1 /* 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/conf.h> 65 #include <sys/sf_buf.h> 66 67 #include <vm/vm.h> 68 #include <vm/vm_object.h> 69 #include <vm/vm_page.h> 70 #include <vm/vm_pager.h> 71 #include <vm/vm_map.h> 72 #include <vm/vnode_pager.h> 73 #include <vm/vm_extern.h> 74 75 static void vnode_pager_init(void); 76 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 77 int *run); 78 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 79 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 80 static void vnode_pager_dealloc(vm_object_t); 81 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 82 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 83 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 84 85 struct pagerops vnodepagerops = { 86 .pgo_init = vnode_pager_init, 87 .pgo_alloc = vnode_pager_alloc, 88 .pgo_dealloc = vnode_pager_dealloc, 89 .pgo_getpages = vnode_pager_getpages, 90 .pgo_putpages = vnode_pager_putpages, 91 .pgo_haspage = vnode_pager_haspage, 92 }; 93 94 int vnode_pbuf_freecnt; 95 96 static void 97 vnode_pager_init(void) 98 { 99 100 vnode_pbuf_freecnt = nswbuf / 2 + 1; 101 } 102 103 /* 104 * Allocate (or lookup) pager for a vnode. 105 * Handle is a vnode pointer. 106 * 107 * MPSAFE 108 */ 109 vm_object_t 110 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 111 vm_ooffset_t offset) 112 { 113 vm_object_t object; 114 struct vnode *vp; 115 116 /* 117 * Pageout to vnode, no can do yet. 118 */ 119 if (handle == NULL) 120 return (NULL); 121 122 vp = (struct vnode *) handle; 123 124 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 125 126 /* 127 * Prevent race condition when allocating the object. This 128 * can happen with NFS vnodes since the nfsnode isn't locked. 129 */ 130 VI_LOCK(vp); 131 while (vp->v_iflag & VI_OLOCK) { 132 vp->v_iflag |= VI_OWANT; 133 msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0); 134 } 135 vp->v_iflag |= VI_OLOCK; 136 VI_UNLOCK(vp); 137 138 /* 139 * If the object is being terminated, wait for it to 140 * go away. 141 */ 142 while ((object = vp->v_object) != NULL) { 143 VM_OBJECT_LOCK(object); 144 if ((object->flags & OBJ_DEAD) == 0) 145 break; 146 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 147 } 148 149 if (vp->v_usecount == 0) 150 panic("vnode_pager_alloc: no vnode reference"); 151 152 if (object == NULL) { 153 /* 154 * And an object of the appropriate size 155 */ 156 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 157 158 object->un_pager.vnp.vnp_size = size; 159 160 object->handle = handle; 161 vp->v_object = object; 162 } else { 163 object->ref_count++; 164 VM_OBJECT_UNLOCK(object); 165 } 166 VI_LOCK(vp); 167 vp->v_usecount++; 168 vp->v_iflag &= ~VI_OLOCK; 169 if (vp->v_iflag & VI_OWANT) { 170 vp->v_iflag &= ~VI_OWANT; 171 wakeup(vp); 172 } 173 VI_UNLOCK(vp); 174 return (object); 175 } 176 177 /* 178 * The object must be locked. 179 */ 180 static void 181 vnode_pager_dealloc(object) 182 vm_object_t object; 183 { 184 struct vnode *vp = object->handle; 185 186 if (vp == NULL) 187 panic("vnode_pager_dealloc: pager already dealloced"); 188 189 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 190 vm_object_pip_wait(object, "vnpdea"); 191 192 object->handle = NULL; 193 object->type = OBJT_DEAD; 194 ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc"); 195 vp->v_object = NULL; 196 vp->v_vflag &= ~(VV_TEXT | VV_OBJBUF); 197 } 198 199 static boolean_t 200 vnode_pager_haspage(object, pindex, before, after) 201 vm_object_t object; 202 vm_pindex_t pindex; 203 int *before; 204 int *after; 205 { 206 struct vnode *vp = object->handle; 207 daddr_t bn; 208 int err; 209 daddr_t reqblock; 210 int poff; 211 int bsize; 212 int pagesperblock, blocksperpage; 213 214 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 215 /* 216 * If no vp or vp is doomed or marked transparent to VM, we do not 217 * have the page. 218 */ 219 if (vp == NULL) 220 return FALSE; 221 222 VI_LOCK(vp); 223 if (vp->v_iflag & VI_DOOMED) { 224 VI_UNLOCK(vp); 225 return FALSE; 226 } 227 VI_UNLOCK(vp); 228 /* 229 * If filesystem no longer mounted or offset beyond end of file we do 230 * not have the page. 231 */ 232 if ((vp->v_mount == NULL) || 233 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)) 234 return FALSE; 235 236 bsize = vp->v_mount->mnt_stat.f_iosize; 237 pagesperblock = bsize / PAGE_SIZE; 238 blocksperpage = 0; 239 if (pagesperblock > 0) { 240 reqblock = pindex / pagesperblock; 241 } else { 242 blocksperpage = (PAGE_SIZE / bsize); 243 reqblock = pindex * blocksperpage; 244 } 245 VM_OBJECT_UNLOCK(object); 246 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 247 VM_OBJECT_LOCK(object); 248 if (err) 249 return TRUE; 250 if (bn == -1) 251 return FALSE; 252 if (pagesperblock > 0) { 253 poff = pindex - (reqblock * pagesperblock); 254 if (before) { 255 *before *= pagesperblock; 256 *before += poff; 257 } 258 if (after) { 259 int numafter; 260 *after *= pagesperblock; 261 numafter = pagesperblock - (poff + 1); 262 if (IDX_TO_OFF(pindex + numafter) > 263 object->un_pager.vnp.vnp_size) { 264 numafter = 265 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 266 pindex; 267 } 268 *after += numafter; 269 } 270 } else { 271 if (before) { 272 *before /= blocksperpage; 273 } 274 275 if (after) { 276 *after /= blocksperpage; 277 } 278 } 279 return TRUE; 280 } 281 282 /* 283 * Lets the VM system know about a change in size for a file. 284 * We adjust our own internal size and flush any cached pages in 285 * the associated object that are affected by the size change. 286 * 287 * Note: this routine may be invoked as a result of a pager put 288 * operation (possibly at object termination time), so we must be careful. 289 */ 290 void 291 vnode_pager_setsize(vp, nsize) 292 struct vnode *vp; 293 vm_ooffset_t nsize; 294 { 295 vm_object_t object; 296 vm_page_t m; 297 vm_pindex_t nobjsize; 298 299 if ((object = vp->v_object) == NULL) 300 return; 301 VM_OBJECT_LOCK(object); 302 if (nsize == object->un_pager.vnp.vnp_size) { 303 /* 304 * Hasn't changed size 305 */ 306 VM_OBJECT_UNLOCK(object); 307 return; 308 } 309 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 310 if (nsize < object->un_pager.vnp.vnp_size) { 311 /* 312 * File has shrunk. Toss any cached pages beyond the new EOF. 313 */ 314 if (nobjsize < object->size) 315 vm_object_page_remove(object, nobjsize, object->size, 316 FALSE); 317 /* 318 * this gets rid of garbage at the end of a page that is now 319 * only partially backed by the vnode. 320 * 321 * XXX for some reason (I don't know yet), if we take a 322 * completely invalid page and mark it partially valid 323 * it can screw up NFS reads, so we don't allow the case. 324 */ 325 if ((nsize & PAGE_MASK) && 326 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 327 m->valid != 0) { 328 int base = (int)nsize & PAGE_MASK; 329 int size = PAGE_SIZE - base; 330 331 /* 332 * Clear out partial-page garbage in case 333 * the page has been mapped. 334 */ 335 pmap_zero_page_area(m, base, size); 336 337 /* 338 * XXX work around SMP data integrity race 339 * by unmapping the page from user processes. 340 * The garbage we just cleared may be mapped 341 * to a user process running on another cpu 342 * and this code is not running through normal 343 * I/O channels which handle SMP issues for 344 * us, so unmap page to synchronize all cpus. 345 * 346 * XXX should vm_pager_unmap_page() have 347 * dealt with this? 348 */ 349 vm_page_lock_queues(); 350 pmap_remove_all(m); 351 352 /* 353 * Clear out partial-page dirty bits. This 354 * has the side effect of setting the valid 355 * bits, but that is ok. There are a bunch 356 * of places in the VM system where we expected 357 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 358 * case is one of them. If the page is still 359 * partially dirty, make it fully dirty. 360 * 361 * note that we do not clear out the valid 362 * bits. This would prevent bogus_page 363 * replacement from working properly. 364 */ 365 vm_page_set_validclean(m, base, size); 366 if (m->dirty != 0) 367 m->dirty = VM_PAGE_BITS_ALL; 368 vm_page_unlock_queues(); 369 } 370 } 371 object->un_pager.vnp.vnp_size = nsize; 372 object->size = nobjsize; 373 VM_OBJECT_UNLOCK(object); 374 } 375 376 /* 377 * calculate the linear (byte) disk address of specified virtual 378 * file address 379 */ 380 static vm_offset_t 381 vnode_pager_addr(vp, address, run) 382 struct vnode *vp; 383 vm_ooffset_t address; 384 int *run; 385 { 386 int rtaddress; 387 int bsize; 388 daddr_t block; 389 int err; 390 daddr_t vblock; 391 int voffset; 392 393 GIANT_REQUIRED; 394 if ((int) address < 0) 395 return -1; 396 397 if (vp->v_mount == NULL) 398 return -1; 399 400 bsize = vp->v_mount->mnt_stat.f_iosize; 401 vblock = address / bsize; 402 voffset = address % bsize; 403 404 err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL); 405 406 if (err || (block == -1)) 407 rtaddress = -1; 408 else { 409 rtaddress = block + voffset / DEV_BSIZE; 410 if (run) { 411 *run += 1; 412 *run *= bsize/PAGE_SIZE; 413 *run -= voffset/PAGE_SIZE; 414 } 415 } 416 417 return rtaddress; 418 } 419 420 /* 421 * small block filesystem vnode pager input 422 */ 423 static int 424 vnode_pager_input_smlfs(object, m) 425 vm_object_t object; 426 vm_page_t m; 427 { 428 int i; 429 struct vnode *dp, *vp; 430 struct buf *bp; 431 struct sf_buf *sf; 432 int fileaddr; 433 vm_offset_t bsize; 434 int error = 0; 435 436 GIANT_REQUIRED; 437 438 vp = object->handle; 439 if (vp->v_mount == NULL) 440 return VM_PAGER_BAD; 441 442 bsize = vp->v_mount->mnt_stat.f_iosize; 443 444 VOP_BMAP(vp, 0, &dp, 0, NULL, NULL); 445 446 sf = sf_buf_alloc(m, 0); 447 448 for (i = 0; i < PAGE_SIZE / bsize; i++) { 449 vm_ooffset_t address; 450 451 if (vm_page_bits(i * bsize, bsize) & m->valid) 452 continue; 453 454 address = IDX_TO_OFF(m->pindex) + i * bsize; 455 if (address >= object->un_pager.vnp.vnp_size) { 456 fileaddr = -1; 457 } else { 458 fileaddr = vnode_pager_addr(vp, address, NULL); 459 } 460 if (fileaddr != -1) { 461 bp = getpbuf(&vnode_pbuf_freecnt); 462 463 /* build a minimal buffer header */ 464 bp->b_iocmd = BIO_READ; 465 bp->b_iodone = bdone; 466 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 467 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 468 bp->b_rcred = crhold(curthread->td_ucred); 469 bp->b_wcred = crhold(curthread->td_ucred); 470 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 471 bp->b_blkno = fileaddr; 472 pbgetvp(dp, bp); 473 bp->b_bcount = bsize; 474 bp->b_bufsize = bsize; 475 bp->b_runningbufspace = bp->b_bufsize; 476 runningbufspace += bp->b_runningbufspace; 477 478 /* do the input */ 479 bp->b_iooffset = dbtob(bp->b_blkno); 480 if (dp->v_type == VCHR) 481 VOP_SPECSTRATEGY(bp->b_vp, bp); 482 else 483 VOP_STRATEGY(bp->b_vp, bp); 484 485 /* we definitely need to be at splvm here */ 486 487 bwait(bp, PVM, "vnsrd"); 488 489 if ((bp->b_ioflags & BIO_ERROR) != 0) 490 error = EIO; 491 492 /* 493 * free the buffer header back to the swap buffer pool 494 */ 495 relpbuf(bp, &vnode_pbuf_freecnt); 496 if (error) 497 break; 498 499 VM_OBJECT_LOCK(object); 500 vm_page_lock_queues(); 501 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 502 vm_page_unlock_queues(); 503 VM_OBJECT_UNLOCK(object); 504 } else { 505 VM_OBJECT_LOCK(object); 506 vm_page_lock_queues(); 507 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 508 vm_page_unlock_queues(); 509 VM_OBJECT_UNLOCK(object); 510 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 511 } 512 } 513 sf_buf_free(sf); 514 vm_page_lock_queues(); 515 pmap_clear_modify(m); 516 vm_page_unlock_queues(); 517 if (error) { 518 return VM_PAGER_ERROR; 519 } 520 return VM_PAGER_OK; 521 522 } 523 524 525 /* 526 * old style vnode pager output routine 527 */ 528 static int 529 vnode_pager_input_old(object, m) 530 vm_object_t object; 531 vm_page_t m; 532 { 533 struct uio auio; 534 struct iovec aiov; 535 int error; 536 int size; 537 struct sf_buf *sf; 538 struct vnode *vp; 539 540 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 541 error = 0; 542 543 /* 544 * Return failure if beyond current EOF 545 */ 546 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 547 return VM_PAGER_BAD; 548 } else { 549 size = PAGE_SIZE; 550 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 551 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 552 vp = object->handle; 553 VM_OBJECT_UNLOCK(object); 554 555 /* 556 * Allocate a kernel virtual address and initialize so that 557 * we can use VOP_READ/WRITE routines. 558 */ 559 sf = sf_buf_alloc(m, 0); 560 561 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 562 aiov.iov_len = size; 563 auio.uio_iov = &aiov; 564 auio.uio_iovcnt = 1; 565 auio.uio_offset = IDX_TO_OFF(m->pindex); 566 auio.uio_segflg = UIO_SYSSPACE; 567 auio.uio_rw = UIO_READ; 568 auio.uio_resid = size; 569 auio.uio_td = curthread; 570 571 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 572 if (!error) { 573 int count = size - auio.uio_resid; 574 575 if (count == 0) 576 error = EINVAL; 577 else if (count != PAGE_SIZE) 578 bzero((caddr_t)sf_buf_kva(sf) + count, 579 PAGE_SIZE - count); 580 } 581 sf_buf_free(sf); 582 583 VM_OBJECT_LOCK(object); 584 } 585 vm_page_lock_queues(); 586 pmap_clear_modify(m); 587 vm_page_undirty(m); 588 vm_page_unlock_queues(); 589 if (!error) 590 m->valid = VM_PAGE_BITS_ALL; 591 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 592 } 593 594 /* 595 * generic vnode pager input routine 596 */ 597 598 /* 599 * Local media VFS's that do not implement their own VOP_GETPAGES 600 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 601 * to implement the previous behaviour. 602 * 603 * All other FS's should use the bypass to get to the local media 604 * backing vp's VOP_GETPAGES. 605 */ 606 static int 607 vnode_pager_getpages(object, m, count, reqpage) 608 vm_object_t object; 609 vm_page_t *m; 610 int count; 611 int reqpage; 612 { 613 int rtval; 614 struct vnode *vp; 615 int bytes = count * PAGE_SIZE; 616 617 vp = object->handle; 618 VM_OBJECT_UNLOCK(object); 619 mtx_lock(&Giant); 620 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 621 KASSERT(rtval != EOPNOTSUPP, 622 ("vnode_pager: FS getpages not implemented\n")); 623 mtx_unlock(&Giant); 624 VM_OBJECT_LOCK(object); 625 return rtval; 626 } 627 628 /* 629 * This is now called from local media FS's to operate against their 630 * own vnodes if they fail to implement VOP_GETPAGES. 631 */ 632 int 633 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 634 struct vnode *vp; 635 vm_page_t *m; 636 int bytecount; 637 int reqpage; 638 { 639 vm_object_t object; 640 vm_offset_t kva; 641 off_t foff, tfoff, nextoff; 642 int i, j, size, bsize, first, firstaddr; 643 struct vnode *dp; 644 int runpg; 645 int runend; 646 struct buf *bp; 647 int count; 648 int error = 0; 649 650 GIANT_REQUIRED; 651 object = vp->v_object; 652 count = bytecount / PAGE_SIZE; 653 654 if (vp->v_mount == NULL) 655 return VM_PAGER_BAD; 656 657 bsize = vp->v_mount->mnt_stat.f_iosize; 658 659 /* get the UNDERLYING device for the file with VOP_BMAP() */ 660 661 /* 662 * originally, we did not check for an error return value -- assuming 663 * an fs always has a bmap entry point -- that assumption is wrong!!! 664 */ 665 foff = IDX_TO_OFF(m[reqpage]->pindex); 666 667 /* 668 * if we can't bmap, use old VOP code 669 */ 670 if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) { 671 VM_OBJECT_LOCK(object); 672 vm_page_lock_queues(); 673 for (i = 0; i < count; i++) 674 if (i != reqpage) 675 vm_page_free(m[i]); 676 vm_page_unlock_queues(); 677 cnt.v_vnodein++; 678 cnt.v_vnodepgsin++; 679 error = vnode_pager_input_old(object, m[reqpage]); 680 VM_OBJECT_UNLOCK(object); 681 return (error); 682 683 /* 684 * if the blocksize is smaller than a page size, then use 685 * special small filesystem code. NFS sometimes has a small 686 * blocksize, but it can handle large reads itself. 687 */ 688 } else if ((PAGE_SIZE / bsize) > 1 && 689 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 690 VM_OBJECT_LOCK(object); 691 vm_page_lock_queues(); 692 for (i = 0; i < count; i++) 693 if (i != reqpage) 694 vm_page_free(m[i]); 695 vm_page_unlock_queues(); 696 VM_OBJECT_UNLOCK(object); 697 cnt.v_vnodein++; 698 cnt.v_vnodepgsin++; 699 return vnode_pager_input_smlfs(object, m[reqpage]); 700 } 701 702 /* 703 * If we have a completely valid page available to us, we can 704 * clean up and return. Otherwise we have to re-read the 705 * media. 706 */ 707 VM_OBJECT_LOCK(object); 708 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 709 vm_page_lock_queues(); 710 for (i = 0; i < count; i++) 711 if (i != reqpage) 712 vm_page_free(m[i]); 713 vm_page_unlock_queues(); 714 VM_OBJECT_UNLOCK(object); 715 return VM_PAGER_OK; 716 } 717 m[reqpage]->valid = 0; 718 VM_OBJECT_UNLOCK(object); 719 720 /* 721 * here on direct device I/O 722 */ 723 firstaddr = -1; 724 725 /* 726 * calculate the run that includes the required page 727 */ 728 for (first = 0, i = 0; i < count; i = runend) { 729 firstaddr = vnode_pager_addr(vp, 730 IDX_TO_OFF(m[i]->pindex), &runpg); 731 if (firstaddr == -1) { 732 VM_OBJECT_LOCK(object); 733 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 734 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 735 firstaddr, (uintmax_t)(foff >> 32), 736 (uintmax_t)foff, 737 (uintmax_t) 738 (object->un_pager.vnp.vnp_size >> 32), 739 (uintmax_t)object->un_pager.vnp.vnp_size); 740 } 741 vm_page_lock_queues(); 742 vm_page_free(m[i]); 743 vm_page_unlock_queues(); 744 VM_OBJECT_UNLOCK(object); 745 runend = i + 1; 746 first = runend; 747 continue; 748 } 749 runend = i + runpg; 750 if (runend <= reqpage) { 751 VM_OBJECT_LOCK(object); 752 vm_page_lock_queues(); 753 for (j = i; j < runend; j++) 754 vm_page_free(m[j]); 755 vm_page_unlock_queues(); 756 VM_OBJECT_UNLOCK(object); 757 } else { 758 if (runpg < (count - first)) { 759 VM_OBJECT_LOCK(object); 760 vm_page_lock_queues(); 761 for (i = first + runpg; i < count; i++) 762 vm_page_free(m[i]); 763 vm_page_unlock_queues(); 764 VM_OBJECT_UNLOCK(object); 765 count = first + runpg; 766 } 767 break; 768 } 769 first = runend; 770 } 771 772 /* 773 * the first and last page have been calculated now, move input pages 774 * to be zero based... 775 */ 776 if (first != 0) { 777 for (i = first; i < count; i++) { 778 m[i - first] = m[i]; 779 } 780 count -= first; 781 reqpage -= first; 782 } 783 784 /* 785 * calculate the file virtual address for the transfer 786 */ 787 foff = IDX_TO_OFF(m[0]->pindex); 788 789 /* 790 * calculate the size of the transfer 791 */ 792 size = count * PAGE_SIZE; 793 if ((foff + size) > object->un_pager.vnp.vnp_size) 794 size = object->un_pager.vnp.vnp_size - foff; 795 796 /* 797 * round up physical size for real devices. 798 */ 799 if (dp->v_type == VBLK || dp->v_type == VCHR) { 800 int secmask = dp->v_rdev->si_bsize_phys - 1; 801 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1)); 802 size = (size + secmask) & ~secmask; 803 } 804 805 bp = getpbuf(&vnode_pbuf_freecnt); 806 kva = (vm_offset_t) bp->b_data; 807 808 /* 809 * and map the pages to be read into the kva 810 */ 811 pmap_qenter(kva, m, count); 812 813 /* build a minimal buffer header */ 814 bp->b_iocmd = BIO_READ; 815 bp->b_iodone = bdone; 816 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 817 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 818 bp->b_rcred = crhold(curthread->td_ucred); 819 bp->b_wcred = crhold(curthread->td_ucred); 820 bp->b_blkno = firstaddr; 821 pbgetvp(dp, bp); 822 bp->b_bcount = size; 823 bp->b_bufsize = size; 824 bp->b_runningbufspace = bp->b_bufsize; 825 runningbufspace += bp->b_runningbufspace; 826 827 cnt.v_vnodein++; 828 cnt.v_vnodepgsin += count; 829 830 /* do the input */ 831 bp->b_iooffset = dbtob(bp->b_blkno); 832 if (dp->v_type == VCHR) 833 VOP_SPECSTRATEGY(bp->b_vp, bp); 834 else 835 VOP_STRATEGY(bp->b_vp, bp); 836 837 bwait(bp, PVM, "vnread"); 838 839 if ((bp->b_ioflags & BIO_ERROR) != 0) 840 error = EIO; 841 842 if (!error) { 843 if (size != count * PAGE_SIZE) 844 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 845 } 846 pmap_qremove(kva, count); 847 848 /* 849 * free the buffer header back to the swap buffer pool 850 */ 851 relpbuf(bp, &vnode_pbuf_freecnt); 852 853 VM_OBJECT_LOCK(object); 854 vm_page_lock_queues(); 855 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 856 vm_page_t mt; 857 858 nextoff = tfoff + PAGE_SIZE; 859 mt = m[i]; 860 861 if (nextoff <= object->un_pager.vnp.vnp_size) { 862 /* 863 * Read filled up entire page. 864 */ 865 mt->valid = VM_PAGE_BITS_ALL; 866 vm_page_undirty(mt); /* should be an assert? XXX */ 867 pmap_clear_modify(mt); 868 } else { 869 /* 870 * Read did not fill up entire page. Since this 871 * is getpages, the page may be mapped, so we have 872 * to zero the invalid portions of the page even 873 * though we aren't setting them valid. 874 * 875 * Currently we do not set the entire page valid, 876 * we just try to clear the piece that we couldn't 877 * read. 878 */ 879 vm_page_set_validclean(mt, 0, 880 object->un_pager.vnp.vnp_size - tfoff); 881 /* handled by vm_fault now */ 882 /* vm_page_zero_invalid(mt, FALSE); */ 883 } 884 885 if (i != reqpage) { 886 887 /* 888 * whether or not to leave the page activated is up in 889 * the air, but we should put the page on a page queue 890 * somewhere. (it already is in the object). Result: 891 * It appears that empirical results show that 892 * deactivating pages is best. 893 */ 894 895 /* 896 * just in case someone was asking for this page we 897 * now tell them that it is ok to use 898 */ 899 if (!error) { 900 if (mt->flags & PG_WANTED) 901 vm_page_activate(mt); 902 else 903 vm_page_deactivate(mt); 904 vm_page_wakeup(mt); 905 } else { 906 vm_page_free(mt); 907 } 908 } 909 } 910 vm_page_unlock_queues(); 911 VM_OBJECT_UNLOCK(object); 912 if (error) { 913 printf("vnode_pager_getpages: I/O read error\n"); 914 } 915 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 916 } 917 918 /* 919 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 920 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 921 * vnode_pager_generic_putpages() to implement the previous behaviour. 922 * 923 * All other FS's should use the bypass to get to the local media 924 * backing vp's VOP_PUTPAGES. 925 */ 926 static void 927 vnode_pager_putpages(object, m, count, sync, rtvals) 928 vm_object_t object; 929 vm_page_t *m; 930 int count; 931 boolean_t sync; 932 int *rtvals; 933 { 934 int rtval; 935 struct vnode *vp; 936 struct mount *mp; 937 int bytes = count * PAGE_SIZE; 938 939 GIANT_REQUIRED; 940 /* 941 * Force synchronous operation if we are extremely low on memory 942 * to prevent a low-memory deadlock. VOP operations often need to 943 * allocate more memory to initiate the I/O ( i.e. do a BMAP 944 * operation ). The swapper handles the case by limiting the amount 945 * of asynchronous I/O, but that sort of solution doesn't scale well 946 * for the vnode pager without a lot of work. 947 * 948 * Also, the backing vnode's iodone routine may not wake the pageout 949 * daemon up. This should be probably be addressed XXX. 950 */ 951 952 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 953 sync |= OBJPC_SYNC; 954 955 /* 956 * Call device-specific putpages function 957 */ 958 vp = object->handle; 959 VM_OBJECT_UNLOCK(object); 960 if (vp->v_type != VREG) 961 mp = NULL; 962 (void)vn_start_write(vp, &mp, V_WAIT); 963 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 964 KASSERT(rtval != EOPNOTSUPP, 965 ("vnode_pager: stale FS putpages\n")); 966 vn_finished_write(mp); 967 VM_OBJECT_LOCK(object); 968 } 969 970 971 /* 972 * This is now called from local media FS's to operate against their 973 * own vnodes if they fail to implement VOP_PUTPAGES. 974 * 975 * This is typically called indirectly via the pageout daemon and 976 * clustering has already typically occured, so in general we ask the 977 * underlying filesystem to write the data out asynchronously rather 978 * then delayed. 979 */ 980 int 981 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 982 struct vnode *vp; 983 vm_page_t *m; 984 int bytecount; 985 int flags; 986 int *rtvals; 987 { 988 int i; 989 vm_object_t object; 990 int count; 991 992 int maxsize, ncount; 993 vm_ooffset_t poffset; 994 struct uio auio; 995 struct iovec aiov; 996 int error; 997 int ioflags; 998 999 GIANT_REQUIRED; 1000 object = vp->v_object; 1001 count = bytecount / PAGE_SIZE; 1002 1003 for (i = 0; i < count; i++) 1004 rtvals[i] = VM_PAGER_AGAIN; 1005 1006 if ((int) m[0]->pindex < 0) { 1007 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1008 (long)m[0]->pindex, (u_long)m[0]->dirty); 1009 rtvals[0] = VM_PAGER_BAD; 1010 return VM_PAGER_BAD; 1011 } 1012 1013 maxsize = count * PAGE_SIZE; 1014 ncount = count; 1015 1016 poffset = IDX_TO_OFF(m[0]->pindex); 1017 1018 /* 1019 * If the page-aligned write is larger then the actual file we 1020 * have to invalidate pages occuring beyond the file EOF. However, 1021 * there is an edge case where a file may not be page-aligned where 1022 * the last page is partially invalid. In this case the filesystem 1023 * may not properly clear the dirty bits for the entire page (which 1024 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1025 * With the page locked we are free to fix-up the dirty bits here. 1026 * 1027 * We do not under any circumstances truncate the valid bits, as 1028 * this will screw up bogus page replacement. 1029 */ 1030 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1031 if (object->un_pager.vnp.vnp_size > poffset) { 1032 int pgoff; 1033 1034 maxsize = object->un_pager.vnp.vnp_size - poffset; 1035 ncount = btoc(maxsize); 1036 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1037 vm_page_lock_queues(); 1038 vm_page_clear_dirty(m[ncount - 1], pgoff, 1039 PAGE_SIZE - pgoff); 1040 vm_page_unlock_queues(); 1041 } 1042 } else { 1043 maxsize = 0; 1044 ncount = 0; 1045 } 1046 if (ncount < count) { 1047 for (i = ncount; i < count; i++) { 1048 rtvals[i] = VM_PAGER_BAD; 1049 } 1050 } 1051 } 1052 1053 /* 1054 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1055 * rather then a bdwrite() to prevent paging I/O from saturating 1056 * the buffer cache. Dummy-up the sequential heuristic to cause 1057 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1058 * the system decides how to cluster. 1059 */ 1060 ioflags = IO_VMIO; 1061 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1062 ioflags |= IO_SYNC; 1063 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1064 ioflags |= IO_ASYNC; 1065 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1066 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1067 1068 aiov.iov_base = (caddr_t) 0; 1069 aiov.iov_len = maxsize; 1070 auio.uio_iov = &aiov; 1071 auio.uio_iovcnt = 1; 1072 auio.uio_offset = poffset; 1073 auio.uio_segflg = UIO_NOCOPY; 1074 auio.uio_rw = UIO_WRITE; 1075 auio.uio_resid = maxsize; 1076 auio.uio_td = (struct thread *) 0; 1077 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1078 cnt.v_vnodeout++; 1079 cnt.v_vnodepgsout += ncount; 1080 1081 if (error) { 1082 printf("vnode_pager_putpages: I/O error %d\n", error); 1083 } 1084 if (auio.uio_resid) { 1085 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1086 auio.uio_resid, (u_long)m[0]->pindex); 1087 } 1088 for (i = 0; i < ncount; i++) { 1089 rtvals[i] = VM_PAGER_OK; 1090 } 1091 return rtvals[0]; 1092 } 1093 1094 struct vnode * 1095 vnode_pager_lock(vm_object_t first_object) 1096 { 1097 struct vnode *vp; 1098 vm_object_t backing_object, object; 1099 1100 VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED); 1101 for (object = first_object; object != NULL; object = backing_object) { 1102 if (object->type != OBJT_VNODE) { 1103 if ((backing_object = object->backing_object) != NULL) 1104 VM_OBJECT_LOCK(backing_object); 1105 if (object != first_object) 1106 VM_OBJECT_UNLOCK(object); 1107 continue; 1108 } 1109 retry: 1110 if (object->flags & OBJ_DEAD) { 1111 if (object != first_object) 1112 VM_OBJECT_UNLOCK(object); 1113 return NULL; 1114 } 1115 vp = object->handle; 1116 VI_LOCK(vp); 1117 VM_OBJECT_UNLOCK(object); 1118 if (first_object != object) 1119 VM_OBJECT_UNLOCK(first_object); 1120 if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | LK_NOPAUSE | 1121 LK_RETRY | LK_SHARED, curthread)) { 1122 VM_OBJECT_LOCK(first_object); 1123 if (object != first_object) 1124 VM_OBJECT_LOCK(object); 1125 if (object->type != OBJT_VNODE) { 1126 if (object != first_object) 1127 VM_OBJECT_UNLOCK(object); 1128 return NULL; 1129 } 1130 printf("vnode_pager_lock: retrying\n"); 1131 goto retry; 1132 } 1133 VM_OBJECT_LOCK(first_object); 1134 return (vp); 1135 } 1136 return NULL; 1137 } 1138