pbuf_freecnt;
107 int vnode_async_pbuf_freecnt;
108 
109 /* Create the VM system backing object for this vnode */
110 int
111 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
112 {
113 	vm_object_t object;
114 	vm_ooffset_t size = isize;
115 	struct vattr va;
116 
117 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
118 		return (0);
119 
120 	while ((object = vp->v_object) != NULL) {
121 		VM_OBJECT_WLOCK(object);
122 		if (!(object->flags & OBJ_DEAD)) {
123 			VM_OBJECT_WUNLOCK(object);
124 			return (0);
125 		}
126 		VOP_UNLOCK(vp, 0);
127 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
128 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
129 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
130 	}
131 
132 	if (size == 0) {
133 		if (vn_isdisk(vp, NULL)) {
134 			size = IDX_TO_OFF(INT_MAX);
135 		} else {
136 			if (VOP_GETATTR(vp, &va, td->td_ucred))
137 				return (0);
138 			size = va.va_size;
139 		}
140 	}
141 
142 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
143 	/*
144 	 * Dereference the reference we just created.  This assumes
145 	 * that the object is associated with the vp.
146 	 */
147 	VM_OBJECT_WLOCK(object);
148 	object->ref_count--;
149 	VM_OBJECT_WUNLOCK(object);
150 	vrele(vp);
151 
152 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
153 
154 	return (0);
155 }
156 
157 void
158 vnode_destroy_vobject(struct vnode *vp)
159 {
160 	struct vm_object *obj;
161 
162 	obj = vp->v_object;
163 	if (obj == NULL)
164 		return;
165 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
166 	VM_OBJECT_WLOCK(obj);
167 	umtx_shm_object_terminated(obj);
168 	if (obj->ref_count == 0) {
169 		/*
170 		 * don't double-terminate the object
171 		 */
172 		if ((obj->flags & OBJ_DEAD) == 0)
173 			vm_object_terminate(obj);
174 		else
175 			VM_OBJECT_WUNLOCK(obj);
176 	} else {
177 		/*
178 		 * Woe to the process that tries to page now :-).
179 		 */
180 		vm_pager_deallocate(obj);
181 		VM_OBJECT_WUNLOCK(obj);
182 	}
183 	vp->v_object = NULL;
184 }
185 
186 
187 /*
188  * Allocate (or lookup) pager for a vnode.
189  * Handle is a vnode pointer.
190  *
191  * MPSAFE
192  */
193 vm_object_t
194 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
195     vm_ooffset_t offset, struct ucred *cred)
196 {
197 	vm_object_t object;
198 	struct vnode *vp;
199 
200 	/*
201 	 * Pageout to vnode, no can do yet.
202 	 */
203 	if (handle == NULL)
204 		return (NULL);
205 
206 	vp = (struct vnode *) handle;
207 
208 	/*
209 	 * If the object is being terminated, wait for it to
210 	 * go away.
211 	 */
212 retry:
213 	while ((object = vp->v_object) != NULL) {
214 		VM_OBJECT_WLOCK(object);
215 		if ((object->flags & OBJ_DEAD) == 0)
216 			break;
217 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
218 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
219 	}
220 
221 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
222 
223 	if (object == NULL) {
224 		/*
225 		 * Add an object of the appropriate size
226 		 */
227 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
228 
229 		object->un_pager.vnp.vnp_size = size;
230 		object->un_pager.vnp.writemappings = 0;
231 
232 		object->handle = handle;
233 		VI_LOCK(vp);
234 		if (vp->v_object != NULL) {
235 			/*
236 			 * Object has been created while we were sleeping
237 			 */
238 			VI_UNLOCK(vp);
239 			VM_OBJECT_WLOCK(object);
240 			KASSERT(object->ref_count == 1,
241 			    ("leaked ref %p %d", object, object->ref_count));
242 			object->type = OBJT_DEAD;
243 			object->ref_count = 0;
244 			VM_OBJECT_WUNLOCK(object);
245 			vm_object_destroy(object);
246 			goto retry;
247 		}
248 		vp->v_object = object;
249 		VI_UNLOCK(vp);
250 	} else {
251 		object->ref_count++;
252 #if VM_NRESERVLEVEL > 0
253 		vm_object_color(object, 0);
254 #endif
255 		VM_OBJECT_WUNLOCK(object);
256 	}
257 	vref(vp);
258 	return (object);
259 }
260 
261 /*
262  *	The object must be locked.
263  */
264 static void
265 vnode_pager_dealloc(vm_object_t object)
266 {
267 	struct vnode *vp;
268 	int refs;
269 
270 	vp = object->handle;
271 	if (vp == NULL)
272 		panic("vnode_pager_dealloc: pager already dealloced");
273 
274 	VM_OBJECT_ASSERT_WLOCKED(object);
275 	vm_object_pip_wait(object, "vnpdea");
276 	refs = object->ref_count;
277 
278 	object->handle = NULL;
279 	object->type = OBJT_DEAD;
280 	if (object->flags & OBJ_DISCONNECTWNT) {
281 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
282 		wakeup(object);
283 	}
284 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
285 	if (object->un_pager.vnp.writemappings > 0) {
286 		object->un_pager.vnp.writemappings = 0;
287 		VOP_ADD_WRITECOUNT(vp, -1);
288 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
289 		    __func__, vp, vp->v_writecount);
290 	}
291 	vp->v_object = NULL;
292 	VOP_UNSET_TEXT(vp);
293 	VM_OBJECT_WUNLOCK(object);
294 	while (refs-- > 0)
295 		vunref(vp);
296 	VM_OBJECT_WLOCK(object);
297 }
298 
299 static boolean_t
300 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
301     int *after)
302 {
303 	struct vnode *vp = object->handle;
304 	daddr_t bn;
305 	int err;
306 	daddr_t reqblock;
307 	int poff;
308 	int bsize;
309 	int pagesperblock, blocksperpage;
310 
311 	VM_OBJECT_ASSERT_WLOCKED(object);
312 	/*
313 	 * If no vp or vp is doomed or marked transparent to VM, we do not
314 	 * have the page.
315 	 */
316 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
317 		return FALSE;
318 	/*
319 	 * If the offset is beyond end of file we do
320 	 * not have the page.
321 	 */
322 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
323 		return FALSE;
324 
325 	bsize = vp->v_mount->mnt_stat.f_iosize;
326 	pagesperblock = bsize / PAGE_SIZE;
327 	blocksperpage = 0;
328 	if (pagesperblock > 0) {
329 		reqblock = pindex / pagesperblock;
330 	} else {
331 		blocksperpage = (PAGE_SIZE / bsize);
332 		reqblock = pindex * blocksperpage;
333 	}
334 	VM_OBJECT_WUNLOCK(object);
335 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
336 	VM_OBJECT_WLOCK(object);
337 	if (err)
338 		return TRUE;
339 	if (bn == -1)
340 		return FALSE;
341 	if (pagesperblock > 0) {
342 		poff = pindex - (reqblock * pagesperblock);
343 		if (before) {
344 			*before *= pagesperblock;
345 			*before += poff;
346 		}
347 		if (after) {
348 			/*
349 			 * The BMAP vop can report a partial block in the
350 			 * 'after', but must not report blocks after EOF.
351 			 * Assert the latter, and truncate 'after' in case
352 			 * of the former.
353 			 */
354 			KASSERT((reqblock + *after) * pagesperblock <
355 			    roundup2(object->size, pagesperblock),
356 			    ("%s: reqblock %jd after %d size %ju", __func__,
357 			    (intmax_t )reqblock, *after,
358 			    (uintmax_t )object->size));
359 			*after *= pagesperblock;
360 			*after += pagesperblock - (poff + 1);
361 			if (pindex + *after >= object->size)
362 				*after = object->size - 1 - pindex;
363 		}
364 	} else {
365 		if (before) {
366 			*before /= blocksperpage;
367 		}
368 
369 		if (after) {
370 			*after /= blocksperpage;
371 		}
372 	}
373 	return TRUE;
374 }
375 
376 /*
377  * Lets the VM system know about a change in size for a file.
378  * We adjust our own internal size and flush any cached pages in
379  * the associated object that are affected by the size change.
380  *
381  * Note: this routine may be invoked as a result of a pager put
382  * operation (possibly at object termination time), so we must be careful.
383  */
384 void
385 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
386 {
387 	vm_object_t object;
388 	vm_page_t m;
389 	vm_pindex_t nobjsize;
390 
391 	if ((object = vp->v_object) == NULL)
392 		return;
393 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
394 	VM_OBJECT_WLOCK(object);
395 	if (object->type == OBJT_DEAD) {
396 		VM_OBJECT_WUNLOCK(object);
397 		return;
398 	}
399 	KASSERT(object->type == OBJT_VNODE,
400 	    ("not vnode-backed object %p", object));
401 	if (nsize == object->un_pager.vnp.vnp_size) {
402 		/*
403 		 * Hasn't changed size
404 		 */
405 		VM_OBJECT_WUNLOCK(object);
406 		return;
407 	}
408 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
409 	if (nsize < object->un_pager.vnp.vnp_size) {
410 		/*
411 		 * File has shrunk. Toss any cached pages beyond the new EOF.
412 		 */
413 		if (nobjsize < object->size)
414 			vm_object_page_remove(object, nobjsize, object->size,
415 			    0);
416 		/*
417 		 * this gets rid of garbage at the end of a page that is now
418 		 * only partially backed by the vnode.
419 		 *
420 		 * XXX for some reason (I don't know yet), if we take a
421 		 * completely invalid page and mark it partially valid
422 		 * it can screw up NFS reads, so we don't allow the case.
423 		 */
424 		if ((nsize & PAGE_MASK) &&
425 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
426 		    m->valid != 0) {
427 			int base = (int)nsize & PAGE_MASK;
428 			int size = PAGE_SIZE - base;
429 
430 			/*
431 			 * Clear out partial-page garbage in case
432 			 * the page has been mapped.
433 			 */
434 			pmap_zero_page_area(m, base, size);
435 
436 			/*
437 			 * Update the valid bits to reflect the blocks that
438 			 * have been zeroed.  Some of these valid bits may
439 			 * have already been set.
440 			 */
441 			vm_page_set_valid_range(m, base, size);
442 
443 			/*
444 			 * Round "base" to the next block boundary so that the
445 			 * dirty bit for a partially zeroed block is not
446 			 * cleared.
447 			 */
448 			base = roundup2(base, DEV_BSIZE);
449 
450 			/*
451 			 * Clear out partial-page dirty bits.
452 			 *
453 			 * note that we do not clear out the valid
454 			 * bits.  This would prevent bogus_page
455 			 * replacement from working properly.
456 			 */
457 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
458 		} else if ((nsize & PAGE_MASK) &&
459 		    vm_page_is_cached(object, OFF_TO_IDX(nsize))) {
460 			vm_page_cache_free(object, OFF_TO_IDX(nsize),
461 			    nobjsize);
462 		}
463 	}
464 	object->un_pager.vnp.vnp_size = nsize;
465 	object->size = nobjsize;
466 	VM_OBJECT_WUNLOCK(object);
467 }
468 
469 /*
470  * calculate the linear (byte) disk address of specified virtual
471  * file address
472  */
473 static int
474 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
475     int *run)
476 {
477 	int bsize;
478 	int err;
479 	daddr_t vblock;
480 	daddr_t voffset;
481 
482 	if (address < 0)
483 		return -1;
484 
485 	if (vp->v_iflag & VI_DOOMED)
486 		return -1;
487 
488 	bsize = vp->v_mount->mnt_stat.f_iosize;
489 	vblock = address / bsize;
490 	voffset = address % bsize;
491 
492 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
493 	if (err == 0) {
494 		if (*rtaddress != -1)
495 			*rtaddress += voffset / DEV_BSIZE;
496 		if (run) {
497 			*run += 1;
498 			*run *= bsize/PAGE_SIZE;
499 			*run -= voffset/PAGE_SIZE;
500 		}
501 	}
502 
503 	return (err);
504 }
505 
506 /*
507  * small block filesystem vnode pager input
508  */
509 static int
510 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
511 {
512 	struct vnode *vp;
513 	struct bufobj *bo;
514 	struct buf *bp;
515 	struct sf_buf *sf;
516 	daddr_t fileaddr;
517 	vm_offset_t bsize;
518 	vm_page_bits_t bits;
519 	int error, i;
520 
521 	error = 0;
522 	vp = object->handle;
523 	if (vp->v_iflag & VI_DOOMED)
524 		return VM_PAGER_BAD;
525 
526 	bsize = vp->v_mount->mnt_stat.f_iosize;
527 
528 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
529 
530 	sf = sf_buf_alloc(m, 0);
531 
532 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
533 		vm_ooffset_t address;
534 
535 		bits = vm_page_bits(i * bsize, bsize);
536 		if (m->valid & bits)
537 			continue;
538 
539 		address = IDX_TO_OFF(m->pindex) + i * bsize;
540 		if (address >= object->un_pager.vnp.vnp_size) {
541 			fileaddr = -1;
542 		} else {
543 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
544 			if (error)
545 				break;
546 		}
547 		if (fileaddr != -1) {
548 			bp = getpbuf(&vnode_pbuf_freecnt);
549 
550 			/* build a minimal buffer header */
551 			bp->b_iocmd = BIO_READ;
552 			bp->b_iodone = bdone;
553 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
554 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
555 			bp->b_rcred = crhold(curthread->td_ucred);
556 			bp->b_wcred = crhold(curthread->td_ucred);
557 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
558 			bp->b_blkno = fileaddr;
559 			pbgetbo(bo, bp);
560 			bp->b_vp = vp;
561 			bp->b_bcount = bsize;
562 			bp->b_bufsize = bsize;
563 			bp->b_runningbufspace = bp->b_bufsize;
564 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
565 
566 			/* do the input */
567 			bp->b_iooffset = dbtob(bp->b_blkno);
568 			bstrategy(bp);
569 
570 			bwait(bp, PVM, "vnsrd");
571 
572 			if ((bp->b_ioflags & BIO_ERROR) != 0)
573 				error = EIO;
574 
575 			/*
576 			 * free the buffer header back to the swap buffer pool
577 			 */
578 			bp->b_vp = NULL;
579 			pbrelbo(bp);
580 			relpbuf(bp, &vnode_pbuf_freecnt);
581 			if (error)
582 				break;
583 		} else
584 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
585 		KASSERT((m->dirty & bits) == 0,
586 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
587 		VM_OBJECT_WLOCK(object);
588 		m->valid |= bits;
589 		VM_OBJECT_WUNLOCK(object);
590 	}
591 	sf_buf_free(sf);
592 	if (error) {
593 		return VM_PAGER_ERROR;
594 	}
595 	return VM_PAGER_OK;
596 }
597 
598 /*
599  * old style vnode pager input routine
600  */
601 static int
602 vnode_pager_input_old(vm_object_t object, vm_page_t m)
603 {
604 	struct uio auio;
605 	struct iovec aiov;
606 	int error;
607 	int size;
608 	struct sf_buf *sf;
609 	struct vnode *vp;
610 
611 	VM_OBJECT_ASSERT_WLOCKED(object);
612 	error = 0;
613 
614 	/*
615 	 * Return failure if beyond current EOF
616 	 */
617 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
618 		return VM_PAGER_BAD;
619 	} else {
620 		size = PAGE_SIZE;
621 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
622 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
623 		vp = object->handle;
624 		VM_OBJECT_WUNLOCK(object);
625 
626 		/*
627 		 * Allocate a kernel virtual address and initialize so that
628 		 * we can use VOP_READ/WRITE routines.
629 		 */
630 		sf = sf_buf_alloc(m, 0);
631 
632 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
633 		aiov.iov_len = size;
634 		auio.uio_iov = &aiov;
635 		auio.uio_iovcnt = 1;
636 		auio.uio_offset = IDX_TO_OFF(m->pindex);
637 		auio.uio_segflg = UIO_SYSSPACE;
638 		auio.uio_rw = UIO_READ;
639 		auio.uio_resid = size;
640 		auio.uio_td = curthread;
641 
642 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
643 		if (!error) {
644 			int count = size - auio.uio_resid;
645 
646 			if (count == 0)
647 				error = EINVAL;
648 			else if (count != PAGE_SIZE)
649 				bzero((caddr_t)sf_buf_kva(sf) + count,
650 				    PAGE_SIZE - count);
651 		}
652 		sf_buf_free(sf);
653 
654 		VM_OBJECT_WLOCK(object);
655 	}
656 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
657 	if (!error)
658 		m->valid = VM_PAGE_BITS_ALL;
659 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
660 }
661 
662 /*
663  * generic vnode pager input routine
664  */
665 
666 /*
667  * Local media VFS's that do not implement their own VOP_GETPAGES
668  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
669  * to implement the previous behaviour.
670  *
671  * All other FS's should use the bypass to get to the local media
672  * backing vp's VOP_GETPAGES.
673  */
674 static int
675 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
676     int *rahead)
677 {
678 	struct vnode *vp;
679 	int rtval;
680 
681 	vp = object->handle;
682 	VM_OBJECT_WUNLOCK(object);
683 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
684 	KASSERT(rtval != EOPNOTSUPP,
685 	    ("vnode_pager: FS getpages not implemented\n"));
686 	VM_OBJECT_WLOCK(object);
687 	return rtval;
688 }
689 
690 static int
691 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
692     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
693 {
694 	struct vnode *vp;
695 	int rtval;
696 
697 	vp = object->handle;
698 	VM_OBJECT_WUNLOCK(object);
699 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
700 	KASSERT(rtval != EOPNOTSUPP,
701 	    ("vnode_pager: FS getpages_async not implemented\n"));
702 	VM_OBJECT_WLOCK(object);
703 	return (rtval);
704 }
705 
706 /*
707  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
708  * local filesystems, where partially valid pages can only occur at
709  * the end of file.
710  */
711 int
712 vnode_pager_local_getpages(struct vop_getpages_args *ap)
713 {
714 
715 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
716 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
717 }
718 
719 int
720 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
721 {
722 
723 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
724 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
725 }
726 
727 /*
728  * This is now called from local media FS's to operate against their
729  * own vnodes if they fail to implement VOP_GETPAGES.
730  */
731 int
732 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
733     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
734 {
735 	vm_object_t object;
736 	struct bufobj *bo;
737 	struct buf *bp;
738 	off_t foff;
739 	int bsize, pagesperblock, *freecnt;
740 	int error, before, after, rbehind, rahead, poff, i;
741 	int bytecount, secmask;
742 
743 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
744 	    ("%s does not support devices", __func__));
745 
746 	if (vp->v_iflag & VI_DOOMED)
747 		return (VM_PAGER_BAD);
748 
749 	object = vp->v_object;
750 	foff = IDX_TO_OFF(m[0]->pindex);
751 	bsize = vp->v_mount->mnt_stat.f_iosize;
752 	pagesperblock = bsize / PAGE_SIZE;
753 
754 	KASSERT(foff < object->un_pager.vnp.vnp_size,
755 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
756 	KASSERT(count <= sizeof(bp->b_pages),
757 	    ("%s: requested %d pages", __func__, count));
758 
759 	/*
760 	 * The last page has valid blocks.  Invalid part can only
761 	 * exist at the end of file, and the page is made fully valid
762 	 * by zeroing in vm_pager_get_pages().
763 	 */
764 	if (m[count - 1]->valid != 0 && --count == 0) {
765 		if (iodone != NULL)
766 			iodone(arg, m, 1, 0);
767 		return (VM_PAGER_OK);
768 	}
769 
770 	/*
771 	 * Synchronous and asynchronous paging operations use different
772 	 * free pbuf counters.  This is done to avoid asynchronous requests
773 	 * to consume all pbufs.
774 	 * Allocate the pbuf at the very beginning of the function, so that
775 	 * if we are low on certain kind of pbufs don't even proceed to BMAP,
776 	 * but sleep.
777 	 */
778 	freecnt = iodone != NULL ?
779 	    &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt;
780 	bp = getpbuf(freecnt);
781 
782 	/*
783 	 * Get the underlying device blocks for the file with VOP_BMAP().
784 	 * If the file system doesn't support VOP_BMAP, use old way of
785 	 * getting pages via VOP_READ.
786 	 */
787 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
788 	if (error == EOPNOTSUPP) {
789 		relpbuf(bp, freecnt);
790 		VM_OBJECT_WLOCK(object);
791 		for (i = 0; i < count; i++) {
792 			PCPU_INC(cnt.v_vnodein);
793 			PCPU_INC(cnt.v_vnodepgsin);
794 			error = vnode_pager_input_old(object, m[i]);
795 			if (error)
796 				break;
797 		}
798 		VM_OBJECT_WUNLOCK(object);
799 		return (error);
800 	} else if (error != 0) {
801 		relpbuf(bp, freecnt);
802 		return (VM_PAGER_ERROR);
803 	}
804 
805 	/*
806 	 * If the file system supports BMAP, but blocksize is smaller
807 	 * than a page size, then use special small filesystem code.
808 	 */
809 	if (pagesperblock == 0) {
810 		relpbuf(bp, freecnt);
811 		for (i = 0; i < count; i++) {
812 			PCPU_INC(cnt.v_vnodein);
813 			PCPU_INC(cnt.v_vnodepgsin);
814 			error = vnode_pager_input_smlfs(object, m[i]);
815 			if (error)
816 				break;
817 		}
818 		return (error);
819 	}
820 
821 	/*
822 	 * A sparse file can be encountered only for a single page request,
823 	 * which may not be preceded by call to vm_pager_haspage().
824 	 */
825 	if (bp->b_blkno == -1) {
826 		KASSERT(count == 1,
827 		    ("%s: array[%d] request to a sparse file %p", __func__,
828 		    count, vp));
829 		relpbuf(bp, freecnt);
830 		pmap_zero_page(m[0]);
831 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
832 		    __func__, m[0]));
833 		VM_OBJECT_WLOCK(object);
834 		m[0]->valid = VM_PAGE_BITS_ALL;
835 		VM_OBJECT_WUNLOCK(object);
836 		return (VM_PAGER_OK);
837 	}
838 
839 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
840 
841 	/* Recalculate blocks available after/before to pages. */
842 	poff = (foff % bsize) / PAGE_SIZE;
843 	before *= pagesperblock;
844 	before += poff;
845 	after *= pagesperblock;
846 	after += pagesperblock - (poff + 1);
847 	if (m[0]->pindex + after >= object->size)
848 		after = object->size - 1 - m[0]->pindex;
849 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
850 	    __func__, count, after + 1));
851 	after -= count - 1;
852 
853 	/* Trim requested rbehind/rahead to possible values. */
854 	rbehind = a_rbehind ? *a_rbehind : 0;
855 	rahead = a_rahead ? *a_rahead : 0;
856 	rbehind = min(rbehind, before);
857 	rbehind = min(rbehind, m[0]->pindex);
858 	rahead = min(rahead, after);
859 	rahead = min(rahead, object->size - m[count - 1]->pindex);
860 	KASSERT(rbehind + rahead + count <= sizeof(bp->b_pages),
861 	    ("%s: behind %d ahead %d count %d", __func__,
862 	    rbehind, rahead, count));
863 
864 	/*
865 	 * Fill in the bp->b_pages[] array with requested and optional
866 	 * read behind or read ahead pages.  Read behind pages are looked
867 	 * up in a backward direction, down to a first cached page.  Same
868 	 * for read ahead pages, but there is no need to shift the array
869 	 * in case of encountering a cached page.
870 	 */
871 	i = bp->b_npages = 0;
872 	if (rbehind) {
873 		vm_pindex_t startpindex, tpindex;
874 		vm_page_t p;
875 
876 		VM_OBJECT_WLOCK(object);
877 		startpindex = m[0]->pindex - rbehind;
878 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
879 		    p->pindex >= startpindex)
880 			startpindex = p->pindex + 1;
881 
882 		/* tpindex is unsigned; beware of numeric underflow. */
883 		for (tpindex = m[0]->pindex - 1;
884 		    tpindex >= startpindex && tpindex < m[0]->pindex;
885 		    tpindex--, i++) {
886 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
887 			    VM_ALLOC_IFNOTCACHED);
888 			if (p == NULL) {
889 				/* Shift the array. */
890 				for (int j = 0; j < i; j++)
891 					bp->b_pages[j] = bp->b_pages[j +
892 					    tpindex + 1 - startpindex];
893 				break;
894 			}
895 			bp->b_pages[tpindex - startpindex] = p;
896 		}
897 
898 		bp->b_pgbefore = i;
899 		bp->b_npages += i;
900 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
901 	} else
902 		bp->b_pgbefore = 0;
903 
904 	/* Requested pages. */
905 	for (int j = 0; j < count; j++, i++)
906 		bp->b_pages[i] = m[j];
907 	bp->b_npages += count;
908 
909 	if (rahead) {
910 		vm_pindex_t endpindex, tpindex;
911 		vm_page_t p;
912 
913 		if (!VM_OBJECT_WOWNED(object))
914 			VM_OBJECT_WLOCK(object);
915 		endpindex = m[count - 1]->pindex + rahead + 1;
916 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
917 		    p->pindex < endpindex)
918 			endpindex = p->pindex;
919 		if (endpindex > object->size)
920 			endpindex = object->size;
921 
922 		for (tpindex = m[count - 1]->pindex + 1;
923 		    tpindex < endpindex; i++, tpindex++) {
924 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
925 			    VM_ALLOC_IFNOTCACHED);
926 			if (p == NULL)
927 				break;
928 			bp->b_pages[i] = p;
929 		}
930 
931 		bp->b_pgafter = i - bp->b_npages;
932 		bp->b_npages = i;
933 	} else
934 		bp->b_pgafter = 0;
935 
936 	if (VM_OBJECT_WOWNED(object))
937 		VM_OBJECT_WUNLOCK(object);
938 
939 	/* Report back actual behind/ahead read. */
940 	if (a_rbehind)
941 		*a_rbehind = bp->b_pgbefore;
942 	if (a_rahead)
943 		*a_rahead = bp->b_pgafter;
944 
945 	KASSERT(bp->b_npages <= sizeof(bp->b_pages),
946 	    ("%s: buf %p overflowed", __func__, bp));
947 
948 	/*
949 	 * Recalculate first offset and bytecount with regards to read behind.
950 	 * Truncate bytecount to vnode real size and round up physical size
951 	 * for real devices.
952 	 */
953 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
954 	bytecount = bp->b_npages << PAGE_SHIFT;
955 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
956 		bytecount = object->un_pager.vnp.vnp_size - foff;
957 	secmask = bo->bo_bsize - 1;
958 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
959 	    ("%s: sector size %d too large", __func__, secmask + 1));
960 	bytecount = (bytecount + secmask) & ~secmask;
961 
962 	/*
963 	 * And map the pages to be read into the kva, if the filesystem
964 	 * requires mapped buffers.
965 	 */
966 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
967 	    unmapped_buf_allowed) {
968 		bp->b_data = unmapped_buf;
969 		bp->b_offset = 0;
970 	} else {
971 		bp->b_data = bp->b_kvabase;
972 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
973 	}
974 
975 	/* Build a minimal buffer header. */
976 	bp->b_iocmd = BIO_READ;
977 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
978 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
979 	bp->b_rcred = crhold(curthread->td_ucred);
980 	bp->b_wcred = crhold(curthread->td_ucred);
981 	pbgetbo(bo, bp);
982 	bp->b_vp = vp;
983 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
984 	bp->b_iooffset = dbtob(bp->b_blkno);
985 
986 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
987 	PCPU_INC(cnt.v_vnodein);
988 	PCPU_ADD(cnt.v_vnodepgsin, bp->b_npages);
989 
990 	if (iodone != NULL) { /* async */
991 		bp->b_pgiodone = iodone;
992 		bp->b_caller1 = arg;
993 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
994 		bp->b_flags |= B_ASYNC;
995 		BUF_KERNPROC(bp);
996 		bstrategy(bp);
997 		return (VM_PAGER_OK);
998 	} else {
999 		bp->b_iodone = bdone;
1000 		bstrategy(bp);
1001 		bwait(bp, PVM, "vnread");
1002 		error = vnode_pager_generic_getpages_done(bp);
1003 		for (i = 0; i < bp->b_npages; i++)
1004 			bp->b_pages[i] = NULL;
1005 		bp->b_vp = NULL;
1006 		pbrelbo(bp);
1007 		relpbuf(bp, &vnode_pbuf_freecnt);
1008 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1009 	}
1010 }
1011 
1012 static void
1013 vnode_pager_generic_getpages_done_async(struct buf *bp)
1014 {
1015 	int error;
1016 
1017 	error = vnode_pager_generic_getpages_done(bp);
1018 	/* Run the iodone upon the requested range. */
1019 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1020 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1021 	for (int i = 0; i < bp->b_npages; i++)
1022 		bp->b_pages[i] = NULL;
1023 	bp->b_vp = NULL;
1024 	pbrelbo(bp);
1025 	relpbuf(bp, &vnode_async_pbuf_freecnt);
1026 }
1027 
1028 static int
1029 vnode_pager_generic_getpages_done(struct buf *bp)
1030 {
1031 	vm_object_t object;
1032 	off_t tfoff, nextoff;
1033 	int i, error;
1034 
1035 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1036 	object = bp->b_vp->v_object;
1037 
1038 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1039 		if (!buf_mapped(bp)) {
1040 			bp->b_data = bp->b_kvabase;
1041 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1042 			    bp->b_npages);
1043 		}
1044 		bzero(bp->b_data + bp->b_bcount,
1045 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1046 	}
1047 	if (buf_mapped(bp)) {
1048 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1049 		bp->b_data = unmapped_buf;
1050 	}
1051 
1052 	VM_OBJECT_WLOCK(object);
1053 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1054 	    i < bp->b_npages; i++, tfoff = nextoff) {
1055 		vm_page_t mt;
1056 
1057 		nextoff = tfoff + PAGE_SIZE;
1058 		mt = bp->b_pages[i];
1059 
1060 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1061 			/*
1062 			 * Read filled up entire page.
1063 			 */
1064 			mt->valid = VM_PAGE_BITS_ALL;
1065 			KASSERT(mt->dirty == 0,
1066 			    ("%s: page %p is dirty", __func__, mt));
1067 			KASSERT(!pmap_page_is_mapped(mt),
1068 			    ("%s: page %p is mapped", __func__, mt));
1069 		} else {
1070 			/*
1071 			 * Read did not fill up entire page.
1072 			 *
1073 			 * Currently we do not set the entire page valid,
1074 			 * we just try to clear the piece that we couldn't
1075 			 * read.
1076 			 */
1077 			vm_page_set_valid_range(mt, 0,
1078 			    object->un_pager.vnp.vnp_size - tfoff);
1079 			KASSERT((mt->dirty & vm_page_bits(0,
1080 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1081 			    ("%s: page %p is dirty", __func__, mt));
1082 		}
1083 
1084 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1085 			vm_page_readahead_finish(mt);
1086 	}
1087 	VM_OBJECT_WUNLOCK(object);
1088 	if (error != 0)
1089 		printf("%s: I/O read error %d\n", __func__, error);
1090 
1091 	return (error);
1092 }
1093 
1094 /*
1095  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1096  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1097  * vnode_pager_generic_putpages() to implement the previous behaviour.
1098  *
1099  * All other FS's should use the bypass to get to the local media
1100  * backing vp's VOP_PUTPAGES.
1101  */
1102 static void
1103 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1104     int flags, int *rtvals)
1105 {
1106 	int rtval;
1107 	struct vnode *vp;
1108 	int bytes = count * PAGE_SIZE;
1109 
1110 	/*
1111 	 * Force synchronous operation if we are extremely low on memory
1112 	 * to prevent a low-memory deadlock.  VOP operations often need to
1113 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1114 	 * operation ).  The swapper handles the case by limiting the amount
1115 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1116 	 * for the vnode pager without a lot of work.
1117 	 *
1118 	 * Also, the backing vnode's iodone routine may not wake the pageout
1119 	 * daemon up.  This should be probably be addressed XXX.
1120 	 */
1121 
1122 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count <
1123 	    vm_cnt.v_pageout_free_min)
1124 		flags |= VM_PAGER_PUT_SYNC;
1125 
1126 	/*
1127 	 * Call device-specific putpages function
1128 	 */
1129 	vp = object->handle;
1130 	VM_OBJECT_WUNLOCK(object);
1131 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1132 	KASSERT(rtval != EOPNOTSUPP,
1133 	    ("vnode_pager: stale FS putpages\n"));
1134 	VM_OBJECT_WLOCK(object);
1135 }
1136 
1137 
1138 /*
1139  * This is now called from local media FS's to operate against their
1140  * own vnodes if they fail to implement VOP_PUTPAGES.
1141  *
1142  * This is typically called indirectly via the pageout daemon and
1143  * clustering has already typically occurred, so in general we ask the
1144  * underlying filesystem to write the data out asynchronously rather
1145  * then delayed.
1146  */
1147 int
1148 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1149     int flags, int *rtvals)
1150 {
1151 	int i;
1152 	vm_object_t object;
1153 	vm_page_t m;
1154 	int count;
1155 
1156 	int maxsize, ncount;
1157 	vm_ooffset_t poffset;
1158 	struct uio auio;
1159 	struct iovec aiov;
1160 	int error;
1161 	int ioflags;
1162 	int ppscheck = 0;
1163 	static struct timeval lastfail;
1164 	static int curfail;
1165 
1166 	object = vp->v_object;
1167 	count = bytecount / PAGE_SIZE;
1168 
1169 	for (i = 0; i < count; i++)
1170 		rtvals[i] = VM_PAGER_ERROR;
1171 
1172 	if ((int64_t)ma[0]->pindex < 0) {
1173 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1174 		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1175 		rtvals[0] = VM_PAGER_BAD;
1176 		return VM_PAGER_BAD;
1177 	}
1178 
1179 	maxsize = count * PAGE_SIZE;
1180 	ncount = count;
1181 
1182 	poffset = IDX_TO_OFF(ma[0]->pindex);
1183 
1184 	/*
1185 	 * If the page-aligned write is larger then the actual file we
1186 	 * have to invalidate pages occurring beyond the file EOF.  However,
1187 	 * there is an edge case where a file may not be page-aligned where
1188 	 * the last page is partially invalid.  In this case the filesystem
1189 	 * may not properly clear the dirty bits for the entire page (which
1190 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1191 	 * With the page locked we are free to fix-up the dirty bits here.
1192 	 *
1193 	 * We do not under any circumstances truncate the valid bits, as
1194 	 * this will screw up bogus page replacement.
1195 	 */
1196 	VM_OBJECT_WLOCK(object);
1197 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1198 		if (object->un_pager.vnp.vnp_size > poffset) {
1199 			int pgoff;
1200 
1201 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1202 			ncount = btoc(maxsize);
1203 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1204 				/*
1205 				 * If the object is locked and the following
1206 				 * conditions hold, then the page's dirty
1207 				 * field cannot be concurrently changed by a
1208 				 * pmap operation.
1209 				 */
1210 				m = ma[ncount - 1];
1211 				vm_page_assert_sbusied(m);
1212 				KASSERT(!pmap_page_is_write_mapped(m),
1213 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1214 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1215 				    pgoff);
1216 			}
1217 		} else {
1218 			maxsize = 0;
1219 			ncount = 0;
1220 		}
1221 		if (ncount < count) {
1222 			for (i = ncount; i < count; i++) {
1223 				rtvals[i] = VM_PAGER_BAD;
1224 			}
1225 		}
1226 	}
1227 	VM_OBJECT_WUNLOCK(object);
1228 
1229 	/*
1230 	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1231 	 * rather then a bdwrite() to prevent paging I/O from saturating
1232 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1233 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1234 	 * the system decides how to cluster.
1235 	 */
1236 	ioflags = IO_VMIO;
1237 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1238 		ioflags |= IO_SYNC;
1239 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1240 		ioflags |= IO_ASYNC;
1241 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1242 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1243 
1244 	aiov.iov_base = (caddr_t) 0;
1245 	aiov.iov_len = maxsize;
1246 	auio.uio_iov = &aiov;
1247 	auio.uio_iovcnt = 1;
1248 	auio.uio_offset = poffset;
1249 	auio.uio_segflg = UIO_NOCOPY;
1250 	auio.uio_rw = UIO_WRITE;
1251 	auio.uio_resid = maxsize;
1252 	auio.uio_td = (struct thread *) 0;
1253 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1254 	PCPU_INC(cnt.v_vnodeout);
1255 	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1256 
1257 	if (error) {
1258 		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1259 			printf("vnode_pager_putpages: I/O error %d\n", error);
1260 	}
1261 	if (auio.uio_resid) {
1262 		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1263 			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1264 			    auio.uio_resid, (u_long)ma[0]->pindex);
1265 	}
1266 	for (i = 0; i < ncount; i++) {
1267 		rtvals[i] = VM_PAGER_OK;
1268 	}
1269 	return rtvals[0];
1270 }
1271 
1272 void
1273 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1274 {
1275 	vm_object_t obj;
1276 	int i, pos;
1277 
1278 	if (written == 0)
1279 		return;
1280 	obj = ma[0]->object;
1281 	VM_OBJECT_WLOCK(obj);
1282 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1283 		if (pos < trunc_page(written)) {
1284 			rtvals[i] = VM_PAGER_OK;
1285 			vm_page_undirty(ma[i]);
1286 		} else {
1287 			/* Partially written page. */
1288 			rtvals[i] = VM_PAGER_AGAIN;
1289 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1290 		}
1291 	}
1292 	VM_OBJECT_WUNLOCK(obj);
1293 }
1294 
1295 void
1296 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1297     vm_offset_t end)
1298 {
1299 	struct vnode *vp;
1300 	vm_ooffset_t old_wm;
1301 
1302 	VM_OBJECT_WLOCK(object);
1303 	if (object->type != OBJT_VNODE) {
1304 		VM_OBJECT_WUNLOCK(object);
1305 		return;
1306 	}
1307 	old_wm = object->un_pager.vnp.writemappings;
1308 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1309 	vp = object->handle;
1310 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1311 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1312 		VOP_ADD_WRITECOUNT(vp, 1);
1313 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1314 		    __func__, vp, vp->v_writecount);
1315 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1316 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1317 		VOP_ADD_WRITECOUNT(vp, -1);
1318 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1319 		    __func__, vp, vp->v_writecount);
1320 	}
1321 	VM_OBJECT_WUNLOCK(object);
1322 }
1323 
1324 void
1325 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1326     vm_offset_t end)
1327 {
1328 	struct vnode *vp;
1329 	struct mount *mp;
1330 	vm_offset_t inc;
1331 
1332 	VM_OBJECT_WLOCK(object);
1333 
1334 	/*
1335 	 * First, recheck the object type to account for the race when
1336 	 * the vnode is reclaimed.
1337 	 */
1338 	if (object->type != OBJT_VNODE) {
1339 		VM_OBJECT_WUNLOCK(object);
1340 		return;
1341 	}
1342 
1343 	/*
1344 	 * Optimize for the case when writemappings is not going to
1345 	 * zero.
1346 	 */
1347 	inc = end - start;
1348 	if (object->un_pager.vnp.writemappings != inc) {
1349 		object->un_pager.vnp.writemappings -= inc;
1350 		VM_OBJECT_WUNLOCK(object);
1351 		return;
1352 	}
1353 
1354 	vp = object->handle;
1355 	vhold(vp);
1356 	VM_OBJECT_WUNLOCK(object);
1357 	mp = NULL;
1358 	vn_start_write(vp, &mp, V_WAIT);
1359 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1360 
1361 	/*
1362 	 * Decrement the object's writemappings, by swapping the start
1363 	 * and end arguments for vnode_pager_update_writecount().  If
1364 	 * there was not a race with vnode reclaimation, then the
1365 	 * vnode's v_writecount is decremented.
1366 	 */
1367 	vnode_pager_update_writecount(object, end, start);
1368 	VOP_UNLOCK(vp, 0);
1369 	vdrop(vp);
1370 	if (mp != NULL)
1371 		vn_finished_write(mp);
1372 }
1373