1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991 The Regents of the University of California. 6 * All rights reserved. 7 * Copyright (c) 1993, 1994 John S. Dyson 8 * Copyright (c) 1995, David Greenman 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 43 */ 44 45 /* 46 * Page to/from files (vnodes). 47 */ 48 49 /* 50 * TODO: 51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 52 * greatly re-simplify the vnode_pager. 53 */ 54 55 #include <sys/cdefs.h> 56 __FBSDID("$FreeBSD$"); 57 58 #include "opt_vm.h" 59 60 #include <sys/param.h> 61 #include <sys/kernel.h> 62 #include <sys/systm.h> 63 #include <sys/sysctl.h> 64 #include <sys/proc.h> 65 #include <sys/vnode.h> 66 #include <sys/mount.h> 67 #include <sys/bio.h> 68 #include <sys/buf.h> 69 #include <sys/vmmeter.h> 70 #include <sys/ktr.h> 71 #include <sys/limits.h> 72 #include <sys/conf.h> 73 #include <sys/rwlock.h> 74 #include <sys/sf_buf.h> 75 #include <sys/domainset.h> 76 77 #include <machine/atomic.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_object.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pager.h> 84 #include <vm/vm_map.h> 85 #include <vm/vnode_pager.h> 86 #include <vm/vm_extern.h> 87 #include <vm/uma.h> 88 89 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 90 daddr_t *rtaddress, int *run); 91 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 92 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 93 static void vnode_pager_dealloc(vm_object_t); 94 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *); 95 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 96 int *, vop_getpages_iodone_t, void *); 97 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *); 98 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 99 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, 100 vm_ooffset_t, struct ucred *cred); 101 static int vnode_pager_generic_getpages_done(struct buf *); 102 static void vnode_pager_generic_getpages_done_async(struct buf *); 103 static void vnode_pager_update_writecount(vm_object_t, vm_offset_t, 104 vm_offset_t); 105 static void vnode_pager_release_writecount(vm_object_t, vm_offset_t, 106 vm_offset_t); 107 108 struct pagerops vnodepagerops = { 109 .pgo_alloc = vnode_pager_alloc, 110 .pgo_dealloc = vnode_pager_dealloc, 111 .pgo_getpages = vnode_pager_getpages, 112 .pgo_getpages_async = vnode_pager_getpages_async, 113 .pgo_putpages = vnode_pager_putpages, 114 .pgo_haspage = vnode_pager_haspage, 115 .pgo_update_writecount = vnode_pager_update_writecount, 116 .pgo_release_writecount = vnode_pager_release_writecount, 117 }; 118 119 static struct domainset *vnode_domainset = NULL; 120 121 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW, 122 &vnode_domainset, 0, sysctl_handle_domainset, "A", 123 "Default vnode NUMA policy"); 124 125 static int nvnpbufs; 126 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 127 &nvnpbufs, 0, "number of physical buffers allocated for vnode pager"); 128 129 static uma_zone_t vnode_pbuf_zone; 130 131 static void 132 vnode_pager_init(void *dummy) 133 { 134 135 #ifdef __LP64__ 136 nvnpbufs = nswbuf * 2; 137 #else 138 nvnpbufs = nswbuf / 2; 139 #endif 140 TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs); 141 vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs); 142 } 143 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL); 144 145 /* Create the VM system backing object for this vnode */ 146 int 147 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 148 { 149 vm_object_t object; 150 vm_ooffset_t size = isize; 151 struct vattr va; 152 153 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 154 return (0); 155 156 object = vp->v_object; 157 if (object != NULL) 158 return (0); 159 160 if (size == 0) { 161 if (vn_isdisk(vp, NULL)) { 162 size = IDX_TO_OFF(INT_MAX); 163 } else { 164 if (VOP_GETATTR(vp, &va, td->td_ucred)) 165 return (0); 166 size = va.va_size; 167 } 168 } 169 170 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); 171 /* 172 * Dereference the reference we just created. This assumes 173 * that the object is associated with the vp. 174 */ 175 VM_OBJECT_WLOCK(object); 176 object->ref_count--; 177 VM_OBJECT_WUNLOCK(object); 178 vrele(vp); 179 180 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 181 182 return (0); 183 } 184 185 void 186 vnode_destroy_vobject(struct vnode *vp) 187 { 188 struct vm_object *obj; 189 190 obj = vp->v_object; 191 if (obj == NULL || obj->handle != vp) 192 return; 193 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 194 VM_OBJECT_WLOCK(obj); 195 MPASS(obj->type == OBJT_VNODE); 196 umtx_shm_object_terminated(obj); 197 if (obj->ref_count == 0) { 198 /* 199 * don't double-terminate the object 200 */ 201 if ((obj->flags & OBJ_DEAD) == 0) { 202 vm_object_set_flag(obj, OBJ_DEAD); 203 204 /* 205 * Clean pages and flush buffers. 206 */ 207 vm_object_page_clean(obj, 0, 0, OBJPC_SYNC); 208 VM_OBJECT_WUNLOCK(obj); 209 210 vinvalbuf(vp, V_SAVE, 0, 0); 211 212 BO_LOCK(&vp->v_bufobj); 213 vp->v_bufobj.bo_flag |= BO_DEAD; 214 BO_UNLOCK(&vp->v_bufobj); 215 216 VM_OBJECT_WLOCK(obj); 217 vm_object_terminate(obj); 218 } else { 219 /* 220 * Waiters were already handled during object 221 * termination. The exclusive vnode lock hopefully 222 * prevented new waiters from referencing the dying 223 * object. 224 */ 225 vp->v_object = NULL; 226 VM_OBJECT_WUNLOCK(obj); 227 } 228 } else { 229 /* 230 * Woe to the process that tries to page now :-). 231 */ 232 vm_pager_deallocate(obj); 233 VM_OBJECT_WUNLOCK(obj); 234 } 235 KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object)); 236 } 237 238 239 /* 240 * Allocate (or lookup) pager for a vnode. 241 * Handle is a vnode pointer. 242 */ 243 vm_object_t 244 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 245 vm_ooffset_t offset, struct ucred *cred) 246 { 247 vm_object_t object; 248 struct vnode *vp; 249 250 /* 251 * Pageout to vnode, no can do yet. 252 */ 253 if (handle == NULL) 254 return (NULL); 255 256 vp = (struct vnode *)handle; 257 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 258 KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference")); 259 retry: 260 object = vp->v_object; 261 262 if (object == NULL) { 263 /* 264 * Add an object of the appropriate size 265 */ 266 object = vm_object_allocate(OBJT_VNODE, 267 OFF_TO_IDX(round_page(size))); 268 269 object->un_pager.vnp.vnp_size = size; 270 object->un_pager.vnp.writemappings = 0; 271 object->domain.dr_policy = vnode_domainset; 272 273 object->handle = handle; 274 VI_LOCK(vp); 275 if (vp->v_object != NULL) { 276 /* 277 * Object has been created while we were allocating. 278 */ 279 VI_UNLOCK(vp); 280 VM_OBJECT_WLOCK(object); 281 KASSERT(object->ref_count == 1, 282 ("leaked ref %p %d", object, object->ref_count)); 283 object->type = OBJT_DEAD; 284 object->ref_count = 0; 285 VM_OBJECT_WUNLOCK(object); 286 vm_object_destroy(object); 287 goto retry; 288 } 289 vp->v_object = object; 290 VI_UNLOCK(vp); 291 } else { 292 VM_OBJECT_WLOCK(object); 293 object->ref_count++; 294 #if VM_NRESERVLEVEL > 0 295 vm_object_color(object, 0); 296 #endif 297 VM_OBJECT_WUNLOCK(object); 298 } 299 vrefact(vp); 300 return (object); 301 } 302 303 /* 304 * The object must be locked. 305 */ 306 static void 307 vnode_pager_dealloc(vm_object_t object) 308 { 309 struct vnode *vp; 310 int refs; 311 312 vp = object->handle; 313 if (vp == NULL) 314 panic("vnode_pager_dealloc: pager already dealloced"); 315 316 VM_OBJECT_ASSERT_WLOCKED(object); 317 vm_object_pip_wait(object, "vnpdea"); 318 refs = object->ref_count; 319 320 object->handle = NULL; 321 object->type = OBJT_DEAD; 322 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 323 if (object->un_pager.vnp.writemappings > 0) { 324 object->un_pager.vnp.writemappings = 0; 325 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 326 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 327 __func__, vp, vp->v_writecount); 328 } 329 vp->v_object = NULL; 330 VI_LOCK(vp); 331 332 /* 333 * vm_map_entry_set_vnode_text() cannot reach this vnode by 334 * following object->handle. Clear all text references now. 335 * This also clears the transient references from 336 * kern_execve(), which is fine because dead_vnodeops uses nop 337 * for VOP_UNSET_TEXT(). 338 */ 339 if (vp->v_writecount < 0) 340 vp->v_writecount = 0; 341 VI_UNLOCK(vp); 342 VM_OBJECT_WUNLOCK(object); 343 while (refs-- > 0) 344 vunref(vp); 345 VM_OBJECT_WLOCK(object); 346 } 347 348 static boolean_t 349 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 350 int *after) 351 { 352 struct vnode *vp = object->handle; 353 daddr_t bn; 354 uintptr_t lockstate; 355 int err; 356 daddr_t reqblock; 357 int poff; 358 int bsize; 359 int pagesperblock, blocksperpage; 360 361 VM_OBJECT_ASSERT_LOCKED(object); 362 /* 363 * If no vp or vp is doomed or marked transparent to VM, we do not 364 * have the page. 365 */ 366 if (vp == NULL || vp->v_iflag & VI_DOOMED) 367 return FALSE; 368 /* 369 * If the offset is beyond end of file we do 370 * not have the page. 371 */ 372 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 373 return FALSE; 374 375 bsize = vp->v_mount->mnt_stat.f_iosize; 376 pagesperblock = bsize / PAGE_SIZE; 377 blocksperpage = 0; 378 if (pagesperblock > 0) { 379 reqblock = pindex / pagesperblock; 380 } else { 381 blocksperpage = (PAGE_SIZE / bsize); 382 reqblock = pindex * blocksperpage; 383 } 384 lockstate = VM_OBJECT_DROP(object); 385 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 386 VM_OBJECT_PICKUP(object, lockstate); 387 if (err) 388 return TRUE; 389 if (bn == -1) 390 return FALSE; 391 if (pagesperblock > 0) { 392 poff = pindex - (reqblock * pagesperblock); 393 if (before) { 394 *before *= pagesperblock; 395 *before += poff; 396 } 397 if (after) { 398 /* 399 * The BMAP vop can report a partial block in the 400 * 'after', but must not report blocks after EOF. 401 * Assert the latter, and truncate 'after' in case 402 * of the former. 403 */ 404 KASSERT((reqblock + *after) * pagesperblock < 405 roundup2(object->size, pagesperblock), 406 ("%s: reqblock %jd after %d size %ju", __func__, 407 (intmax_t )reqblock, *after, 408 (uintmax_t )object->size)); 409 *after *= pagesperblock; 410 *after += pagesperblock - (poff + 1); 411 if (pindex + *after >= object->size) 412 *after = object->size - 1 - pindex; 413 } 414 } else { 415 if (before) { 416 *before /= blocksperpage; 417 } 418 419 if (after) { 420 *after /= blocksperpage; 421 } 422 } 423 return TRUE; 424 } 425 426 /* 427 * Lets the VM system know about a change in size for a file. 428 * We adjust our own internal size and flush any cached pages in 429 * the associated object that are affected by the size change. 430 * 431 * Note: this routine may be invoked as a result of a pager put 432 * operation (possibly at object termination time), so we must be careful. 433 */ 434 void 435 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize) 436 { 437 vm_object_t object; 438 vm_page_t m; 439 vm_pindex_t nobjsize; 440 441 if ((object = vp->v_object) == NULL) 442 return; 443 /* ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */ 444 VM_OBJECT_WLOCK(object); 445 if (object->type == OBJT_DEAD) { 446 VM_OBJECT_WUNLOCK(object); 447 return; 448 } 449 KASSERT(object->type == OBJT_VNODE, 450 ("not vnode-backed object %p", object)); 451 if (nsize == object->un_pager.vnp.vnp_size) { 452 /* 453 * Hasn't changed size 454 */ 455 VM_OBJECT_WUNLOCK(object); 456 return; 457 } 458 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 459 if (nsize < object->un_pager.vnp.vnp_size) { 460 /* 461 * File has shrunk. Toss any cached pages beyond the new EOF. 462 */ 463 if (nobjsize < object->size) 464 vm_object_page_remove(object, nobjsize, object->size, 465 0); 466 /* 467 * this gets rid of garbage at the end of a page that is now 468 * only partially backed by the vnode. 469 * 470 * XXX for some reason (I don't know yet), if we take a 471 * completely invalid page and mark it partially valid 472 * it can screw up NFS reads, so we don't allow the case. 473 */ 474 if ((nsize & PAGE_MASK) && 475 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 476 m->valid != 0) { 477 int base = (int)nsize & PAGE_MASK; 478 int size = PAGE_SIZE - base; 479 480 /* 481 * Clear out partial-page garbage in case 482 * the page has been mapped. 483 */ 484 pmap_zero_page_area(m, base, size); 485 486 /* 487 * Update the valid bits to reflect the blocks that 488 * have been zeroed. Some of these valid bits may 489 * have already been set. 490 */ 491 vm_page_set_valid_range(m, base, size); 492 493 /* 494 * Round "base" to the next block boundary so that the 495 * dirty bit for a partially zeroed block is not 496 * cleared. 497 */ 498 base = roundup2(base, DEV_BSIZE); 499 500 /* 501 * Clear out partial-page dirty bits. 502 * 503 * note that we do not clear out the valid 504 * bits. This would prevent bogus_page 505 * replacement from working properly. 506 */ 507 vm_page_clear_dirty(m, base, PAGE_SIZE - base); 508 } 509 } 510 object->un_pager.vnp.vnp_size = nsize; 511 object->size = nobjsize; 512 VM_OBJECT_WUNLOCK(object); 513 } 514 515 /* 516 * calculate the linear (byte) disk address of specified virtual 517 * file address 518 */ 519 static int 520 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 521 int *run) 522 { 523 int bsize; 524 int err; 525 daddr_t vblock; 526 daddr_t voffset; 527 528 if (address < 0) 529 return -1; 530 531 if (vp->v_iflag & VI_DOOMED) 532 return -1; 533 534 bsize = vp->v_mount->mnt_stat.f_iosize; 535 vblock = address / bsize; 536 voffset = address % bsize; 537 538 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 539 if (err == 0) { 540 if (*rtaddress != -1) 541 *rtaddress += voffset / DEV_BSIZE; 542 if (run) { 543 *run += 1; 544 *run *= bsize / PAGE_SIZE; 545 *run -= voffset / PAGE_SIZE; 546 } 547 } 548 549 return (err); 550 } 551 552 /* 553 * small block filesystem vnode pager input 554 */ 555 static int 556 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m) 557 { 558 struct vnode *vp; 559 struct bufobj *bo; 560 struct buf *bp; 561 struct sf_buf *sf; 562 daddr_t fileaddr; 563 vm_offset_t bsize; 564 vm_page_bits_t bits; 565 int error, i; 566 567 error = 0; 568 vp = object->handle; 569 if (vp->v_iflag & VI_DOOMED) 570 return VM_PAGER_BAD; 571 572 bsize = vp->v_mount->mnt_stat.f_iosize; 573 574 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 575 576 sf = sf_buf_alloc(m, 0); 577 578 for (i = 0; i < PAGE_SIZE / bsize; i++) { 579 vm_ooffset_t address; 580 581 bits = vm_page_bits(i * bsize, bsize); 582 if (m->valid & bits) 583 continue; 584 585 address = IDX_TO_OFF(m->pindex) + i * bsize; 586 if (address >= object->un_pager.vnp.vnp_size) { 587 fileaddr = -1; 588 } else { 589 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 590 if (error) 591 break; 592 } 593 if (fileaddr != -1) { 594 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 595 596 /* build a minimal buffer header */ 597 bp->b_iocmd = BIO_READ; 598 bp->b_iodone = bdone; 599 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 600 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 601 bp->b_rcred = crhold(curthread->td_ucred); 602 bp->b_wcred = crhold(curthread->td_ucred); 603 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 604 bp->b_blkno = fileaddr; 605 pbgetbo(bo, bp); 606 bp->b_vp = vp; 607 bp->b_bcount = bsize; 608 bp->b_bufsize = bsize; 609 bp->b_runningbufspace = bp->b_bufsize; 610 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 611 612 /* do the input */ 613 bp->b_iooffset = dbtob(bp->b_blkno); 614 bstrategy(bp); 615 616 bwait(bp, PVM, "vnsrd"); 617 618 if ((bp->b_ioflags & BIO_ERROR) != 0) 619 error = EIO; 620 621 /* 622 * free the buffer header back to the swap buffer pool 623 */ 624 bp->b_vp = NULL; 625 pbrelbo(bp); 626 uma_zfree(vnode_pbuf_zone, bp); 627 if (error) 628 break; 629 } else 630 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 631 KASSERT((m->dirty & bits) == 0, 632 ("vnode_pager_input_smlfs: page %p is dirty", m)); 633 VM_OBJECT_WLOCK(object); 634 m->valid |= bits; 635 VM_OBJECT_WUNLOCK(object); 636 } 637 sf_buf_free(sf); 638 if (error) { 639 return VM_PAGER_ERROR; 640 } 641 return VM_PAGER_OK; 642 } 643 644 /* 645 * old style vnode pager input routine 646 */ 647 static int 648 vnode_pager_input_old(vm_object_t object, vm_page_t m) 649 { 650 struct uio auio; 651 struct iovec aiov; 652 int error; 653 int size; 654 struct sf_buf *sf; 655 struct vnode *vp; 656 657 VM_OBJECT_ASSERT_WLOCKED(object); 658 error = 0; 659 660 /* 661 * Return failure if beyond current EOF 662 */ 663 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 664 return VM_PAGER_BAD; 665 } else { 666 size = PAGE_SIZE; 667 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 668 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 669 vp = object->handle; 670 VM_OBJECT_WUNLOCK(object); 671 672 /* 673 * Allocate a kernel virtual address and initialize so that 674 * we can use VOP_READ/WRITE routines. 675 */ 676 sf = sf_buf_alloc(m, 0); 677 678 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 679 aiov.iov_len = size; 680 auio.uio_iov = &aiov; 681 auio.uio_iovcnt = 1; 682 auio.uio_offset = IDX_TO_OFF(m->pindex); 683 auio.uio_segflg = UIO_SYSSPACE; 684 auio.uio_rw = UIO_READ; 685 auio.uio_resid = size; 686 auio.uio_td = curthread; 687 688 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 689 if (!error) { 690 int count = size - auio.uio_resid; 691 692 if (count == 0) 693 error = EINVAL; 694 else if (count != PAGE_SIZE) 695 bzero((caddr_t)sf_buf_kva(sf) + count, 696 PAGE_SIZE - count); 697 } 698 sf_buf_free(sf); 699 700 VM_OBJECT_WLOCK(object); 701 } 702 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 703 if (!error) 704 m->valid = VM_PAGE_BITS_ALL; 705 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 706 } 707 708 /* 709 * generic vnode pager input routine 710 */ 711 712 /* 713 * Local media VFS's that do not implement their own VOP_GETPAGES 714 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 715 * to implement the previous behaviour. 716 * 717 * All other FS's should use the bypass to get to the local media 718 * backing vp's VOP_GETPAGES. 719 */ 720 static int 721 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 722 int *rahead) 723 { 724 struct vnode *vp; 725 int rtval; 726 727 vp = object->handle; 728 VM_OBJECT_WUNLOCK(object); 729 rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead); 730 KASSERT(rtval != EOPNOTSUPP, 731 ("vnode_pager: FS getpages not implemented\n")); 732 VM_OBJECT_WLOCK(object); 733 return rtval; 734 } 735 736 static int 737 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 738 int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg) 739 { 740 struct vnode *vp; 741 int rtval; 742 743 vp = object->handle; 744 VM_OBJECT_WUNLOCK(object); 745 rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg); 746 KASSERT(rtval != EOPNOTSUPP, 747 ("vnode_pager: FS getpages_async not implemented\n")); 748 VM_OBJECT_WLOCK(object); 749 return (rtval); 750 } 751 752 /* 753 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for 754 * local filesystems, where partially valid pages can only occur at 755 * the end of file. 756 */ 757 int 758 vnode_pager_local_getpages(struct vop_getpages_args *ap) 759 { 760 761 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 762 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 763 } 764 765 int 766 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap) 767 { 768 769 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 770 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg)); 771 } 772 773 /* 774 * This is now called from local media FS's to operate against their 775 * own vnodes if they fail to implement VOP_GETPAGES. 776 */ 777 int 778 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count, 779 int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg) 780 { 781 vm_object_t object; 782 struct bufobj *bo; 783 struct buf *bp; 784 off_t foff; 785 #ifdef INVARIANTS 786 off_t blkno0; 787 #endif 788 int bsize, pagesperblock; 789 int error, before, after, rbehind, rahead, poff, i; 790 int bytecount, secmask; 791 792 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 793 ("%s does not support devices", __func__)); 794 795 if (vp->v_iflag & VI_DOOMED) 796 return (VM_PAGER_BAD); 797 798 object = vp->v_object; 799 foff = IDX_TO_OFF(m[0]->pindex); 800 bsize = vp->v_mount->mnt_stat.f_iosize; 801 pagesperblock = bsize / PAGE_SIZE; 802 803 KASSERT(foff < object->un_pager.vnp.vnp_size, 804 ("%s: page %p offset beyond vp %p size", __func__, m[0], vp)); 805 KASSERT(count <= nitems(bp->b_pages), 806 ("%s: requested %d pages", __func__, count)); 807 808 /* 809 * The last page has valid blocks. Invalid part can only 810 * exist at the end of file, and the page is made fully valid 811 * by zeroing in vm_pager_get_pages(). 812 */ 813 if (m[count - 1]->valid != 0 && --count == 0) { 814 if (iodone != NULL) 815 iodone(arg, m, 1, 0); 816 return (VM_PAGER_OK); 817 } 818 819 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 820 821 /* 822 * Get the underlying device blocks for the file with VOP_BMAP(). 823 * If the file system doesn't support VOP_BMAP, use old way of 824 * getting pages via VOP_READ. 825 */ 826 error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before); 827 if (error == EOPNOTSUPP) { 828 uma_zfree(vnode_pbuf_zone, bp); 829 VM_OBJECT_WLOCK(object); 830 for (i = 0; i < count; i++) { 831 VM_CNT_INC(v_vnodein); 832 VM_CNT_INC(v_vnodepgsin); 833 error = vnode_pager_input_old(object, m[i]); 834 if (error) 835 break; 836 } 837 VM_OBJECT_WUNLOCK(object); 838 return (error); 839 } else if (error != 0) { 840 uma_zfree(vnode_pbuf_zone, bp); 841 return (VM_PAGER_ERROR); 842 } 843 844 /* 845 * If the file system supports BMAP, but blocksize is smaller 846 * than a page size, then use special small filesystem code. 847 */ 848 if (pagesperblock == 0) { 849 uma_zfree(vnode_pbuf_zone, bp); 850 for (i = 0; i < count; i++) { 851 VM_CNT_INC(v_vnodein); 852 VM_CNT_INC(v_vnodepgsin); 853 error = vnode_pager_input_smlfs(object, m[i]); 854 if (error) 855 break; 856 } 857 return (error); 858 } 859 860 /* 861 * A sparse file can be encountered only for a single page request, 862 * which may not be preceded by call to vm_pager_haspage(). 863 */ 864 if (bp->b_blkno == -1) { 865 KASSERT(count == 1, 866 ("%s: array[%d] request to a sparse file %p", __func__, 867 count, vp)); 868 uma_zfree(vnode_pbuf_zone, bp); 869 pmap_zero_page(m[0]); 870 KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty", 871 __func__, m[0])); 872 VM_OBJECT_WLOCK(object); 873 m[0]->valid = VM_PAGE_BITS_ALL; 874 VM_OBJECT_WUNLOCK(object); 875 return (VM_PAGER_OK); 876 } 877 878 #ifdef INVARIANTS 879 blkno0 = bp->b_blkno; 880 #endif 881 bp->b_blkno += (foff % bsize) / DEV_BSIZE; 882 883 /* Recalculate blocks available after/before to pages. */ 884 poff = (foff % bsize) / PAGE_SIZE; 885 before *= pagesperblock; 886 before += poff; 887 after *= pagesperblock; 888 after += pagesperblock - (poff + 1); 889 if (m[0]->pindex + after >= object->size) 890 after = object->size - 1 - m[0]->pindex; 891 KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d", 892 __func__, count, after + 1)); 893 after -= count - 1; 894 895 /* Trim requested rbehind/rahead to possible values. */ 896 rbehind = a_rbehind ? *a_rbehind : 0; 897 rahead = a_rahead ? *a_rahead : 0; 898 rbehind = min(rbehind, before); 899 rbehind = min(rbehind, m[0]->pindex); 900 rahead = min(rahead, after); 901 rahead = min(rahead, object->size - m[count - 1]->pindex); 902 /* 903 * Check that total amount of pages fit into buf. Trim rbehind and 904 * rahead evenly if not. 905 */ 906 if (rbehind + rahead + count > nitems(bp->b_pages)) { 907 int trim, sum; 908 909 trim = rbehind + rahead + count - nitems(bp->b_pages) + 1; 910 sum = rbehind + rahead; 911 if (rbehind == before) { 912 /* Roundup rbehind trim to block size. */ 913 rbehind -= roundup(trim * rbehind / sum, pagesperblock); 914 if (rbehind < 0) 915 rbehind = 0; 916 } else 917 rbehind -= trim * rbehind / sum; 918 rahead -= trim * rahead / sum; 919 } 920 KASSERT(rbehind + rahead + count <= nitems(bp->b_pages), 921 ("%s: behind %d ahead %d count %d", __func__, 922 rbehind, rahead, count)); 923 924 /* 925 * Fill in the bp->b_pages[] array with requested and optional 926 * read behind or read ahead pages. Read behind pages are looked 927 * up in a backward direction, down to a first cached page. Same 928 * for read ahead pages, but there is no need to shift the array 929 * in case of encountering a cached page. 930 */ 931 i = bp->b_npages = 0; 932 if (rbehind) { 933 vm_pindex_t startpindex, tpindex; 934 vm_page_t p; 935 936 VM_OBJECT_WLOCK(object); 937 startpindex = m[0]->pindex - rbehind; 938 if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL && 939 p->pindex >= startpindex) 940 startpindex = p->pindex + 1; 941 942 /* tpindex is unsigned; beware of numeric underflow. */ 943 for (tpindex = m[0]->pindex - 1; 944 tpindex >= startpindex && tpindex < m[0]->pindex; 945 tpindex--, i++) { 946 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 947 if (p == NULL) { 948 /* Shift the array. */ 949 for (int j = 0; j < i; j++) 950 bp->b_pages[j] = bp->b_pages[j + 951 tpindex + 1 - startpindex]; 952 break; 953 } 954 bp->b_pages[tpindex - startpindex] = p; 955 } 956 957 bp->b_pgbefore = i; 958 bp->b_npages += i; 959 bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE; 960 } else 961 bp->b_pgbefore = 0; 962 963 /* Requested pages. */ 964 for (int j = 0; j < count; j++, i++) 965 bp->b_pages[i] = m[j]; 966 bp->b_npages += count; 967 968 if (rahead) { 969 vm_pindex_t endpindex, tpindex; 970 vm_page_t p; 971 972 if (!VM_OBJECT_WOWNED(object)) 973 VM_OBJECT_WLOCK(object); 974 endpindex = m[count - 1]->pindex + rahead + 1; 975 if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL && 976 p->pindex < endpindex) 977 endpindex = p->pindex; 978 if (endpindex > object->size) 979 endpindex = object->size; 980 981 for (tpindex = m[count - 1]->pindex + 1; 982 tpindex < endpindex; i++, tpindex++) { 983 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 984 if (p == NULL) 985 break; 986 bp->b_pages[i] = p; 987 } 988 989 bp->b_pgafter = i - bp->b_npages; 990 bp->b_npages = i; 991 } else 992 bp->b_pgafter = 0; 993 994 if (VM_OBJECT_WOWNED(object)) 995 VM_OBJECT_WUNLOCK(object); 996 997 /* Report back actual behind/ahead read. */ 998 if (a_rbehind) 999 *a_rbehind = bp->b_pgbefore; 1000 if (a_rahead) 1001 *a_rahead = bp->b_pgafter; 1002 1003 #ifdef INVARIANTS 1004 KASSERT(bp->b_npages <= nitems(bp->b_pages), 1005 ("%s: buf %p overflowed", __func__, bp)); 1006 for (int j = 1, prev = 0; j < bp->b_npages; j++) { 1007 if (bp->b_pages[j] == bogus_page) 1008 continue; 1009 KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex == 1010 j - prev, ("%s: pages array not consecutive, bp %p", 1011 __func__, bp)); 1012 prev = j; 1013 } 1014 #endif 1015 1016 /* 1017 * Recalculate first offset and bytecount with regards to read behind. 1018 * Truncate bytecount to vnode real size and round up physical size 1019 * for real devices. 1020 */ 1021 foff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1022 bytecount = bp->b_npages << PAGE_SHIFT; 1023 if ((foff + bytecount) > object->un_pager.vnp.vnp_size) 1024 bytecount = object->un_pager.vnp.vnp_size - foff; 1025 secmask = bo->bo_bsize - 1; 1026 KASSERT(secmask < PAGE_SIZE && secmask > 0, 1027 ("%s: sector size %d too large", __func__, secmask + 1)); 1028 bytecount = (bytecount + secmask) & ~secmask; 1029 1030 /* 1031 * And map the pages to be read into the kva, if the filesystem 1032 * requires mapped buffers. 1033 */ 1034 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && 1035 unmapped_buf_allowed) { 1036 bp->b_data = unmapped_buf; 1037 bp->b_offset = 0; 1038 } else { 1039 bp->b_data = bp->b_kvabase; 1040 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 1041 } 1042 1043 /* Build a minimal buffer header. */ 1044 bp->b_iocmd = BIO_READ; 1045 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 1046 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 1047 bp->b_rcred = crhold(curthread->td_ucred); 1048 bp->b_wcred = crhold(curthread->td_ucred); 1049 pbgetbo(bo, bp); 1050 bp->b_vp = vp; 1051 bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount; 1052 bp->b_iooffset = dbtob(bp->b_blkno); 1053 KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) == 1054 (blkno0 - bp->b_blkno) * DEV_BSIZE + 1055 IDX_TO_OFF(m[0]->pindex) % bsize, 1056 ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju " 1057 "blkno0 %ju b_blkno %ju", bsize, 1058 (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex, 1059 (uintmax_t)blkno0, (uintmax_t)bp->b_blkno)); 1060 1061 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 1062 VM_CNT_INC(v_vnodein); 1063 VM_CNT_ADD(v_vnodepgsin, bp->b_npages); 1064 1065 if (iodone != NULL) { /* async */ 1066 bp->b_pgiodone = iodone; 1067 bp->b_caller1 = arg; 1068 bp->b_iodone = vnode_pager_generic_getpages_done_async; 1069 bp->b_flags |= B_ASYNC; 1070 BUF_KERNPROC(bp); 1071 bstrategy(bp); 1072 return (VM_PAGER_OK); 1073 } else { 1074 bp->b_iodone = bdone; 1075 bstrategy(bp); 1076 bwait(bp, PVM, "vnread"); 1077 error = vnode_pager_generic_getpages_done(bp); 1078 for (i = 0; i < bp->b_npages; i++) 1079 bp->b_pages[i] = NULL; 1080 bp->b_vp = NULL; 1081 pbrelbo(bp); 1082 uma_zfree(vnode_pbuf_zone, bp); 1083 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); 1084 } 1085 } 1086 1087 static void 1088 vnode_pager_generic_getpages_done_async(struct buf *bp) 1089 { 1090 int error; 1091 1092 error = vnode_pager_generic_getpages_done(bp); 1093 /* Run the iodone upon the requested range. */ 1094 bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore, 1095 bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error); 1096 for (int i = 0; i < bp->b_npages; i++) 1097 bp->b_pages[i] = NULL; 1098 bp->b_vp = NULL; 1099 pbrelbo(bp); 1100 uma_zfree(vnode_pbuf_zone, bp); 1101 } 1102 1103 static int 1104 vnode_pager_generic_getpages_done(struct buf *bp) 1105 { 1106 vm_object_t object; 1107 off_t tfoff, nextoff; 1108 int i, error; 1109 1110 error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0; 1111 object = bp->b_vp->v_object; 1112 1113 if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) { 1114 if (!buf_mapped(bp)) { 1115 bp->b_data = bp->b_kvabase; 1116 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, 1117 bp->b_npages); 1118 } 1119 bzero(bp->b_data + bp->b_bcount, 1120 PAGE_SIZE * bp->b_npages - bp->b_bcount); 1121 } 1122 if (buf_mapped(bp)) { 1123 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1124 bp->b_data = unmapped_buf; 1125 } 1126 1127 VM_OBJECT_WLOCK(object); 1128 for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1129 i < bp->b_npages; i++, tfoff = nextoff) { 1130 vm_page_t mt; 1131 1132 nextoff = tfoff + PAGE_SIZE; 1133 mt = bp->b_pages[i]; 1134 1135 if (nextoff <= object->un_pager.vnp.vnp_size) { 1136 /* 1137 * Read filled up entire page. 1138 */ 1139 mt->valid = VM_PAGE_BITS_ALL; 1140 KASSERT(mt->dirty == 0, 1141 ("%s: page %p is dirty", __func__, mt)); 1142 KASSERT(!pmap_page_is_mapped(mt), 1143 ("%s: page %p is mapped", __func__, mt)); 1144 } else { 1145 /* 1146 * Read did not fill up entire page. 1147 * 1148 * Currently we do not set the entire page valid, 1149 * we just try to clear the piece that we couldn't 1150 * read. 1151 */ 1152 vm_page_set_valid_range(mt, 0, 1153 object->un_pager.vnp.vnp_size - tfoff); 1154 KASSERT((mt->dirty & vm_page_bits(0, 1155 object->un_pager.vnp.vnp_size - tfoff)) == 0, 1156 ("%s: page %p is dirty", __func__, mt)); 1157 } 1158 1159 if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter) 1160 vm_page_readahead_finish(mt); 1161 } 1162 VM_OBJECT_WUNLOCK(object); 1163 if (error != 0) 1164 printf("%s: I/O read error %d\n", __func__, error); 1165 1166 return (error); 1167 } 1168 1169 /* 1170 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 1171 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 1172 * vnode_pager_generic_putpages() to implement the previous behaviour. 1173 * 1174 * All other FS's should use the bypass to get to the local media 1175 * backing vp's VOP_PUTPAGES. 1176 */ 1177 static void 1178 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1179 int flags, int *rtvals) 1180 { 1181 int rtval; 1182 struct vnode *vp; 1183 int bytes = count * PAGE_SIZE; 1184 1185 /* 1186 * Force synchronous operation if we are extremely low on memory 1187 * to prevent a low-memory deadlock. VOP operations often need to 1188 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1189 * operation ). The swapper handles the case by limiting the amount 1190 * of asynchronous I/O, but that sort of solution doesn't scale well 1191 * for the vnode pager without a lot of work. 1192 * 1193 * Also, the backing vnode's iodone routine may not wake the pageout 1194 * daemon up. This should be probably be addressed XXX. 1195 */ 1196 1197 if (vm_page_count_min()) 1198 flags |= VM_PAGER_PUT_SYNC; 1199 1200 /* 1201 * Call device-specific putpages function 1202 */ 1203 vp = object->handle; 1204 VM_OBJECT_WUNLOCK(object); 1205 rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals); 1206 KASSERT(rtval != EOPNOTSUPP, 1207 ("vnode_pager: stale FS putpages\n")); 1208 VM_OBJECT_WLOCK(object); 1209 } 1210 1211 static int 1212 vn_off2bidx(vm_ooffset_t offset) 1213 { 1214 1215 return ((offset & PAGE_MASK) / DEV_BSIZE); 1216 } 1217 1218 static bool 1219 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset) 1220 { 1221 1222 KASSERT(IDX_TO_OFF(m->pindex) <= offset && 1223 offset < IDX_TO_OFF(m->pindex + 1), 1224 ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex, 1225 (uintmax_t)offset)); 1226 return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0); 1227 } 1228 1229 /* 1230 * This is now called from local media FS's to operate against their 1231 * own vnodes if they fail to implement VOP_PUTPAGES. 1232 * 1233 * This is typically called indirectly via the pageout daemon and 1234 * clustering has already typically occurred, so in general we ask the 1235 * underlying filesystem to write the data out asynchronously rather 1236 * then delayed. 1237 */ 1238 int 1239 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, 1240 int flags, int *rtvals) 1241 { 1242 vm_object_t object; 1243 vm_page_t m; 1244 vm_ooffset_t maxblksz, next_offset, poffset, prev_offset; 1245 struct uio auio; 1246 struct iovec aiov; 1247 off_t prev_resid, wrsz; 1248 int count, error, i, maxsize, ncount, pgoff, ppscheck; 1249 bool in_hole; 1250 static struct timeval lastfail; 1251 static int curfail; 1252 1253 object = vp->v_object; 1254 count = bytecount / PAGE_SIZE; 1255 1256 for (i = 0; i < count; i++) 1257 rtvals[i] = VM_PAGER_ERROR; 1258 1259 if ((int64_t)ma[0]->pindex < 0) { 1260 printf("vnode_pager_generic_putpages: " 1261 "attempt to write meta-data 0x%jx(%lx)\n", 1262 (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty); 1263 rtvals[0] = VM_PAGER_BAD; 1264 return (VM_PAGER_BAD); 1265 } 1266 1267 maxsize = count * PAGE_SIZE; 1268 ncount = count; 1269 1270 poffset = IDX_TO_OFF(ma[0]->pindex); 1271 1272 /* 1273 * If the page-aligned write is larger then the actual file we 1274 * have to invalidate pages occurring beyond the file EOF. However, 1275 * there is an edge case where a file may not be page-aligned where 1276 * the last page is partially invalid. In this case the filesystem 1277 * may not properly clear the dirty bits for the entire page (which 1278 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1279 * With the page locked we are free to fix-up the dirty bits here. 1280 * 1281 * We do not under any circumstances truncate the valid bits, as 1282 * this will screw up bogus page replacement. 1283 */ 1284 VM_OBJECT_RLOCK(object); 1285 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1286 if (!VM_OBJECT_TRYUPGRADE(object)) { 1287 VM_OBJECT_RUNLOCK(object); 1288 VM_OBJECT_WLOCK(object); 1289 if (maxsize + poffset <= object->un_pager.vnp.vnp_size) 1290 goto downgrade; 1291 } 1292 if (object->un_pager.vnp.vnp_size > poffset) { 1293 maxsize = object->un_pager.vnp.vnp_size - poffset; 1294 ncount = btoc(maxsize); 1295 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1296 pgoff = roundup2(pgoff, DEV_BSIZE); 1297 1298 /* 1299 * If the object is locked and the following 1300 * conditions hold, then the page's dirty 1301 * field cannot be concurrently changed by a 1302 * pmap operation. 1303 */ 1304 m = ma[ncount - 1]; 1305 vm_page_assert_sbusied(m); 1306 KASSERT(!pmap_page_is_write_mapped(m), 1307 ("vnode_pager_generic_putpages: page %p is not read-only", m)); 1308 MPASS(m->dirty != 0); 1309 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 1310 pgoff); 1311 } 1312 } else { 1313 maxsize = 0; 1314 ncount = 0; 1315 } 1316 for (i = ncount; i < count; i++) 1317 rtvals[i] = VM_PAGER_BAD; 1318 downgrade: 1319 VM_OBJECT_LOCK_DOWNGRADE(object); 1320 } 1321 1322 auio.uio_iov = &aiov; 1323 auio.uio_segflg = UIO_NOCOPY; 1324 auio.uio_rw = UIO_WRITE; 1325 auio.uio_td = NULL; 1326 maxblksz = roundup2(poffset + maxsize, DEV_BSIZE); 1327 1328 for (prev_offset = poffset; prev_offset < maxblksz;) { 1329 /* Skip clean blocks. */ 1330 for (in_hole = true; in_hole && prev_offset < maxblksz;) { 1331 m = ma[OFF_TO_IDX(prev_offset - poffset)]; 1332 for (i = vn_off2bidx(prev_offset); 1333 i < sizeof(vm_page_bits_t) * NBBY && 1334 prev_offset < maxblksz; i++) { 1335 if (vn_dirty_blk(m, prev_offset)) { 1336 in_hole = false; 1337 break; 1338 } 1339 prev_offset += DEV_BSIZE; 1340 } 1341 } 1342 if (in_hole) 1343 goto write_done; 1344 1345 /* Find longest run of dirty blocks. */ 1346 for (next_offset = prev_offset; next_offset < maxblksz;) { 1347 m = ma[OFF_TO_IDX(next_offset - poffset)]; 1348 for (i = vn_off2bidx(next_offset); 1349 i < sizeof(vm_page_bits_t) * NBBY && 1350 next_offset < maxblksz; i++) { 1351 if (!vn_dirty_blk(m, next_offset)) 1352 goto start_write; 1353 next_offset += DEV_BSIZE; 1354 } 1355 } 1356 start_write: 1357 if (next_offset > poffset + maxsize) 1358 next_offset = poffset + maxsize; 1359 1360 /* 1361 * Getting here requires finding a dirty block in the 1362 * 'skip clean blocks' loop. 1363 */ 1364 MPASS(prev_offset < next_offset); 1365 1366 VM_OBJECT_RUNLOCK(object); 1367 aiov.iov_base = NULL; 1368 auio.uio_iovcnt = 1; 1369 auio.uio_offset = prev_offset; 1370 prev_resid = auio.uio_resid = aiov.iov_len = next_offset - 1371 prev_offset; 1372 error = VOP_WRITE(vp, &auio, 1373 vnode_pager_putpages_ioflags(flags), curthread->td_ucred); 1374 1375 wrsz = prev_resid - auio.uio_resid; 1376 if (wrsz == 0) { 1377 if (ppsratecheck(&lastfail, &curfail, 1) != 0) { 1378 vn_printf(vp, "vnode_pager_putpages: " 1379 "zero-length write at %ju resid %zd\n", 1380 auio.uio_offset, auio.uio_resid); 1381 } 1382 VM_OBJECT_RLOCK(object); 1383 break; 1384 } 1385 1386 /* Adjust the starting offset for next iteration. */ 1387 prev_offset += wrsz; 1388 MPASS(auio.uio_offset == prev_offset); 1389 1390 ppscheck = 0; 1391 if (error != 0 && (ppscheck = ppsratecheck(&lastfail, 1392 &curfail, 1)) != 0) 1393 vn_printf(vp, "vnode_pager_putpages: I/O error %d\n", 1394 error); 1395 if (auio.uio_resid != 0 && (ppscheck != 0 || 1396 ppsratecheck(&lastfail, &curfail, 1) != 0)) 1397 vn_printf(vp, "vnode_pager_putpages: residual I/O %zd " 1398 "at %ju\n", auio.uio_resid, 1399 (uintmax_t)ma[0]->pindex); 1400 VM_OBJECT_RLOCK(object); 1401 if (error != 0 || auio.uio_resid != 0) 1402 break; 1403 } 1404 write_done: 1405 /* Mark completely processed pages. */ 1406 for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++) 1407 rtvals[i] = VM_PAGER_OK; 1408 /* Mark partial EOF page. */ 1409 if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0) 1410 rtvals[i++] = VM_PAGER_OK; 1411 /* Unwritten pages in range, free bonus if the page is clean. */ 1412 for (; i < ncount; i++) 1413 rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR; 1414 VM_OBJECT_RUNLOCK(object); 1415 VM_CNT_ADD(v_vnodepgsout, i); 1416 VM_CNT_INC(v_vnodeout); 1417 return (rtvals[0]); 1418 } 1419 1420 int 1421 vnode_pager_putpages_ioflags(int pager_flags) 1422 { 1423 int ioflags; 1424 1425 /* 1426 * Pageouts are already clustered, use IO_ASYNC to force a 1427 * bawrite() rather then a bdwrite() to prevent paging I/O 1428 * from saturating the buffer cache. Dummy-up the sequential 1429 * heuristic to cause large ranges to cluster. If neither 1430 * IO_SYNC or IO_ASYNC is set, the system decides how to 1431 * cluster. 1432 */ 1433 ioflags = IO_VMIO; 1434 if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0) 1435 ioflags |= IO_SYNC; 1436 else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0) 1437 ioflags |= IO_ASYNC; 1438 ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0; 1439 ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0; 1440 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1441 return (ioflags); 1442 } 1443 1444 /* 1445 * vnode_pager_undirty_pages(). 1446 * 1447 * A helper to mark pages as clean after pageout that was possibly 1448 * done with a short write. The lpos argument specifies the page run 1449 * length in bytes, and the written argument specifies how many bytes 1450 * were actually written. eof is the offset past the last valid byte 1451 * in the vnode using the absolute file position of the first byte in 1452 * the run as the base from which it is computed. 1453 */ 1454 void 1455 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof, 1456 int lpos) 1457 { 1458 vm_object_t obj; 1459 int i, pos, pos_devb; 1460 1461 if (written == 0 && eof >= lpos) 1462 return; 1463 obj = ma[0]->object; 1464 VM_OBJECT_WLOCK(obj); 1465 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { 1466 if (pos < trunc_page(written)) { 1467 rtvals[i] = VM_PAGER_OK; 1468 vm_page_undirty(ma[i]); 1469 } else { 1470 /* Partially written page. */ 1471 rtvals[i] = VM_PAGER_AGAIN; 1472 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); 1473 } 1474 } 1475 if (eof >= lpos) /* avoid truncation */ 1476 goto done; 1477 for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) { 1478 if (pos != trunc_page(pos)) { 1479 /* 1480 * The page contains the last valid byte in 1481 * the vnode, mark the rest of the page as 1482 * clean, potentially making the whole page 1483 * clean. 1484 */ 1485 pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE); 1486 vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE - 1487 pos_devb); 1488 1489 /* 1490 * If the page was cleaned, report the pageout 1491 * on it as successful. msync() no longer 1492 * needs to write out the page, endlessly 1493 * creating write requests and dirty buffers. 1494 */ 1495 if (ma[i]->dirty == 0) 1496 rtvals[i] = VM_PAGER_OK; 1497 1498 pos = round_page(pos); 1499 } else { 1500 /* vm_pageout_flush() clears dirty */ 1501 rtvals[i] = VM_PAGER_BAD; 1502 pos += PAGE_SIZE; 1503 } 1504 } 1505 done: 1506 VM_OBJECT_WUNLOCK(obj); 1507 } 1508 1509 static void 1510 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, 1511 vm_offset_t end) 1512 { 1513 struct vnode *vp; 1514 vm_ooffset_t old_wm; 1515 1516 VM_OBJECT_WLOCK(object); 1517 if (object->type != OBJT_VNODE) { 1518 VM_OBJECT_WUNLOCK(object); 1519 return; 1520 } 1521 old_wm = object->un_pager.vnp.writemappings; 1522 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; 1523 vp = object->handle; 1524 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { 1525 ASSERT_VOP_LOCKED(vp, "v_writecount inc"); 1526 VOP_ADD_WRITECOUNT_CHECKED(vp, 1); 1527 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 1528 __func__, vp, vp->v_writecount); 1529 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { 1530 ASSERT_VOP_LOCKED(vp, "v_writecount dec"); 1531 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 1532 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 1533 __func__, vp, vp->v_writecount); 1534 } 1535 VM_OBJECT_WUNLOCK(object); 1536 } 1537 1538 static void 1539 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, 1540 vm_offset_t end) 1541 { 1542 struct vnode *vp; 1543 struct mount *mp; 1544 vm_offset_t inc; 1545 1546 VM_OBJECT_WLOCK(object); 1547 1548 /* 1549 * First, recheck the object type to account for the race when 1550 * the vnode is reclaimed. 1551 */ 1552 if (object->type != OBJT_VNODE) { 1553 VM_OBJECT_WUNLOCK(object); 1554 return; 1555 } 1556 1557 /* 1558 * Optimize for the case when writemappings is not going to 1559 * zero. 1560 */ 1561 inc = end - start; 1562 if (object->un_pager.vnp.writemappings != inc) { 1563 object->un_pager.vnp.writemappings -= inc; 1564 VM_OBJECT_WUNLOCK(object); 1565 return; 1566 } 1567 1568 vp = object->handle; 1569 vhold(vp); 1570 VM_OBJECT_WUNLOCK(object); 1571 mp = NULL; 1572 vn_start_write(vp, &mp, V_WAIT); 1573 vn_lock(vp, LK_SHARED | LK_RETRY); 1574 1575 /* 1576 * Decrement the object's writemappings, by swapping the start 1577 * and end arguments for vnode_pager_update_writecount(). If 1578 * there was not a race with vnode reclaimation, then the 1579 * vnode's v_writecount is decremented. 1580 */ 1581 vnode_pager_update_writecount(object, end, start); 1582 VOP_UNLOCK(vp, 0); 1583 vdrop(vp); 1584 if (mp != NULL) 1585 vn_finished_write(mp); 1586 } 1587