1 /* 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 * $FreeBSD$ 42 */ 43 44 /* 45 * Page to/from files (vnodes). 46 */ 47 48 /* 49 * TODO: 50 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 51 * greatly re-simplify the vnode_pager. 52 */ 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/proc.h> 57 #include <sys/vnode.h> 58 #include <sys/mount.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/vmmeter.h> 62 #include <sys/conf.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_object.h> 66 #include <vm/vm_page.h> 67 #include <vm/vm_pager.h> 68 #include <vm/vm_map.h> 69 #include <vm/vnode_pager.h> 70 #include <vm/vm_extern.h> 71 72 static void vnode_pager_init(void); 73 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 74 int *run); 75 static void vnode_pager_iodone(struct buf *bp); 76 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 77 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 78 static void vnode_pager_dealloc(vm_object_t); 79 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 80 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 81 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 82 83 struct pagerops vnodepagerops = { 84 vnode_pager_init, 85 vnode_pager_alloc, 86 vnode_pager_dealloc, 87 vnode_pager_getpages, 88 vnode_pager_putpages, 89 vnode_pager_haspage, 90 NULL 91 }; 92 93 int vnode_pbuf_freecnt; 94 95 static void 96 vnode_pager_init(void) 97 { 98 99 vnode_pbuf_freecnt = nswbuf / 2 + 1; 100 } 101 102 /* 103 * Allocate (or lookup) pager for a vnode. 104 * Handle is a vnode pointer. 105 * 106 * MPSAFE 107 */ 108 vm_object_t 109 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 110 vm_ooffset_t offset) 111 { 112 vm_object_t object; 113 struct vnode *vp; 114 115 /* 116 * Pageout to vnode, no can do yet. 117 */ 118 if (handle == NULL) 119 return (NULL); 120 121 vp = (struct vnode *) handle; 122 123 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 124 125 mtx_lock(&Giant); 126 /* 127 * Prevent race condition when allocating the object. This 128 * can happen with NFS vnodes since the nfsnode isn't locked. 129 */ 130 VI_LOCK(vp); 131 while (vp->v_iflag & VI_OLOCK) { 132 vp->v_iflag |= VI_OWANT; 133 msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0); 134 } 135 vp->v_iflag |= VI_OLOCK; 136 VI_UNLOCK(vp); 137 138 /* 139 * If the object is being terminated, wait for it to 140 * go away. 141 */ 142 while ((object = vp->v_object) != NULL) { 143 VM_OBJECT_LOCK(object); 144 if ((object->flags & OBJ_DEAD) == 0) 145 break; 146 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 147 } 148 149 if (vp->v_usecount == 0) 150 panic("vnode_pager_alloc: no vnode reference"); 151 152 if (object == NULL) { 153 /* 154 * And an object of the appropriate size 155 */ 156 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 157 158 object->un_pager.vnp.vnp_size = size; 159 160 object->handle = handle; 161 vp->v_object = object; 162 } else { 163 object->ref_count++; 164 VM_OBJECT_UNLOCK(object); 165 } 166 VI_LOCK(vp); 167 vp->v_usecount++; 168 vp->v_iflag &= ~VI_OLOCK; 169 if (vp->v_iflag & VI_OWANT) { 170 vp->v_iflag &= ~VI_OWANT; 171 wakeup(vp); 172 } 173 VI_UNLOCK(vp); 174 mtx_unlock(&Giant); 175 return (object); 176 } 177 178 /* 179 * The object must be locked. 180 */ 181 static void 182 vnode_pager_dealloc(object) 183 vm_object_t object; 184 { 185 struct vnode *vp = object->handle; 186 187 if (vp == NULL) 188 panic("vnode_pager_dealloc: pager already dealloced"); 189 190 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 191 vm_object_pip_wait(object, "vnpdea"); 192 193 object->handle = NULL; 194 object->type = OBJT_DEAD; 195 ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc"); 196 vp->v_object = NULL; 197 vp->v_vflag &= ~(VV_TEXT | VV_OBJBUF); 198 } 199 200 static boolean_t 201 vnode_pager_haspage(object, pindex, before, after) 202 vm_object_t object; 203 vm_pindex_t pindex; 204 int *before; 205 int *after; 206 { 207 struct vnode *vp = object->handle; 208 daddr_t bn; 209 int err; 210 daddr_t reqblock; 211 int poff; 212 int bsize; 213 int pagesperblock, blocksperpage; 214 215 GIANT_REQUIRED; 216 /* 217 * If no vp or vp is doomed or marked transparent to VM, we do not 218 * have the page. 219 */ 220 if (vp == NULL) 221 return FALSE; 222 223 VI_LOCK(vp); 224 if (vp->v_iflag & VI_DOOMED) { 225 VI_UNLOCK(vp); 226 return FALSE; 227 } 228 VI_UNLOCK(vp); 229 /* 230 * If filesystem no longer mounted or offset beyond end of file we do 231 * not have the page. 232 */ 233 if ((vp->v_mount == NULL) || 234 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)) 235 return FALSE; 236 237 bsize = vp->v_mount->mnt_stat.f_iosize; 238 pagesperblock = bsize / PAGE_SIZE; 239 blocksperpage = 0; 240 if (pagesperblock > 0) { 241 reqblock = pindex / pagesperblock; 242 } else { 243 blocksperpage = (PAGE_SIZE / bsize); 244 reqblock = pindex * blocksperpage; 245 } 246 err = VOP_BMAP(vp, reqblock, (struct vnode **) 0, &bn, 247 after, before); 248 if (err) 249 return TRUE; 250 if (bn == -1) 251 return FALSE; 252 if (pagesperblock > 0) { 253 poff = pindex - (reqblock * pagesperblock); 254 if (before) { 255 *before *= pagesperblock; 256 *before += poff; 257 } 258 if (after) { 259 int numafter; 260 *after *= pagesperblock; 261 numafter = pagesperblock - (poff + 1); 262 if (IDX_TO_OFF(pindex + numafter) > 263 object->un_pager.vnp.vnp_size) { 264 numafter = 265 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 266 pindex; 267 } 268 *after += numafter; 269 } 270 } else { 271 if (before) { 272 *before /= blocksperpage; 273 } 274 275 if (after) { 276 *after /= blocksperpage; 277 } 278 } 279 return TRUE; 280 } 281 282 /* 283 * Lets the VM system know about a change in size for a file. 284 * We adjust our own internal size and flush any cached pages in 285 * the associated object that are affected by the size change. 286 * 287 * Note: this routine may be invoked as a result of a pager put 288 * operation (possibly at object termination time), so we must be careful. 289 */ 290 void 291 vnode_pager_setsize(vp, nsize) 292 struct vnode *vp; 293 vm_ooffset_t nsize; 294 { 295 vm_pindex_t nobjsize; 296 vm_object_t object = vp->v_object; 297 298 GIANT_REQUIRED; 299 300 if (object == NULL) 301 return; 302 303 /* 304 * Hasn't changed size 305 */ 306 if (nsize == object->un_pager.vnp.vnp_size) 307 return; 308 309 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 310 311 /* 312 * File has shrunk. Toss any cached pages beyond the new EOF. 313 */ 314 if (nsize < object->un_pager.vnp.vnp_size) { 315 if (nobjsize < object->size) { 316 VM_OBJECT_LOCK(object); 317 vm_object_page_remove(object, nobjsize, object->size, 318 FALSE); 319 VM_OBJECT_UNLOCK(object); 320 } 321 /* 322 * this gets rid of garbage at the end of a page that is now 323 * only partially backed by the vnode. 324 * 325 * XXX for some reason (I don't know yet), if we take a 326 * completely invalid page and mark it partially valid 327 * it can screw up NFS reads, so we don't allow the case. 328 */ 329 if (nsize & PAGE_MASK) { 330 vm_page_t m; 331 332 m = vm_page_lookup(object, OFF_TO_IDX(nsize)); 333 if (m && m->valid) { 334 int base = (int)nsize & PAGE_MASK; 335 int size = PAGE_SIZE - base; 336 337 /* 338 * Clear out partial-page garbage in case 339 * the page has been mapped. 340 */ 341 pmap_zero_page_area(m, base, size); 342 343 vm_page_lock_queues(); 344 /* 345 * XXX work around SMP data integrity race 346 * by unmapping the page from user processes. 347 * The garbage we just cleared may be mapped 348 * to a user process running on another cpu 349 * and this code is not running through normal 350 * I/O channels which handle SMP issues for 351 * us, so unmap page to synchronize all cpus. 352 * 353 * XXX should vm_pager_unmap_page() have 354 * dealt with this? 355 */ 356 pmap_remove_all(m); 357 358 /* 359 * Clear out partial-page dirty bits. This 360 * has the side effect of setting the valid 361 * bits, but that is ok. There are a bunch 362 * of places in the VM system where we expected 363 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 364 * case is one of them. If the page is still 365 * partially dirty, make it fully dirty. 366 * 367 * note that we do not clear out the valid 368 * bits. This would prevent bogus_page 369 * replacement from working properly. 370 */ 371 vm_page_set_validclean(m, base, size); 372 if (m->dirty != 0) 373 m->dirty = VM_PAGE_BITS_ALL; 374 vm_page_unlock_queues(); 375 } 376 } 377 } 378 object->un_pager.vnp.vnp_size = nsize; 379 object->size = nobjsize; 380 } 381 382 /* 383 * calculate the linear (byte) disk address of specified virtual 384 * file address 385 */ 386 static vm_offset_t 387 vnode_pager_addr(vp, address, run) 388 struct vnode *vp; 389 vm_ooffset_t address; 390 int *run; 391 { 392 int rtaddress; 393 int bsize; 394 daddr_t block; 395 struct vnode *rtvp; 396 int err; 397 daddr_t vblock; 398 int voffset; 399 400 GIANT_REQUIRED; 401 if ((int) address < 0) 402 return -1; 403 404 if (vp->v_mount == NULL) 405 return -1; 406 407 bsize = vp->v_mount->mnt_stat.f_iosize; 408 vblock = address / bsize; 409 voffset = address % bsize; 410 411 err = VOP_BMAP(vp, vblock, &rtvp, &block, run, NULL); 412 413 if (err || (block == -1)) 414 rtaddress = -1; 415 else { 416 rtaddress = block + voffset / DEV_BSIZE; 417 if (run) { 418 *run += 1; 419 *run *= bsize/PAGE_SIZE; 420 *run -= voffset/PAGE_SIZE; 421 } 422 } 423 424 return rtaddress; 425 } 426 427 /* 428 * interrupt routine for I/O completion 429 */ 430 static void 431 vnode_pager_iodone(bp) 432 struct buf *bp; 433 { 434 bp->b_flags |= B_DONE; 435 wakeup(bp); 436 } 437 438 /* 439 * small block filesystem vnode pager input 440 */ 441 static int 442 vnode_pager_input_smlfs(object, m) 443 vm_object_t object; 444 vm_page_t m; 445 { 446 int i; 447 int s; 448 struct vnode *dp, *vp; 449 struct buf *bp; 450 vm_offset_t kva; 451 int fileaddr; 452 vm_offset_t bsize; 453 int error = 0; 454 455 GIANT_REQUIRED; 456 457 vp = object->handle; 458 if (vp->v_mount == NULL) 459 return VM_PAGER_BAD; 460 461 bsize = vp->v_mount->mnt_stat.f_iosize; 462 463 VOP_BMAP(vp, 0, &dp, 0, NULL, NULL); 464 465 kva = vm_pager_map_page(m); 466 467 for (i = 0; i < PAGE_SIZE / bsize; i++) { 468 vm_ooffset_t address; 469 470 if (vm_page_bits(i * bsize, bsize) & m->valid) 471 continue; 472 473 address = IDX_TO_OFF(m->pindex) + i * bsize; 474 if (address >= object->un_pager.vnp.vnp_size) { 475 fileaddr = -1; 476 } else { 477 fileaddr = vnode_pager_addr(vp, address, NULL); 478 } 479 if (fileaddr != -1) { 480 bp = getpbuf(&vnode_pbuf_freecnt); 481 482 /* build a minimal buffer header */ 483 bp->b_iocmd = BIO_READ; 484 bp->b_iodone = vnode_pager_iodone; 485 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 486 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 487 bp->b_rcred = crhold(curthread->td_ucred); 488 bp->b_wcred = crhold(curthread->td_ucred); 489 bp->b_data = (caddr_t) kva + i * bsize; 490 bp->b_blkno = fileaddr; 491 pbgetvp(dp, bp); 492 bp->b_bcount = bsize; 493 bp->b_bufsize = bsize; 494 bp->b_runningbufspace = bp->b_bufsize; 495 runningbufspace += bp->b_runningbufspace; 496 497 /* do the input */ 498 VOP_SPECSTRATEGY(bp->b_vp, bp); 499 500 /* we definitely need to be at splvm here */ 501 502 s = splvm(); 503 while ((bp->b_flags & B_DONE) == 0) { 504 tsleep(bp, PVM, "vnsrd", 0); 505 } 506 splx(s); 507 if ((bp->b_ioflags & BIO_ERROR) != 0) 508 error = EIO; 509 510 /* 511 * free the buffer header back to the swap buffer pool 512 */ 513 relpbuf(bp, &vnode_pbuf_freecnt); 514 if (error) 515 break; 516 517 vm_page_lock_queues(); 518 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 519 vm_page_unlock_queues(); 520 } else { 521 vm_page_lock_queues(); 522 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 523 vm_page_unlock_queues(); 524 bzero((caddr_t) kva + i * bsize, bsize); 525 } 526 } 527 vm_pager_unmap_page(kva); 528 vm_page_lock_queues(); 529 pmap_clear_modify(m); 530 vm_page_flag_clear(m, PG_ZERO); 531 vm_page_unlock_queues(); 532 if (error) { 533 return VM_PAGER_ERROR; 534 } 535 return VM_PAGER_OK; 536 537 } 538 539 540 /* 541 * old style vnode pager output routine 542 */ 543 static int 544 vnode_pager_input_old(object, m) 545 vm_object_t object; 546 vm_page_t m; 547 { 548 struct uio auio; 549 struct iovec aiov; 550 int error; 551 int size; 552 vm_offset_t kva; 553 struct vnode *vp; 554 555 GIANT_REQUIRED; 556 error = 0; 557 558 /* 559 * Return failure if beyond current EOF 560 */ 561 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 562 return VM_PAGER_BAD; 563 } else { 564 size = PAGE_SIZE; 565 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 566 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 567 568 /* 569 * Allocate a kernel virtual address and initialize so that 570 * we can use VOP_READ/WRITE routines. 571 */ 572 kva = vm_pager_map_page(m); 573 574 vp = object->handle; 575 aiov.iov_base = (caddr_t) kva; 576 aiov.iov_len = size; 577 auio.uio_iov = &aiov; 578 auio.uio_iovcnt = 1; 579 auio.uio_offset = IDX_TO_OFF(m->pindex); 580 auio.uio_segflg = UIO_SYSSPACE; 581 auio.uio_rw = UIO_READ; 582 auio.uio_resid = size; 583 auio.uio_td = curthread; 584 585 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 586 if (!error) { 587 int count = size - auio.uio_resid; 588 589 if (count == 0) 590 error = EINVAL; 591 else if (count != PAGE_SIZE) 592 bzero((caddr_t) kva + count, PAGE_SIZE - count); 593 } 594 vm_pager_unmap_page(kva); 595 } 596 vm_page_lock_queues(); 597 pmap_clear_modify(m); 598 vm_page_undirty(m); 599 vm_page_flag_clear(m, PG_ZERO); 600 if (!error) 601 m->valid = VM_PAGE_BITS_ALL; 602 vm_page_unlock_queues(); 603 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 604 } 605 606 /* 607 * generic vnode pager input routine 608 */ 609 610 /* 611 * Local media VFS's that do not implement their own VOP_GETPAGES 612 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 613 * to implement the previous behaviour. 614 * 615 * All other FS's should use the bypass to get to the local media 616 * backing vp's VOP_GETPAGES. 617 */ 618 static int 619 vnode_pager_getpages(object, m, count, reqpage) 620 vm_object_t object; 621 vm_page_t *m; 622 int count; 623 int reqpage; 624 { 625 int rtval; 626 struct vnode *vp; 627 int bytes = count * PAGE_SIZE; 628 629 GIANT_REQUIRED; 630 vp = object->handle; 631 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 632 KASSERT(rtval != EOPNOTSUPP, 633 ("vnode_pager: FS getpages not implemented\n")); 634 return rtval; 635 } 636 637 /* 638 * This is now called from local media FS's to operate against their 639 * own vnodes if they fail to implement VOP_GETPAGES. 640 */ 641 int 642 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 643 struct vnode *vp; 644 vm_page_t *m; 645 int bytecount; 646 int reqpage; 647 { 648 vm_object_t object; 649 vm_offset_t kva; 650 off_t foff, tfoff, nextoff; 651 int i, j, size, bsize, first, firstaddr; 652 struct vnode *dp; 653 int runpg; 654 int runend; 655 struct buf *bp; 656 int s; 657 int count; 658 int error = 0; 659 660 GIANT_REQUIRED; 661 object = vp->v_object; 662 count = bytecount / PAGE_SIZE; 663 664 if (vp->v_mount == NULL) 665 return VM_PAGER_BAD; 666 667 bsize = vp->v_mount->mnt_stat.f_iosize; 668 669 /* get the UNDERLYING device for the file with VOP_BMAP() */ 670 671 /* 672 * originally, we did not check for an error return value -- assuming 673 * an fs always has a bmap entry point -- that assumption is wrong!!! 674 */ 675 foff = IDX_TO_OFF(m[reqpage]->pindex); 676 677 /* 678 * if we can't bmap, use old VOP code 679 */ 680 if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) { 681 vm_page_lock_queues(); 682 for (i = 0; i < count; i++) 683 if (i != reqpage) 684 vm_page_free(m[i]); 685 vm_page_unlock_queues(); 686 cnt.v_vnodein++; 687 cnt.v_vnodepgsin++; 688 return vnode_pager_input_old(object, m[reqpage]); 689 690 /* 691 * if the blocksize is smaller than a page size, then use 692 * special small filesystem code. NFS sometimes has a small 693 * blocksize, but it can handle large reads itself. 694 */ 695 } else if ((PAGE_SIZE / bsize) > 1 && 696 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 697 vm_page_lock_queues(); 698 for (i = 0; i < count; i++) 699 if (i != reqpage) 700 vm_page_free(m[i]); 701 vm_page_unlock_queues(); 702 cnt.v_vnodein++; 703 cnt.v_vnodepgsin++; 704 return vnode_pager_input_smlfs(object, m[reqpage]); 705 } 706 707 /* 708 * If we have a completely valid page available to us, we can 709 * clean up and return. Otherwise we have to re-read the 710 * media. 711 */ 712 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 713 vm_page_lock_queues(); 714 for (i = 0; i < count; i++) 715 if (i != reqpage) 716 vm_page_free(m[i]); 717 vm_page_unlock_queues(); 718 return VM_PAGER_OK; 719 } 720 m[reqpage]->valid = 0; 721 722 /* 723 * here on direct device I/O 724 */ 725 firstaddr = -1; 726 727 /* 728 * calculate the run that includes the required page 729 */ 730 for (first = 0, i = 0; i < count; i = runend) { 731 firstaddr = vnode_pager_addr(vp, 732 IDX_TO_OFF(m[i]->pindex), &runpg); 733 if (firstaddr == -1) { 734 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 735 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 736 firstaddr, (uintmax_t)(foff >> 32), 737 (uintmax_t)foff, 738 (uintmax_t) 739 (object->un_pager.vnp.vnp_size >> 32), 740 (uintmax_t)object->un_pager.vnp.vnp_size); 741 } 742 vm_page_lock_queues(); 743 vm_page_free(m[i]); 744 vm_page_unlock_queues(); 745 runend = i + 1; 746 first = runend; 747 continue; 748 } 749 runend = i + runpg; 750 if (runend <= reqpage) { 751 vm_page_lock_queues(); 752 for (j = i; j < runend; j++) 753 vm_page_free(m[j]); 754 vm_page_unlock_queues(); 755 } else { 756 if (runpg < (count - first)) { 757 vm_page_lock_queues(); 758 for (i = first + runpg; i < count; i++) 759 vm_page_free(m[i]); 760 vm_page_unlock_queues(); 761 count = first + runpg; 762 } 763 break; 764 } 765 first = runend; 766 } 767 768 /* 769 * the first and last page have been calculated now, move input pages 770 * to be zero based... 771 */ 772 if (first != 0) { 773 for (i = first; i < count; i++) { 774 m[i - first] = m[i]; 775 } 776 count -= first; 777 reqpage -= first; 778 } 779 780 /* 781 * calculate the file virtual address for the transfer 782 */ 783 foff = IDX_TO_OFF(m[0]->pindex); 784 785 /* 786 * calculate the size of the transfer 787 */ 788 size = count * PAGE_SIZE; 789 if ((foff + size) > object->un_pager.vnp.vnp_size) 790 size = object->un_pager.vnp.vnp_size - foff; 791 792 /* 793 * round up physical size for real devices. 794 */ 795 if (dp->v_type == VBLK || dp->v_type == VCHR) { 796 int secmask = dp->v_rdev->si_bsize_phys - 1; 797 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1)); 798 size = (size + secmask) & ~secmask; 799 } 800 801 bp = getpbuf(&vnode_pbuf_freecnt); 802 kva = (vm_offset_t) bp->b_data; 803 804 /* 805 * and map the pages to be read into the kva 806 */ 807 pmap_qenter(kva, m, count); 808 809 /* build a minimal buffer header */ 810 bp->b_iocmd = BIO_READ; 811 bp->b_iodone = vnode_pager_iodone; 812 /* B_PHYS is not set, but it is nice to fill this in */ 813 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 814 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 815 bp->b_rcred = crhold(curthread->td_ucred); 816 bp->b_wcred = crhold(curthread->td_ucred); 817 bp->b_blkno = firstaddr; 818 pbgetvp(dp, bp); 819 bp->b_bcount = size; 820 bp->b_bufsize = size; 821 bp->b_runningbufspace = bp->b_bufsize; 822 runningbufspace += bp->b_runningbufspace; 823 824 cnt.v_vnodein++; 825 cnt.v_vnodepgsin += count; 826 827 /* do the input */ 828 if (dp->v_type == VCHR) 829 VOP_SPECSTRATEGY(bp->b_vp, bp); 830 else 831 VOP_STRATEGY(bp->b_vp, bp); 832 833 s = splvm(); 834 /* we definitely need to be at splvm here */ 835 836 while ((bp->b_flags & B_DONE) == 0) { 837 tsleep(bp, PVM, "vnread", 0); 838 } 839 splx(s); 840 if ((bp->b_ioflags & BIO_ERROR) != 0) 841 error = EIO; 842 843 if (!error) { 844 if (size != count * PAGE_SIZE) 845 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 846 } 847 pmap_qremove(kva, count); 848 849 /* 850 * free the buffer header back to the swap buffer pool 851 */ 852 relpbuf(bp, &vnode_pbuf_freecnt); 853 854 vm_page_lock_queues(); 855 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 856 vm_page_t mt; 857 858 nextoff = tfoff + PAGE_SIZE; 859 mt = m[i]; 860 861 if (nextoff <= object->un_pager.vnp.vnp_size) { 862 /* 863 * Read filled up entire page. 864 */ 865 mt->valid = VM_PAGE_BITS_ALL; 866 vm_page_undirty(mt); /* should be an assert? XXX */ 867 pmap_clear_modify(mt); 868 } else { 869 /* 870 * Read did not fill up entire page. Since this 871 * is getpages, the page may be mapped, so we have 872 * to zero the invalid portions of the page even 873 * though we aren't setting them valid. 874 * 875 * Currently we do not set the entire page valid, 876 * we just try to clear the piece that we couldn't 877 * read. 878 */ 879 vm_page_set_validclean(mt, 0, 880 object->un_pager.vnp.vnp_size - tfoff); 881 /* handled by vm_fault now */ 882 /* vm_page_zero_invalid(mt, FALSE); */ 883 } 884 885 vm_page_flag_clear(mt, PG_ZERO); 886 if (i != reqpage) { 887 888 /* 889 * whether or not to leave the page activated is up in 890 * the air, but we should put the page on a page queue 891 * somewhere. (it already is in the object). Result: 892 * It appears that empirical results show that 893 * deactivating pages is best. 894 */ 895 896 /* 897 * just in case someone was asking for this page we 898 * now tell them that it is ok to use 899 */ 900 if (!error) { 901 if (mt->flags & PG_WANTED) 902 vm_page_activate(mt); 903 else 904 vm_page_deactivate(mt); 905 vm_page_wakeup(mt); 906 } else { 907 vm_page_free(mt); 908 } 909 } 910 } 911 vm_page_unlock_queues(); 912 if (error) { 913 printf("vnode_pager_getpages: I/O read error\n"); 914 } 915 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 916 } 917 918 /* 919 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 920 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 921 * vnode_pager_generic_putpages() to implement the previous behaviour. 922 * 923 * All other FS's should use the bypass to get to the local media 924 * backing vp's VOP_PUTPAGES. 925 */ 926 static void 927 vnode_pager_putpages(object, m, count, sync, rtvals) 928 vm_object_t object; 929 vm_page_t *m; 930 int count; 931 boolean_t sync; 932 int *rtvals; 933 { 934 int rtval; 935 struct vnode *vp; 936 struct mount *mp; 937 int bytes = count * PAGE_SIZE; 938 939 GIANT_REQUIRED; 940 /* 941 * Force synchronous operation if we are extremely low on memory 942 * to prevent a low-memory deadlock. VOP operations often need to 943 * allocate more memory to initiate the I/O ( i.e. do a BMAP 944 * operation ). The swapper handles the case by limiting the amount 945 * of asynchronous I/O, but that sort of solution doesn't scale well 946 * for the vnode pager without a lot of work. 947 * 948 * Also, the backing vnode's iodone routine may not wake the pageout 949 * daemon up. This should be probably be addressed XXX. 950 */ 951 952 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 953 sync |= OBJPC_SYNC; 954 955 /* 956 * Call device-specific putpages function 957 */ 958 vp = object->handle; 959 if (vp->v_type != VREG) 960 mp = NULL; 961 (void)vn_start_write(vp, &mp, V_WAIT); 962 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 963 KASSERT(rtval != EOPNOTSUPP, 964 ("vnode_pager: stale FS putpages\n")); 965 vn_finished_write(mp); 966 } 967 968 969 /* 970 * This is now called from local media FS's to operate against their 971 * own vnodes if they fail to implement VOP_PUTPAGES. 972 * 973 * This is typically called indirectly via the pageout daemon and 974 * clustering has already typically occured, so in general we ask the 975 * underlying filesystem to write the data out asynchronously rather 976 * then delayed. 977 */ 978 int 979 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 980 struct vnode *vp; 981 vm_page_t *m; 982 int bytecount; 983 int flags; 984 int *rtvals; 985 { 986 int i; 987 vm_object_t object; 988 int count; 989 990 int maxsize, ncount; 991 vm_ooffset_t poffset; 992 struct uio auio; 993 struct iovec aiov; 994 int error; 995 int ioflags; 996 997 GIANT_REQUIRED; 998 object = vp->v_object; 999 count = bytecount / PAGE_SIZE; 1000 1001 for (i = 0; i < count; i++) 1002 rtvals[i] = VM_PAGER_AGAIN; 1003 1004 if ((int) m[0]->pindex < 0) { 1005 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n", 1006 (long)m[0]->pindex, m[0]->dirty); 1007 rtvals[0] = VM_PAGER_BAD; 1008 return VM_PAGER_BAD; 1009 } 1010 1011 maxsize = count * PAGE_SIZE; 1012 ncount = count; 1013 1014 poffset = IDX_TO_OFF(m[0]->pindex); 1015 1016 /* 1017 * If the page-aligned write is larger then the actual file we 1018 * have to invalidate pages occuring beyond the file EOF. However, 1019 * there is an edge case where a file may not be page-aligned where 1020 * the last page is partially invalid. In this case the filesystem 1021 * may not properly clear the dirty bits for the entire page (which 1022 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1023 * With the page locked we are free to fix-up the dirty bits here. 1024 * 1025 * We do not under any circumstances truncate the valid bits, as 1026 * this will screw up bogus page replacement. 1027 */ 1028 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1029 if (object->un_pager.vnp.vnp_size > poffset) { 1030 int pgoff; 1031 1032 maxsize = object->un_pager.vnp.vnp_size - poffset; 1033 ncount = btoc(maxsize); 1034 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1035 vm_page_clear_dirty(m[ncount - 1], pgoff, 1036 PAGE_SIZE - pgoff); 1037 } 1038 } else { 1039 maxsize = 0; 1040 ncount = 0; 1041 } 1042 if (ncount < count) { 1043 for (i = ncount; i < count; i++) { 1044 rtvals[i] = VM_PAGER_BAD; 1045 } 1046 } 1047 } 1048 1049 /* 1050 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1051 * rather then a bdwrite() to prevent paging I/O from saturating 1052 * the buffer cache. Dummy-up the sequential heuristic to cause 1053 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1054 * the system decides how to cluster. 1055 */ 1056 ioflags = IO_VMIO; 1057 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1058 ioflags |= IO_SYNC; 1059 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1060 ioflags |= IO_ASYNC; 1061 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1062 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1063 1064 aiov.iov_base = (caddr_t) 0; 1065 aiov.iov_len = maxsize; 1066 auio.uio_iov = &aiov; 1067 auio.uio_iovcnt = 1; 1068 auio.uio_offset = poffset; 1069 auio.uio_segflg = UIO_NOCOPY; 1070 auio.uio_rw = UIO_WRITE; 1071 auio.uio_resid = maxsize; 1072 auio.uio_td = (struct thread *) 0; 1073 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1074 cnt.v_vnodeout++; 1075 cnt.v_vnodepgsout += ncount; 1076 1077 if (error) { 1078 printf("vnode_pager_putpages: I/O error %d\n", error); 1079 } 1080 if (auio.uio_resid) { 1081 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1082 auio.uio_resid, (u_long)m[0]->pindex); 1083 } 1084 for (i = 0; i < ncount; i++) { 1085 rtvals[i] = VM_PAGER_OK; 1086 } 1087 return rtvals[0]; 1088 } 1089 1090 struct vnode * 1091 vnode_pager_lock(object) 1092 vm_object_t object; 1093 { 1094 struct thread *td = curthread; /* XXX */ 1095 1096 GIANT_REQUIRED; 1097 1098 for (; object != NULL; object = object->backing_object) { 1099 if (object->type != OBJT_VNODE) 1100 continue; 1101 if (object->flags & OBJ_DEAD) { 1102 return NULL; 1103 } 1104 1105 /* XXX; If object->handle can change, we need to cache it. */ 1106 while (vget(object->handle, 1107 LK_NOPAUSE | LK_SHARED | LK_RETRY | LK_CANRECURSE, td)){ 1108 if ((object->flags & OBJ_DEAD) || (object->type != OBJT_VNODE)) 1109 return NULL; 1110 printf("vnode_pager_lock: retrying\n"); 1111 } 1112 return object->handle; 1113 } 1114 return NULL; 1115 } 1116