1 /*- 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/limits.h> 65 #include <sys/conf.h> 66 #include <sys/rwlock.h> 67 #include <sys/sf_buf.h> 68 69 #include <machine/atomic.h> 70 71 #include <vm/vm.h> 72 #include <vm/vm_param.h> 73 #include <vm/vm_object.h> 74 #include <vm/vm_page.h> 75 #include <vm/vm_pager.h> 76 #include <vm/vm_map.h> 77 #include <vm/vnode_pager.h> 78 #include <vm/vm_extern.h> 79 80 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 81 daddr_t *rtaddress, int *run); 82 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 83 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 84 static void vnode_pager_dealloc(vm_object_t); 85 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 86 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 87 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 88 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, 89 vm_ooffset_t, struct ucred *cred); 90 91 struct pagerops vnodepagerops = { 92 .pgo_alloc = vnode_pager_alloc, 93 .pgo_dealloc = vnode_pager_dealloc, 94 .pgo_getpages = vnode_pager_getpages, 95 .pgo_putpages = vnode_pager_putpages, 96 .pgo_haspage = vnode_pager_haspage, 97 }; 98 99 int vnode_pbuf_freecnt; 100 101 /* Create the VM system backing object for this vnode */ 102 int 103 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 104 { 105 vm_object_t object; 106 vm_ooffset_t size = isize; 107 struct vattr va; 108 109 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 110 return (0); 111 112 while ((object = vp->v_object) != NULL) { 113 VM_OBJECT_WLOCK(object); 114 if (!(object->flags & OBJ_DEAD)) { 115 VM_OBJECT_WUNLOCK(object); 116 return (0); 117 } 118 VOP_UNLOCK(vp, 0); 119 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 120 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0); 121 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 122 } 123 124 if (size == 0) { 125 if (vn_isdisk(vp, NULL)) { 126 size = IDX_TO_OFF(INT_MAX); 127 } else { 128 if (VOP_GETATTR(vp, &va, td->td_ucred)) 129 return (0); 130 size = va.va_size; 131 } 132 } 133 134 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); 135 /* 136 * Dereference the reference we just created. This assumes 137 * that the object is associated with the vp. 138 */ 139 VM_OBJECT_WLOCK(object); 140 object->ref_count--; 141 VM_OBJECT_WUNLOCK(object); 142 vrele(vp); 143 144 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 145 146 return (0); 147 } 148 149 void 150 vnode_destroy_vobject(struct vnode *vp) 151 { 152 struct vm_object *obj; 153 154 obj = vp->v_object; 155 if (obj == NULL) 156 return; 157 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 158 VM_OBJECT_WLOCK(obj); 159 if (obj->ref_count == 0) { 160 /* 161 * vclean() may be called twice. The first time 162 * removes the primary reference to the object, 163 * the second time goes one further and is a 164 * special-case to terminate the object. 165 * 166 * don't double-terminate the object 167 */ 168 if ((obj->flags & OBJ_DEAD) == 0) 169 vm_object_terminate(obj); 170 else 171 VM_OBJECT_WUNLOCK(obj); 172 } else { 173 /* 174 * Woe to the process that tries to page now :-). 175 */ 176 vm_pager_deallocate(obj); 177 VM_OBJECT_WUNLOCK(obj); 178 } 179 vp->v_object = NULL; 180 } 181 182 183 /* 184 * Allocate (or lookup) pager for a vnode. 185 * Handle is a vnode pointer. 186 * 187 * MPSAFE 188 */ 189 vm_object_t 190 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 191 vm_ooffset_t offset, struct ucred *cred) 192 { 193 vm_object_t object; 194 struct vnode *vp; 195 196 /* 197 * Pageout to vnode, no can do yet. 198 */ 199 if (handle == NULL) 200 return (NULL); 201 202 vp = (struct vnode *) handle; 203 204 /* 205 * If the object is being terminated, wait for it to 206 * go away. 207 */ 208 retry: 209 while ((object = vp->v_object) != NULL) { 210 VM_OBJECT_WLOCK(object); 211 if ((object->flags & OBJ_DEAD) == 0) 212 break; 213 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 214 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0); 215 } 216 217 if (vp->v_usecount == 0) 218 panic("vnode_pager_alloc: no vnode reference"); 219 220 if (object == NULL) { 221 /* 222 * Add an object of the appropriate size 223 */ 224 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 225 226 object->un_pager.vnp.vnp_size = size; 227 object->un_pager.vnp.writemappings = 0; 228 229 object->handle = handle; 230 VI_LOCK(vp); 231 if (vp->v_object != NULL) { 232 /* 233 * Object has been created while we were sleeping 234 */ 235 VI_UNLOCK(vp); 236 vm_object_destroy(object); 237 goto retry; 238 } 239 vp->v_object = object; 240 VI_UNLOCK(vp); 241 } else { 242 object->ref_count++; 243 VM_OBJECT_WUNLOCK(object); 244 } 245 vref(vp); 246 return (object); 247 } 248 249 /* 250 * The object must be locked. 251 */ 252 static void 253 vnode_pager_dealloc(object) 254 vm_object_t object; 255 { 256 struct vnode *vp; 257 int refs; 258 259 vp = object->handle; 260 if (vp == NULL) 261 panic("vnode_pager_dealloc: pager already dealloced"); 262 263 VM_OBJECT_ASSERT_WLOCKED(object); 264 vm_object_pip_wait(object, "vnpdea"); 265 refs = object->ref_count; 266 267 object->handle = NULL; 268 object->type = OBJT_DEAD; 269 if (object->flags & OBJ_DISCONNECTWNT) { 270 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 271 wakeup(object); 272 } 273 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 274 if (object->un_pager.vnp.writemappings > 0) { 275 object->un_pager.vnp.writemappings = 0; 276 VOP_ADD_WRITECOUNT(vp, -1); 277 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 278 __func__, vp, vp->v_writecount); 279 } 280 vp->v_object = NULL; 281 VOP_UNSET_TEXT(vp); 282 VM_OBJECT_WUNLOCK(object); 283 while (refs-- > 0) 284 vunref(vp); 285 VM_OBJECT_WLOCK(object); 286 } 287 288 static boolean_t 289 vnode_pager_haspage(object, pindex, before, after) 290 vm_object_t object; 291 vm_pindex_t pindex; 292 int *before; 293 int *after; 294 { 295 struct vnode *vp = object->handle; 296 daddr_t bn; 297 int err; 298 daddr_t reqblock; 299 int poff; 300 int bsize; 301 int pagesperblock, blocksperpage; 302 303 VM_OBJECT_ASSERT_WLOCKED(object); 304 /* 305 * If no vp or vp is doomed or marked transparent to VM, we do not 306 * have the page. 307 */ 308 if (vp == NULL || vp->v_iflag & VI_DOOMED) 309 return FALSE; 310 /* 311 * If the offset is beyond end of file we do 312 * not have the page. 313 */ 314 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 315 return FALSE; 316 317 bsize = vp->v_mount->mnt_stat.f_iosize; 318 pagesperblock = bsize / PAGE_SIZE; 319 blocksperpage = 0; 320 if (pagesperblock > 0) { 321 reqblock = pindex / pagesperblock; 322 } else { 323 blocksperpage = (PAGE_SIZE / bsize); 324 reqblock = pindex * blocksperpage; 325 } 326 VM_OBJECT_WUNLOCK(object); 327 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 328 VM_OBJECT_WLOCK(object); 329 if (err) 330 return TRUE; 331 if (bn == -1) 332 return FALSE; 333 if (pagesperblock > 0) { 334 poff = pindex - (reqblock * pagesperblock); 335 if (before) { 336 *before *= pagesperblock; 337 *before += poff; 338 } 339 if (after) { 340 int numafter; 341 *after *= pagesperblock; 342 numafter = pagesperblock - (poff + 1); 343 if (IDX_TO_OFF(pindex + numafter) > 344 object->un_pager.vnp.vnp_size) { 345 numafter = 346 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 347 pindex; 348 } 349 *after += numafter; 350 } 351 } else { 352 if (before) { 353 *before /= blocksperpage; 354 } 355 356 if (after) { 357 *after /= blocksperpage; 358 } 359 } 360 return TRUE; 361 } 362 363 /* 364 * Lets the VM system know about a change in size for a file. 365 * We adjust our own internal size and flush any cached pages in 366 * the associated object that are affected by the size change. 367 * 368 * Note: this routine may be invoked as a result of a pager put 369 * operation (possibly at object termination time), so we must be careful. 370 */ 371 void 372 vnode_pager_setsize(vp, nsize) 373 struct vnode *vp; 374 vm_ooffset_t nsize; 375 { 376 vm_object_t object; 377 vm_page_t m; 378 vm_pindex_t nobjsize; 379 380 if ((object = vp->v_object) == NULL) 381 return; 382 /* ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */ 383 VM_OBJECT_WLOCK(object); 384 if (nsize == object->un_pager.vnp.vnp_size) { 385 /* 386 * Hasn't changed size 387 */ 388 VM_OBJECT_WUNLOCK(object); 389 return; 390 } 391 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 392 if (nsize < object->un_pager.vnp.vnp_size) { 393 /* 394 * File has shrunk. Toss any cached pages beyond the new EOF. 395 */ 396 if (nobjsize < object->size) 397 vm_object_page_remove(object, nobjsize, object->size, 398 0); 399 /* 400 * this gets rid of garbage at the end of a page that is now 401 * only partially backed by the vnode. 402 * 403 * XXX for some reason (I don't know yet), if we take a 404 * completely invalid page and mark it partially valid 405 * it can screw up NFS reads, so we don't allow the case. 406 */ 407 if ((nsize & PAGE_MASK) && 408 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 409 m->valid != 0) { 410 int base = (int)nsize & PAGE_MASK; 411 int size = PAGE_SIZE - base; 412 413 /* 414 * Clear out partial-page garbage in case 415 * the page has been mapped. 416 */ 417 pmap_zero_page_area(m, base, size); 418 419 /* 420 * Update the valid bits to reflect the blocks that 421 * have been zeroed. Some of these valid bits may 422 * have already been set. 423 */ 424 vm_page_set_valid_range(m, base, size); 425 426 /* 427 * Round "base" to the next block boundary so that the 428 * dirty bit for a partially zeroed block is not 429 * cleared. 430 */ 431 base = roundup2(base, DEV_BSIZE); 432 433 /* 434 * Clear out partial-page dirty bits. 435 * 436 * note that we do not clear out the valid 437 * bits. This would prevent bogus_page 438 * replacement from working properly. 439 */ 440 vm_page_clear_dirty(m, base, PAGE_SIZE - base); 441 } else if ((nsize & PAGE_MASK) && 442 vm_page_is_cached(object, OFF_TO_IDX(nsize))) { 443 vm_page_cache_free(object, OFF_TO_IDX(nsize), 444 nobjsize); 445 } 446 } 447 object->un_pager.vnp.vnp_size = nsize; 448 object->size = nobjsize; 449 VM_OBJECT_WUNLOCK(object); 450 } 451 452 /* 453 * calculate the linear (byte) disk address of specified virtual 454 * file address 455 */ 456 static int 457 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 458 int *run) 459 { 460 int bsize; 461 int err; 462 daddr_t vblock; 463 daddr_t voffset; 464 465 if (address < 0) 466 return -1; 467 468 if (vp->v_iflag & VI_DOOMED) 469 return -1; 470 471 bsize = vp->v_mount->mnt_stat.f_iosize; 472 vblock = address / bsize; 473 voffset = address % bsize; 474 475 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 476 if (err == 0) { 477 if (*rtaddress != -1) 478 *rtaddress += voffset / DEV_BSIZE; 479 if (run) { 480 *run += 1; 481 *run *= bsize/PAGE_SIZE; 482 *run -= voffset/PAGE_SIZE; 483 } 484 } 485 486 return (err); 487 } 488 489 /* 490 * small block filesystem vnode pager input 491 */ 492 static int 493 vnode_pager_input_smlfs(object, m) 494 vm_object_t object; 495 vm_page_t m; 496 { 497 struct vnode *vp; 498 struct bufobj *bo; 499 struct buf *bp; 500 struct sf_buf *sf; 501 daddr_t fileaddr; 502 vm_offset_t bsize; 503 vm_page_bits_t bits; 504 int error, i; 505 506 error = 0; 507 vp = object->handle; 508 if (vp->v_iflag & VI_DOOMED) 509 return VM_PAGER_BAD; 510 511 bsize = vp->v_mount->mnt_stat.f_iosize; 512 513 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 514 515 sf = sf_buf_alloc(m, 0); 516 517 for (i = 0; i < PAGE_SIZE / bsize; i++) { 518 vm_ooffset_t address; 519 520 bits = vm_page_bits(i * bsize, bsize); 521 if (m->valid & bits) 522 continue; 523 524 address = IDX_TO_OFF(m->pindex) + i * bsize; 525 if (address >= object->un_pager.vnp.vnp_size) { 526 fileaddr = -1; 527 } else { 528 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 529 if (error) 530 break; 531 } 532 if (fileaddr != -1) { 533 bp = getpbuf(&vnode_pbuf_freecnt); 534 535 /* build a minimal buffer header */ 536 bp->b_iocmd = BIO_READ; 537 bp->b_iodone = bdone; 538 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 539 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 540 bp->b_rcred = crhold(curthread->td_ucred); 541 bp->b_wcred = crhold(curthread->td_ucred); 542 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 543 bp->b_blkno = fileaddr; 544 pbgetbo(bo, bp); 545 bp->b_vp = vp; 546 bp->b_bcount = bsize; 547 bp->b_bufsize = bsize; 548 bp->b_runningbufspace = bp->b_bufsize; 549 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 550 551 /* do the input */ 552 bp->b_iooffset = dbtob(bp->b_blkno); 553 bstrategy(bp); 554 555 bwait(bp, PVM, "vnsrd"); 556 557 if ((bp->b_ioflags & BIO_ERROR) != 0) 558 error = EIO; 559 560 /* 561 * free the buffer header back to the swap buffer pool 562 */ 563 bp->b_vp = NULL; 564 pbrelbo(bp); 565 relpbuf(bp, &vnode_pbuf_freecnt); 566 if (error) 567 break; 568 } else 569 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 570 KASSERT((m->dirty & bits) == 0, 571 ("vnode_pager_input_smlfs: page %p is dirty", m)); 572 VM_OBJECT_WLOCK(object); 573 m->valid |= bits; 574 VM_OBJECT_WUNLOCK(object); 575 } 576 sf_buf_free(sf); 577 if (error) { 578 return VM_PAGER_ERROR; 579 } 580 return VM_PAGER_OK; 581 } 582 583 /* 584 * old style vnode pager input routine 585 */ 586 static int 587 vnode_pager_input_old(object, m) 588 vm_object_t object; 589 vm_page_t m; 590 { 591 struct uio auio; 592 struct iovec aiov; 593 int error; 594 int size; 595 struct sf_buf *sf; 596 struct vnode *vp; 597 598 VM_OBJECT_ASSERT_WLOCKED(object); 599 error = 0; 600 601 /* 602 * Return failure if beyond current EOF 603 */ 604 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 605 return VM_PAGER_BAD; 606 } else { 607 size = PAGE_SIZE; 608 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 609 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 610 vp = object->handle; 611 VM_OBJECT_WUNLOCK(object); 612 613 /* 614 * Allocate a kernel virtual address and initialize so that 615 * we can use VOP_READ/WRITE routines. 616 */ 617 sf = sf_buf_alloc(m, 0); 618 619 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 620 aiov.iov_len = size; 621 auio.uio_iov = &aiov; 622 auio.uio_iovcnt = 1; 623 auio.uio_offset = IDX_TO_OFF(m->pindex); 624 auio.uio_segflg = UIO_SYSSPACE; 625 auio.uio_rw = UIO_READ; 626 auio.uio_resid = size; 627 auio.uio_td = curthread; 628 629 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 630 if (!error) { 631 int count = size - auio.uio_resid; 632 633 if (count == 0) 634 error = EINVAL; 635 else if (count != PAGE_SIZE) 636 bzero((caddr_t)sf_buf_kva(sf) + count, 637 PAGE_SIZE - count); 638 } 639 sf_buf_free(sf); 640 641 VM_OBJECT_WLOCK(object); 642 } 643 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 644 if (!error) 645 m->valid = VM_PAGE_BITS_ALL; 646 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 647 } 648 649 /* 650 * generic vnode pager input routine 651 */ 652 653 /* 654 * Local media VFS's that do not implement their own VOP_GETPAGES 655 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 656 * to implement the previous behaviour. 657 * 658 * All other FS's should use the bypass to get to the local media 659 * backing vp's VOP_GETPAGES. 660 */ 661 static int 662 vnode_pager_getpages(object, m, count, reqpage) 663 vm_object_t object; 664 vm_page_t *m; 665 int count; 666 int reqpage; 667 { 668 int rtval; 669 struct vnode *vp; 670 int bytes = count * PAGE_SIZE; 671 672 vp = object->handle; 673 VM_OBJECT_WUNLOCK(object); 674 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 675 KASSERT(rtval != EOPNOTSUPP, 676 ("vnode_pager: FS getpages not implemented\n")); 677 VM_OBJECT_WLOCK(object); 678 return rtval; 679 } 680 681 /* 682 * This is now called from local media FS's to operate against their 683 * own vnodes if they fail to implement VOP_GETPAGES. 684 */ 685 int 686 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 687 struct vnode *vp; 688 vm_page_t *m; 689 int bytecount; 690 int reqpage; 691 { 692 vm_object_t object; 693 vm_offset_t kva; 694 off_t foff, tfoff, nextoff; 695 int i, j, size, bsize, first; 696 daddr_t firstaddr, reqblock; 697 struct bufobj *bo; 698 int runpg; 699 int runend; 700 struct buf *bp; 701 int count; 702 int error; 703 704 object = vp->v_object; 705 count = bytecount / PAGE_SIZE; 706 707 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 708 ("vnode_pager_generic_getpages does not support devices")); 709 if (vp->v_iflag & VI_DOOMED) 710 return VM_PAGER_BAD; 711 712 bsize = vp->v_mount->mnt_stat.f_iosize; 713 714 /* get the UNDERLYING device for the file with VOP_BMAP() */ 715 716 /* 717 * originally, we did not check for an error return value -- assuming 718 * an fs always has a bmap entry point -- that assumption is wrong!!! 719 */ 720 foff = IDX_TO_OFF(m[reqpage]->pindex); 721 722 /* 723 * if we can't bmap, use old VOP code 724 */ 725 error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL); 726 if (error == EOPNOTSUPP) { 727 VM_OBJECT_WLOCK(object); 728 729 for (i = 0; i < count; i++) 730 if (i != reqpage) { 731 vm_page_lock(m[i]); 732 vm_page_free(m[i]); 733 vm_page_unlock(m[i]); 734 } 735 PCPU_INC(cnt.v_vnodein); 736 PCPU_INC(cnt.v_vnodepgsin); 737 error = vnode_pager_input_old(object, m[reqpage]); 738 VM_OBJECT_WUNLOCK(object); 739 return (error); 740 } else if (error != 0) { 741 VM_OBJECT_WLOCK(object); 742 for (i = 0; i < count; i++) 743 if (i != reqpage) { 744 vm_page_lock(m[i]); 745 vm_page_free(m[i]); 746 vm_page_unlock(m[i]); 747 } 748 VM_OBJECT_WUNLOCK(object); 749 return (VM_PAGER_ERROR); 750 751 /* 752 * if the blocksize is smaller than a page size, then use 753 * special small filesystem code. NFS sometimes has a small 754 * blocksize, but it can handle large reads itself. 755 */ 756 } else if ((PAGE_SIZE / bsize) > 1 && 757 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 758 VM_OBJECT_WLOCK(object); 759 for (i = 0; i < count; i++) 760 if (i != reqpage) { 761 vm_page_lock(m[i]); 762 vm_page_free(m[i]); 763 vm_page_unlock(m[i]); 764 } 765 VM_OBJECT_WUNLOCK(object); 766 PCPU_INC(cnt.v_vnodein); 767 PCPU_INC(cnt.v_vnodepgsin); 768 return vnode_pager_input_smlfs(object, m[reqpage]); 769 } 770 771 /* 772 * If we have a completely valid page available to us, we can 773 * clean up and return. Otherwise we have to re-read the 774 * media. 775 */ 776 VM_OBJECT_WLOCK(object); 777 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 778 for (i = 0; i < count; i++) 779 if (i != reqpage) { 780 vm_page_lock(m[i]); 781 vm_page_free(m[i]); 782 vm_page_unlock(m[i]); 783 } 784 VM_OBJECT_WUNLOCK(object); 785 return VM_PAGER_OK; 786 } else if (reqblock == -1) { 787 pmap_zero_page(m[reqpage]); 788 KASSERT(m[reqpage]->dirty == 0, 789 ("vnode_pager_generic_getpages: page %p is dirty", m)); 790 m[reqpage]->valid = VM_PAGE_BITS_ALL; 791 for (i = 0; i < count; i++) 792 if (i != reqpage) { 793 vm_page_lock(m[i]); 794 vm_page_free(m[i]); 795 vm_page_unlock(m[i]); 796 } 797 VM_OBJECT_WUNLOCK(object); 798 return (VM_PAGER_OK); 799 } 800 m[reqpage]->valid = 0; 801 VM_OBJECT_WUNLOCK(object); 802 803 /* 804 * here on direct device I/O 805 */ 806 firstaddr = -1; 807 808 /* 809 * calculate the run that includes the required page 810 */ 811 for (first = 0, i = 0; i < count; i = runend) { 812 if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr, 813 &runpg) != 0) { 814 VM_OBJECT_WLOCK(object); 815 for (; i < count; i++) 816 if (i != reqpage) { 817 vm_page_lock(m[i]); 818 vm_page_free(m[i]); 819 vm_page_unlock(m[i]); 820 } 821 VM_OBJECT_WUNLOCK(object); 822 return (VM_PAGER_ERROR); 823 } 824 if (firstaddr == -1) { 825 VM_OBJECT_WLOCK(object); 826 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 827 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 828 (intmax_t)firstaddr, (uintmax_t)(foff >> 32), 829 (uintmax_t)foff, 830 (uintmax_t) 831 (object->un_pager.vnp.vnp_size >> 32), 832 (uintmax_t)object->un_pager.vnp.vnp_size); 833 } 834 vm_page_lock(m[i]); 835 vm_page_free(m[i]); 836 vm_page_unlock(m[i]); 837 VM_OBJECT_WUNLOCK(object); 838 runend = i + 1; 839 first = runend; 840 continue; 841 } 842 runend = i + runpg; 843 if (runend <= reqpage) { 844 VM_OBJECT_WLOCK(object); 845 for (j = i; j < runend; j++) { 846 vm_page_lock(m[j]); 847 vm_page_free(m[j]); 848 vm_page_unlock(m[j]); 849 } 850 VM_OBJECT_WUNLOCK(object); 851 } else { 852 if (runpg < (count - first)) { 853 VM_OBJECT_WLOCK(object); 854 for (i = first + runpg; i < count; i++) { 855 vm_page_lock(m[i]); 856 vm_page_free(m[i]); 857 vm_page_unlock(m[i]); 858 } 859 VM_OBJECT_WUNLOCK(object); 860 count = first + runpg; 861 } 862 break; 863 } 864 first = runend; 865 } 866 867 /* 868 * the first and last page have been calculated now, move input pages 869 * to be zero based... 870 */ 871 if (first != 0) { 872 m += first; 873 count -= first; 874 reqpage -= first; 875 } 876 877 /* 878 * calculate the file virtual address for the transfer 879 */ 880 foff = IDX_TO_OFF(m[0]->pindex); 881 882 /* 883 * calculate the size of the transfer 884 */ 885 size = count * PAGE_SIZE; 886 KASSERT(count > 0, ("zero count")); 887 if ((foff + size) > object->un_pager.vnp.vnp_size) 888 size = object->un_pager.vnp.vnp_size - foff; 889 KASSERT(size > 0, ("zero size")); 890 891 /* 892 * round up physical size for real devices. 893 */ 894 if (1) { 895 int secmask = bo->bo_bsize - 1; 896 KASSERT(secmask < PAGE_SIZE && secmask > 0, 897 ("vnode_pager_generic_getpages: sector size %d too large", 898 secmask + 1)); 899 size = (size + secmask) & ~secmask; 900 } 901 902 bp = getpbuf(&vnode_pbuf_freecnt); 903 kva = (vm_offset_t)bp->b_data; 904 905 /* 906 * and map the pages to be read into the kva 907 */ 908 pmap_qenter(kva, m, count); 909 910 /* build a minimal buffer header */ 911 bp->b_iocmd = BIO_READ; 912 bp->b_iodone = bdone; 913 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 914 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 915 bp->b_rcred = crhold(curthread->td_ucred); 916 bp->b_wcred = crhold(curthread->td_ucred); 917 bp->b_blkno = firstaddr; 918 pbgetbo(bo, bp); 919 bp->b_vp = vp; 920 bp->b_bcount = size; 921 bp->b_bufsize = size; 922 bp->b_runningbufspace = bp->b_bufsize; 923 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 924 925 PCPU_INC(cnt.v_vnodein); 926 PCPU_ADD(cnt.v_vnodepgsin, count); 927 928 /* do the input */ 929 bp->b_iooffset = dbtob(bp->b_blkno); 930 bstrategy(bp); 931 932 bwait(bp, PVM, "vnread"); 933 934 if ((bp->b_ioflags & BIO_ERROR) != 0) 935 error = EIO; 936 937 if (!error) { 938 if (size != count * PAGE_SIZE) 939 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 940 } 941 pmap_qremove(kva, count); 942 943 /* 944 * free the buffer header back to the swap buffer pool 945 */ 946 bp->b_vp = NULL; 947 pbrelbo(bp); 948 relpbuf(bp, &vnode_pbuf_freecnt); 949 950 VM_OBJECT_WLOCK(object); 951 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 952 vm_page_t mt; 953 954 nextoff = tfoff + PAGE_SIZE; 955 mt = m[i]; 956 957 if (nextoff <= object->un_pager.vnp.vnp_size) { 958 /* 959 * Read filled up entire page. 960 */ 961 mt->valid = VM_PAGE_BITS_ALL; 962 KASSERT(mt->dirty == 0, 963 ("vnode_pager_generic_getpages: page %p is dirty", 964 mt)); 965 KASSERT(!pmap_page_is_mapped(mt), 966 ("vnode_pager_generic_getpages: page %p is mapped", 967 mt)); 968 } else { 969 /* 970 * Read did not fill up entire page. 971 * 972 * Currently we do not set the entire page valid, 973 * we just try to clear the piece that we couldn't 974 * read. 975 */ 976 vm_page_set_valid_range(mt, 0, 977 object->un_pager.vnp.vnp_size - tfoff); 978 KASSERT((mt->dirty & vm_page_bits(0, 979 object->un_pager.vnp.vnp_size - tfoff)) == 0, 980 ("vnode_pager_generic_getpages: page %p is dirty", 981 mt)); 982 } 983 984 if (i != reqpage) 985 vm_page_readahead_finish(mt); 986 } 987 VM_OBJECT_WUNLOCK(object); 988 if (error) { 989 printf("vnode_pager_getpages: I/O read error\n"); 990 } 991 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 992 } 993 994 /* 995 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 996 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 997 * vnode_pager_generic_putpages() to implement the previous behaviour. 998 * 999 * All other FS's should use the bypass to get to the local media 1000 * backing vp's VOP_PUTPAGES. 1001 */ 1002 static void 1003 vnode_pager_putpages(object, m, count, sync, rtvals) 1004 vm_object_t object; 1005 vm_page_t *m; 1006 int count; 1007 boolean_t sync; 1008 int *rtvals; 1009 { 1010 int rtval; 1011 struct vnode *vp; 1012 int bytes = count * PAGE_SIZE; 1013 1014 /* 1015 * Force synchronous operation if we are extremely low on memory 1016 * to prevent a low-memory deadlock. VOP operations often need to 1017 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1018 * operation ). The swapper handles the case by limiting the amount 1019 * of asynchronous I/O, but that sort of solution doesn't scale well 1020 * for the vnode pager without a lot of work. 1021 * 1022 * Also, the backing vnode's iodone routine may not wake the pageout 1023 * daemon up. This should be probably be addressed XXX. 1024 */ 1025 1026 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 1027 sync |= OBJPC_SYNC; 1028 1029 /* 1030 * Call device-specific putpages function 1031 */ 1032 vp = object->handle; 1033 VM_OBJECT_WUNLOCK(object); 1034 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 1035 KASSERT(rtval != EOPNOTSUPP, 1036 ("vnode_pager: stale FS putpages\n")); 1037 VM_OBJECT_WLOCK(object); 1038 } 1039 1040 1041 /* 1042 * This is now called from local media FS's to operate against their 1043 * own vnodes if they fail to implement VOP_PUTPAGES. 1044 * 1045 * This is typically called indirectly via the pageout daemon and 1046 * clustering has already typically occured, so in general we ask the 1047 * underlying filesystem to write the data out asynchronously rather 1048 * then delayed. 1049 */ 1050 int 1051 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, 1052 int flags, int *rtvals) 1053 { 1054 int i; 1055 vm_object_t object; 1056 vm_page_t m; 1057 int count; 1058 1059 int maxsize, ncount; 1060 vm_ooffset_t poffset; 1061 struct uio auio; 1062 struct iovec aiov; 1063 int error; 1064 int ioflags; 1065 int ppscheck = 0; 1066 static struct timeval lastfail; 1067 static int curfail; 1068 1069 object = vp->v_object; 1070 count = bytecount / PAGE_SIZE; 1071 1072 for (i = 0; i < count; i++) 1073 rtvals[i] = VM_PAGER_ERROR; 1074 1075 if ((int64_t)ma[0]->pindex < 0) { 1076 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1077 (long)ma[0]->pindex, (u_long)ma[0]->dirty); 1078 rtvals[0] = VM_PAGER_BAD; 1079 return VM_PAGER_BAD; 1080 } 1081 1082 maxsize = count * PAGE_SIZE; 1083 ncount = count; 1084 1085 poffset = IDX_TO_OFF(ma[0]->pindex); 1086 1087 /* 1088 * If the page-aligned write is larger then the actual file we 1089 * have to invalidate pages occuring beyond the file EOF. However, 1090 * there is an edge case where a file may not be page-aligned where 1091 * the last page is partially invalid. In this case the filesystem 1092 * may not properly clear the dirty bits for the entire page (which 1093 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1094 * With the page locked we are free to fix-up the dirty bits here. 1095 * 1096 * We do not under any circumstances truncate the valid bits, as 1097 * this will screw up bogus page replacement. 1098 */ 1099 VM_OBJECT_WLOCK(object); 1100 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1101 if (object->un_pager.vnp.vnp_size > poffset) { 1102 int pgoff; 1103 1104 maxsize = object->un_pager.vnp.vnp_size - poffset; 1105 ncount = btoc(maxsize); 1106 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1107 /* 1108 * If the object is locked and the following 1109 * conditions hold, then the page's dirty 1110 * field cannot be concurrently changed by a 1111 * pmap operation. 1112 */ 1113 m = ma[ncount - 1]; 1114 KASSERT(m->busy > 0, 1115 ("vnode_pager_generic_putpages: page %p is not busy", m)); 1116 KASSERT(!pmap_page_is_write_mapped(m), 1117 ("vnode_pager_generic_putpages: page %p is not read-only", m)); 1118 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 1119 pgoff); 1120 } 1121 } else { 1122 maxsize = 0; 1123 ncount = 0; 1124 } 1125 if (ncount < count) { 1126 for (i = ncount; i < count; i++) { 1127 rtvals[i] = VM_PAGER_BAD; 1128 } 1129 } 1130 } 1131 VM_OBJECT_WUNLOCK(object); 1132 1133 /* 1134 * pageouts are already clustered, use IO_ASYNC to force a bawrite() 1135 * rather then a bdwrite() to prevent paging I/O from saturating 1136 * the buffer cache. Dummy-up the sequential heuristic to cause 1137 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1138 * the system decides how to cluster. 1139 */ 1140 ioflags = IO_VMIO; 1141 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1142 ioflags |= IO_SYNC; 1143 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1144 ioflags |= IO_ASYNC; 1145 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1146 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1147 1148 aiov.iov_base = (caddr_t) 0; 1149 aiov.iov_len = maxsize; 1150 auio.uio_iov = &aiov; 1151 auio.uio_iovcnt = 1; 1152 auio.uio_offset = poffset; 1153 auio.uio_segflg = UIO_NOCOPY; 1154 auio.uio_rw = UIO_WRITE; 1155 auio.uio_resid = maxsize; 1156 auio.uio_td = (struct thread *) 0; 1157 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1158 PCPU_INC(cnt.v_vnodeout); 1159 PCPU_ADD(cnt.v_vnodepgsout, ncount); 1160 1161 if (error) { 1162 if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1))) 1163 printf("vnode_pager_putpages: I/O error %d\n", error); 1164 } 1165 if (auio.uio_resid) { 1166 if (ppscheck || ppsratecheck(&lastfail, &curfail, 1)) 1167 printf("vnode_pager_putpages: residual I/O %zd at %lu\n", 1168 auio.uio_resid, (u_long)ma[0]->pindex); 1169 } 1170 for (i = 0; i < ncount; i++) { 1171 rtvals[i] = VM_PAGER_OK; 1172 } 1173 return rtvals[0]; 1174 } 1175 1176 void 1177 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written) 1178 { 1179 vm_object_t obj; 1180 int i, pos; 1181 1182 if (written == 0) 1183 return; 1184 obj = ma[0]->object; 1185 VM_OBJECT_WLOCK(obj); 1186 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { 1187 if (pos < trunc_page(written)) { 1188 rtvals[i] = VM_PAGER_OK; 1189 vm_page_undirty(ma[i]); 1190 } else { 1191 /* Partially written page. */ 1192 rtvals[i] = VM_PAGER_AGAIN; 1193 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); 1194 } 1195 } 1196 VM_OBJECT_WUNLOCK(obj); 1197 } 1198 1199 void 1200 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, 1201 vm_offset_t end) 1202 { 1203 struct vnode *vp; 1204 vm_ooffset_t old_wm; 1205 1206 VM_OBJECT_WLOCK(object); 1207 if (object->type != OBJT_VNODE) { 1208 VM_OBJECT_WUNLOCK(object); 1209 return; 1210 } 1211 old_wm = object->un_pager.vnp.writemappings; 1212 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; 1213 vp = object->handle; 1214 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { 1215 ASSERT_VOP_ELOCKED(vp, "v_writecount inc"); 1216 VOP_ADD_WRITECOUNT(vp, 1); 1217 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 1218 __func__, vp, vp->v_writecount); 1219 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { 1220 ASSERT_VOP_ELOCKED(vp, "v_writecount dec"); 1221 VOP_ADD_WRITECOUNT(vp, -1); 1222 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 1223 __func__, vp, vp->v_writecount); 1224 } 1225 VM_OBJECT_WUNLOCK(object); 1226 } 1227 1228 void 1229 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, 1230 vm_offset_t end) 1231 { 1232 struct vnode *vp; 1233 struct mount *mp; 1234 vm_offset_t inc; 1235 1236 VM_OBJECT_WLOCK(object); 1237 1238 /* 1239 * First, recheck the object type to account for the race when 1240 * the vnode is reclaimed. 1241 */ 1242 if (object->type != OBJT_VNODE) { 1243 VM_OBJECT_WUNLOCK(object); 1244 return; 1245 } 1246 1247 /* 1248 * Optimize for the case when writemappings is not going to 1249 * zero. 1250 */ 1251 inc = end - start; 1252 if (object->un_pager.vnp.writemappings != inc) { 1253 object->un_pager.vnp.writemappings -= inc; 1254 VM_OBJECT_WUNLOCK(object); 1255 return; 1256 } 1257 1258 vp = object->handle; 1259 vhold(vp); 1260 VM_OBJECT_WUNLOCK(object); 1261 mp = NULL; 1262 vn_start_write(vp, &mp, V_WAIT); 1263 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1264 1265 /* 1266 * Decrement the object's writemappings, by swapping the start 1267 * and end arguments for vnode_pager_update_writecount(). If 1268 * there was not a race with vnode reclaimation, then the 1269 * vnode's v_writecount is decremented. 1270 */ 1271 vnode_pager_update_writecount(object, end, start); 1272 VOP_UNLOCK(vp, 0); 1273 vdrop(vp); 1274 if (mp != NULL) 1275 vn_finished_write(mp); 1276 } 1277