xref: /freebsd/sys/vm/vnode_pager.c (revision f0adf7f5cdd241db2f2c817683191a6ef64a4e95)
1 /*
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/conf.h>
65 #include <sys/sf_buf.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_map.h>
72 #include <vm/vnode_pager.h>
73 #include <vm/vm_extern.h>
74 
75 static void vnode_pager_init(void);
76 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
77 					 int *run);
78 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
79 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
80 static void vnode_pager_dealloc(vm_object_t);
81 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
82 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
83 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
84 
85 struct pagerops vnodepagerops = {
86 	.pgo_init =	vnode_pager_init,
87 	.pgo_alloc =	vnode_pager_alloc,
88 	.pgo_dealloc =	vnode_pager_dealloc,
89 	.pgo_getpages =	vnode_pager_getpages,
90 	.pgo_putpages =	vnode_pager_putpages,
91 	.pgo_haspage =	vnode_pager_haspage,
92 };
93 
94 int vnode_pbuf_freecnt;
95 
96 static void
97 vnode_pager_init(void)
98 {
99 
100 	vnode_pbuf_freecnt = nswbuf / 2 + 1;
101 }
102 
103 /*
104  * Allocate (or lookup) pager for a vnode.
105  * Handle is a vnode pointer.
106  *
107  * MPSAFE
108  */
109 vm_object_t
110 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
111 		  vm_ooffset_t offset)
112 {
113 	vm_object_t object;
114 	struct vnode *vp;
115 
116 	/*
117 	 * Pageout to vnode, no can do yet.
118 	 */
119 	if (handle == NULL)
120 		return (NULL);
121 
122 	vp = (struct vnode *) handle;
123 
124 	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
125 
126 	/*
127 	 * Prevent race condition when allocating the object. This
128 	 * can happen with NFS vnodes since the nfsnode isn't locked.
129 	 */
130 	VI_LOCK(vp);
131 	while (vp->v_iflag & VI_OLOCK) {
132 		vp->v_iflag |= VI_OWANT;
133 		msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0);
134 	}
135 	vp->v_iflag |= VI_OLOCK;
136 	VI_UNLOCK(vp);
137 
138 	/*
139 	 * If the object is being terminated, wait for it to
140 	 * go away.
141 	 */
142 	while ((object = vp->v_object) != NULL) {
143 		VM_OBJECT_LOCK(object);
144 		if ((object->flags & OBJ_DEAD) == 0)
145 			break;
146 		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
147 	}
148 
149 	if (vp->v_usecount == 0)
150 		panic("vnode_pager_alloc: no vnode reference");
151 
152 	if (object == NULL) {
153 		/*
154 		 * And an object of the appropriate size
155 		 */
156 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
157 
158 		object->un_pager.vnp.vnp_size = size;
159 
160 		object->handle = handle;
161 		vp->v_object = object;
162 	} else {
163 		object->ref_count++;
164 		VM_OBJECT_UNLOCK(object);
165 	}
166 	VI_LOCK(vp);
167 	vp->v_usecount++;
168 	vp->v_iflag &= ~VI_OLOCK;
169 	if (vp->v_iflag & VI_OWANT) {
170 		vp->v_iflag &= ~VI_OWANT;
171 		wakeup(vp);
172 	}
173 	VI_UNLOCK(vp);
174 	return (object);
175 }
176 
177 /*
178  *	The object must be locked.
179  */
180 static void
181 vnode_pager_dealloc(object)
182 	vm_object_t object;
183 {
184 	struct vnode *vp = object->handle;
185 
186 	if (vp == NULL)
187 		panic("vnode_pager_dealloc: pager already dealloced");
188 
189 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
190 	vm_object_pip_wait(object, "vnpdea");
191 
192 	object->handle = NULL;
193 	object->type = OBJT_DEAD;
194 	ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc");
195 	vp->v_object = NULL;
196 	vp->v_vflag &= ~(VV_TEXT | VV_OBJBUF);
197 }
198 
199 static boolean_t
200 vnode_pager_haspage(object, pindex, before, after)
201 	vm_object_t object;
202 	vm_pindex_t pindex;
203 	int *before;
204 	int *after;
205 {
206 	struct vnode *vp = object->handle;
207 	daddr_t bn;
208 	int err;
209 	daddr_t reqblock;
210 	int poff;
211 	int bsize;
212 	int pagesperblock, blocksperpage;
213 
214 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
215 	/*
216 	 * If no vp or vp is doomed or marked transparent to VM, we do not
217 	 * have the page.
218 	 */
219 	if (vp == NULL)
220 		return FALSE;
221 
222 	VI_LOCK(vp);
223 	if (vp->v_iflag & VI_DOOMED) {
224 		VI_UNLOCK(vp);
225 		return FALSE;
226 	}
227 	VI_UNLOCK(vp);
228 	/*
229 	 * If filesystem no longer mounted or offset beyond end of file we do
230 	 * not have the page.
231 	 */
232 	if ((vp->v_mount == NULL) ||
233 	    (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size))
234 		return FALSE;
235 
236 	bsize = vp->v_mount->mnt_stat.f_iosize;
237 	pagesperblock = bsize / PAGE_SIZE;
238 	blocksperpage = 0;
239 	if (pagesperblock > 0) {
240 		reqblock = pindex / pagesperblock;
241 	} else {
242 		blocksperpage = (PAGE_SIZE / bsize);
243 		reqblock = pindex * blocksperpage;
244 	}
245 	VM_OBJECT_UNLOCK(object);
246 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
247 	VM_OBJECT_LOCK(object);
248 	if (err)
249 		return TRUE;
250 	if (bn == -1)
251 		return FALSE;
252 	if (pagesperblock > 0) {
253 		poff = pindex - (reqblock * pagesperblock);
254 		if (before) {
255 			*before *= pagesperblock;
256 			*before += poff;
257 		}
258 		if (after) {
259 			int numafter;
260 			*after *= pagesperblock;
261 			numafter = pagesperblock - (poff + 1);
262 			if (IDX_TO_OFF(pindex + numafter) >
263 			    object->un_pager.vnp.vnp_size) {
264 				numafter =
265 		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
266 				    pindex;
267 			}
268 			*after += numafter;
269 		}
270 	} else {
271 		if (before) {
272 			*before /= blocksperpage;
273 		}
274 
275 		if (after) {
276 			*after /= blocksperpage;
277 		}
278 	}
279 	return TRUE;
280 }
281 
282 /*
283  * Lets the VM system know about a change in size for a file.
284  * We adjust our own internal size and flush any cached pages in
285  * the associated object that are affected by the size change.
286  *
287  * Note: this routine may be invoked as a result of a pager put
288  * operation (possibly at object termination time), so we must be careful.
289  */
290 void
291 vnode_pager_setsize(vp, nsize)
292 	struct vnode *vp;
293 	vm_ooffset_t nsize;
294 {
295 	vm_object_t object;
296 	vm_page_t m;
297 	vm_pindex_t nobjsize;
298 
299 	if ((object = vp->v_object) == NULL)
300 		return;
301 	VM_OBJECT_LOCK(object);
302 	if (nsize == object->un_pager.vnp.vnp_size) {
303 		/*
304 		 * Hasn't changed size
305 		 */
306 		VM_OBJECT_UNLOCK(object);
307 		return;
308 	}
309 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
310 	if (nsize < object->un_pager.vnp.vnp_size) {
311 		/*
312 		 * File has shrunk. Toss any cached pages beyond the new EOF.
313 		 */
314 		if (nobjsize < object->size)
315 			vm_object_page_remove(object, nobjsize, object->size,
316 			    FALSE);
317 		/*
318 		 * this gets rid of garbage at the end of a page that is now
319 		 * only partially backed by the vnode.
320 		 *
321 		 * XXX for some reason (I don't know yet), if we take a
322 		 * completely invalid page and mark it partially valid
323 		 * it can screw up NFS reads, so we don't allow the case.
324 		 */
325 		if ((nsize & PAGE_MASK) &&
326 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
327 		    m->valid != 0) {
328 			int base = (int)nsize & PAGE_MASK;
329 			int size = PAGE_SIZE - base;
330 
331 			/*
332 			 * Clear out partial-page garbage in case
333 			 * the page has been mapped.
334 			 */
335 			pmap_zero_page_area(m, base, size);
336 
337 			/*
338 			 * XXX work around SMP data integrity race
339 			 * by unmapping the page from user processes.
340 			 * The garbage we just cleared may be mapped
341 			 * to a user process running on another cpu
342 			 * and this code is not running through normal
343 			 * I/O channels which handle SMP issues for
344 			 * us, so unmap page to synchronize all cpus.
345 			 *
346 			 * XXX should vm_pager_unmap_page() have
347 			 * dealt with this?
348 			 */
349 			vm_page_lock_queues();
350 			pmap_remove_all(m);
351 
352 			/*
353 			 * Clear out partial-page dirty bits.  This
354 			 * has the side effect of setting the valid
355 			 * bits, but that is ok.  There are a bunch
356 			 * of places in the VM system where we expected
357 			 * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
358 			 * case is one of them.  If the page is still
359 			 * partially dirty, make it fully dirty.
360 			 *
361 			 * note that we do not clear out the valid
362 			 * bits.  This would prevent bogus_page
363 			 * replacement from working properly.
364 			 */
365 			vm_page_set_validclean(m, base, size);
366 			if (m->dirty != 0)
367 				m->dirty = VM_PAGE_BITS_ALL;
368 			vm_page_unlock_queues();
369 		}
370 	}
371 	object->un_pager.vnp.vnp_size = nsize;
372 	object->size = nobjsize;
373 	VM_OBJECT_UNLOCK(object);
374 }
375 
376 /*
377  * calculate the linear (byte) disk address of specified virtual
378  * file address
379  */
380 static vm_offset_t
381 vnode_pager_addr(vp, address, run)
382 	struct vnode *vp;
383 	vm_ooffset_t address;
384 	int *run;
385 {
386 	int rtaddress;
387 	int bsize;
388 	daddr_t block;
389 	int err;
390 	daddr_t vblock;
391 	int voffset;
392 
393 	GIANT_REQUIRED;
394 	if ((int) address < 0)
395 		return -1;
396 
397 	if (vp->v_mount == NULL)
398 		return -1;
399 
400 	bsize = vp->v_mount->mnt_stat.f_iosize;
401 	vblock = address / bsize;
402 	voffset = address % bsize;
403 
404 	err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL);
405 
406 	if (err || (block == -1))
407 		rtaddress = -1;
408 	else {
409 		rtaddress = block + voffset / DEV_BSIZE;
410 		if (run) {
411 			*run += 1;
412 			*run *= bsize/PAGE_SIZE;
413 			*run -= voffset/PAGE_SIZE;
414 		}
415 	}
416 
417 	return rtaddress;
418 }
419 
420 /*
421  * small block filesystem vnode pager input
422  */
423 static int
424 vnode_pager_input_smlfs(object, m)
425 	vm_object_t object;
426 	vm_page_t m;
427 {
428 	int i;
429 	struct vnode *dp, *vp;
430 	struct buf *bp;
431 	struct sf_buf *sf;
432 	int fileaddr;
433 	vm_offset_t bsize;
434 	int error = 0;
435 
436 	GIANT_REQUIRED;
437 
438 	vp = object->handle;
439 	if (vp->v_mount == NULL)
440 		return VM_PAGER_BAD;
441 
442 	bsize = vp->v_mount->mnt_stat.f_iosize;
443 
444 	VOP_BMAP(vp, 0, &dp, 0, NULL, NULL);
445 
446 	sf = sf_buf_alloc(m, 0);
447 
448 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
449 		vm_ooffset_t address;
450 
451 		if (vm_page_bits(i * bsize, bsize) & m->valid)
452 			continue;
453 
454 		address = IDX_TO_OFF(m->pindex) + i * bsize;
455 		if (address >= object->un_pager.vnp.vnp_size) {
456 			fileaddr = -1;
457 		} else {
458 			fileaddr = vnode_pager_addr(vp, address, NULL);
459 		}
460 		if (fileaddr != -1) {
461 			bp = getpbuf(&vnode_pbuf_freecnt);
462 
463 			/* build a minimal buffer header */
464 			bp->b_iocmd = BIO_READ;
465 			bp->b_iodone = bdone;
466 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
467 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
468 			bp->b_rcred = crhold(curthread->td_ucred);
469 			bp->b_wcred = crhold(curthread->td_ucred);
470 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
471 			bp->b_blkno = fileaddr;
472 			pbgetvp(dp, bp);
473 			bp->b_bcount = bsize;
474 			bp->b_bufsize = bsize;
475 			bp->b_runningbufspace = bp->b_bufsize;
476 			runningbufspace += bp->b_runningbufspace;
477 
478 			/* do the input */
479 			bp->b_iooffset = dbtob(bp->b_blkno);
480 			if (dp->v_type == VCHR)
481 				VOP_SPECSTRATEGY(bp->b_vp, bp);
482 			else
483 				VOP_STRATEGY(bp->b_vp, bp);
484 
485 			/* we definitely need to be at splvm here */
486 
487 			bwait(bp, PVM, "vnsrd");
488 
489 			if ((bp->b_ioflags & BIO_ERROR) != 0)
490 				error = EIO;
491 
492 			/*
493 			 * free the buffer header back to the swap buffer pool
494 			 */
495 			relpbuf(bp, &vnode_pbuf_freecnt);
496 			if (error)
497 				break;
498 
499 			VM_OBJECT_LOCK(object);
500 			vm_page_lock_queues();
501 			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
502 			vm_page_unlock_queues();
503 			VM_OBJECT_UNLOCK(object);
504 		} else {
505 			VM_OBJECT_LOCK(object);
506 			vm_page_lock_queues();
507 			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
508 			vm_page_unlock_queues();
509 			VM_OBJECT_UNLOCK(object);
510 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
511 		}
512 	}
513 	sf_buf_free(sf);
514 	vm_page_lock_queues();
515 	pmap_clear_modify(m);
516 	vm_page_unlock_queues();
517 	if (error) {
518 		return VM_PAGER_ERROR;
519 	}
520 	return VM_PAGER_OK;
521 
522 }
523 
524 
525 /*
526  * old style vnode pager output routine
527  */
528 static int
529 vnode_pager_input_old(object, m)
530 	vm_object_t object;
531 	vm_page_t m;
532 {
533 	struct uio auio;
534 	struct iovec aiov;
535 	int error;
536 	int size;
537 	struct sf_buf *sf;
538 	struct vnode *vp;
539 
540 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
541 	error = 0;
542 
543 	/*
544 	 * Return failure if beyond current EOF
545 	 */
546 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
547 		return VM_PAGER_BAD;
548 	} else {
549 		size = PAGE_SIZE;
550 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
551 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
552 		vp = object->handle;
553 		VM_OBJECT_UNLOCK(object);
554 
555 		/*
556 		 * Allocate a kernel virtual address and initialize so that
557 		 * we can use VOP_READ/WRITE routines.
558 		 */
559 		sf = sf_buf_alloc(m, 0);
560 
561 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
562 		aiov.iov_len = size;
563 		auio.uio_iov = &aiov;
564 		auio.uio_iovcnt = 1;
565 		auio.uio_offset = IDX_TO_OFF(m->pindex);
566 		auio.uio_segflg = UIO_SYSSPACE;
567 		auio.uio_rw = UIO_READ;
568 		auio.uio_resid = size;
569 		auio.uio_td = curthread;
570 
571 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
572 		if (!error) {
573 			int count = size - auio.uio_resid;
574 
575 			if (count == 0)
576 				error = EINVAL;
577 			else if (count != PAGE_SIZE)
578 				bzero((caddr_t)sf_buf_kva(sf) + count,
579 				    PAGE_SIZE - count);
580 		}
581 		sf_buf_free(sf);
582 
583 		VM_OBJECT_LOCK(object);
584 	}
585 	vm_page_lock_queues();
586 	pmap_clear_modify(m);
587 	vm_page_undirty(m);
588 	vm_page_unlock_queues();
589 	if (!error)
590 		m->valid = VM_PAGE_BITS_ALL;
591 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
592 }
593 
594 /*
595  * generic vnode pager input routine
596  */
597 
598 /*
599  * Local media VFS's that do not implement their own VOP_GETPAGES
600  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
601  * to implement the previous behaviour.
602  *
603  * All other FS's should use the bypass to get to the local media
604  * backing vp's VOP_GETPAGES.
605  */
606 static int
607 vnode_pager_getpages(object, m, count, reqpage)
608 	vm_object_t object;
609 	vm_page_t *m;
610 	int count;
611 	int reqpage;
612 {
613 	int rtval;
614 	struct vnode *vp;
615 	int bytes = count * PAGE_SIZE;
616 
617 	vp = object->handle;
618 	VM_OBJECT_UNLOCK(object);
619 	mtx_lock(&Giant);
620 	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
621 	KASSERT(rtval != EOPNOTSUPP,
622 	    ("vnode_pager: FS getpages not implemented\n"));
623 	mtx_unlock(&Giant);
624 	VM_OBJECT_LOCK(object);
625 	return rtval;
626 }
627 
628 /*
629  * This is now called from local media FS's to operate against their
630  * own vnodes if they fail to implement VOP_GETPAGES.
631  */
632 int
633 vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
634 	struct vnode *vp;
635 	vm_page_t *m;
636 	int bytecount;
637 	int reqpage;
638 {
639 	vm_object_t object;
640 	vm_offset_t kva;
641 	off_t foff, tfoff, nextoff;
642 	int i, j, size, bsize, first, firstaddr;
643 	struct vnode *dp;
644 	int runpg;
645 	int runend;
646 	struct buf *bp;
647 	int count;
648 	int error = 0;
649 
650 	GIANT_REQUIRED;
651 	object = vp->v_object;
652 	count = bytecount / PAGE_SIZE;
653 
654 	if (vp->v_mount == NULL)
655 		return VM_PAGER_BAD;
656 
657 	bsize = vp->v_mount->mnt_stat.f_iosize;
658 
659 	/* get the UNDERLYING device for the file with VOP_BMAP() */
660 
661 	/*
662 	 * originally, we did not check for an error return value -- assuming
663 	 * an fs always has a bmap entry point -- that assumption is wrong!!!
664 	 */
665 	foff = IDX_TO_OFF(m[reqpage]->pindex);
666 
667 	/*
668 	 * if we can't bmap, use old VOP code
669 	 */
670 	if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) {
671 		VM_OBJECT_LOCK(object);
672 		vm_page_lock_queues();
673 		for (i = 0; i < count; i++)
674 			if (i != reqpage)
675 				vm_page_free(m[i]);
676 		vm_page_unlock_queues();
677 		cnt.v_vnodein++;
678 		cnt.v_vnodepgsin++;
679 		error = vnode_pager_input_old(object, m[reqpage]);
680 		VM_OBJECT_UNLOCK(object);
681 		return (error);
682 
683 		/*
684 		 * if the blocksize is smaller than a page size, then use
685 		 * special small filesystem code.  NFS sometimes has a small
686 		 * blocksize, but it can handle large reads itself.
687 		 */
688 	} else if ((PAGE_SIZE / bsize) > 1 &&
689 	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
690 		VM_OBJECT_LOCK(object);
691 		vm_page_lock_queues();
692 		for (i = 0; i < count; i++)
693 			if (i != reqpage)
694 				vm_page_free(m[i]);
695 		vm_page_unlock_queues();
696 		VM_OBJECT_UNLOCK(object);
697 		cnt.v_vnodein++;
698 		cnt.v_vnodepgsin++;
699 		return vnode_pager_input_smlfs(object, m[reqpage]);
700 	}
701 
702 	/*
703 	 * If we have a completely valid page available to us, we can
704 	 * clean up and return.  Otherwise we have to re-read the
705 	 * media.
706 	 */
707 	VM_OBJECT_LOCK(object);
708 	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
709 		vm_page_lock_queues();
710 		for (i = 0; i < count; i++)
711 			if (i != reqpage)
712 				vm_page_free(m[i]);
713 		vm_page_unlock_queues();
714 		VM_OBJECT_UNLOCK(object);
715 		return VM_PAGER_OK;
716 	}
717 	m[reqpage]->valid = 0;
718 	VM_OBJECT_UNLOCK(object);
719 
720 	/*
721 	 * here on direct device I/O
722 	 */
723 	firstaddr = -1;
724 
725 	/*
726 	 * calculate the run that includes the required page
727 	 */
728 	for (first = 0, i = 0; i < count; i = runend) {
729 		firstaddr = vnode_pager_addr(vp,
730 			IDX_TO_OFF(m[i]->pindex), &runpg);
731 		if (firstaddr == -1) {
732 			VM_OBJECT_LOCK(object);
733 			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
734 				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
735 				    firstaddr, (uintmax_t)(foff >> 32),
736 				    (uintmax_t)foff,
737 				    (uintmax_t)
738 				    (object->un_pager.vnp.vnp_size >> 32),
739 				    (uintmax_t)object->un_pager.vnp.vnp_size);
740 			}
741 			vm_page_lock_queues();
742 			vm_page_free(m[i]);
743 			vm_page_unlock_queues();
744 			VM_OBJECT_UNLOCK(object);
745 			runend = i + 1;
746 			first = runend;
747 			continue;
748 		}
749 		runend = i + runpg;
750 		if (runend <= reqpage) {
751 			VM_OBJECT_LOCK(object);
752 			vm_page_lock_queues();
753 			for (j = i; j < runend; j++)
754 				vm_page_free(m[j]);
755 			vm_page_unlock_queues();
756 			VM_OBJECT_UNLOCK(object);
757 		} else {
758 			if (runpg < (count - first)) {
759 				VM_OBJECT_LOCK(object);
760 				vm_page_lock_queues();
761 				for (i = first + runpg; i < count; i++)
762 					vm_page_free(m[i]);
763 				vm_page_unlock_queues();
764 				VM_OBJECT_UNLOCK(object);
765 				count = first + runpg;
766 			}
767 			break;
768 		}
769 		first = runend;
770 	}
771 
772 	/*
773 	 * the first and last page have been calculated now, move input pages
774 	 * to be zero based...
775 	 */
776 	if (first != 0) {
777 		for (i = first; i < count; i++) {
778 			m[i - first] = m[i];
779 		}
780 		count -= first;
781 		reqpage -= first;
782 	}
783 
784 	/*
785 	 * calculate the file virtual address for the transfer
786 	 */
787 	foff = IDX_TO_OFF(m[0]->pindex);
788 
789 	/*
790 	 * calculate the size of the transfer
791 	 */
792 	size = count * PAGE_SIZE;
793 	if ((foff + size) > object->un_pager.vnp.vnp_size)
794 		size = object->un_pager.vnp.vnp_size - foff;
795 
796 	/*
797 	 * round up physical size for real devices.
798 	 */
799 	if (dp->v_type == VBLK || dp->v_type == VCHR) {
800 		int secmask = dp->v_rdev->si_bsize_phys - 1;
801 		KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1));
802 		size = (size + secmask) & ~secmask;
803 	}
804 
805 	bp = getpbuf(&vnode_pbuf_freecnt);
806 	kva = (vm_offset_t) bp->b_data;
807 
808 	/*
809 	 * and map the pages to be read into the kva
810 	 */
811 	pmap_qenter(kva, m, count);
812 
813 	/* build a minimal buffer header */
814 	bp->b_iocmd = BIO_READ;
815 	bp->b_iodone = bdone;
816 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
817 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
818 	bp->b_rcred = crhold(curthread->td_ucred);
819 	bp->b_wcred = crhold(curthread->td_ucred);
820 	bp->b_blkno = firstaddr;
821 	pbgetvp(dp, bp);
822 	bp->b_bcount = size;
823 	bp->b_bufsize = size;
824 	bp->b_runningbufspace = bp->b_bufsize;
825 	runningbufspace += bp->b_runningbufspace;
826 
827 	cnt.v_vnodein++;
828 	cnt.v_vnodepgsin += count;
829 
830 	/* do the input */
831 	bp->b_iooffset = dbtob(bp->b_blkno);
832 	if (dp->v_type == VCHR)
833 		VOP_SPECSTRATEGY(bp->b_vp, bp);
834 	else
835 		VOP_STRATEGY(bp->b_vp, bp);
836 
837 	bwait(bp, PVM, "vnread");
838 
839 	if ((bp->b_ioflags & BIO_ERROR) != 0)
840 		error = EIO;
841 
842 	if (!error) {
843 		if (size != count * PAGE_SIZE)
844 			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
845 	}
846 	pmap_qremove(kva, count);
847 
848 	/*
849 	 * free the buffer header back to the swap buffer pool
850 	 */
851 	relpbuf(bp, &vnode_pbuf_freecnt);
852 
853 	VM_OBJECT_LOCK(object);
854 	vm_page_lock_queues();
855 	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
856 		vm_page_t mt;
857 
858 		nextoff = tfoff + PAGE_SIZE;
859 		mt = m[i];
860 
861 		if (nextoff <= object->un_pager.vnp.vnp_size) {
862 			/*
863 			 * Read filled up entire page.
864 			 */
865 			mt->valid = VM_PAGE_BITS_ALL;
866 			vm_page_undirty(mt);	/* should be an assert? XXX */
867 			pmap_clear_modify(mt);
868 		} else {
869 			/*
870 			 * Read did not fill up entire page.  Since this
871 			 * is getpages, the page may be mapped, so we have
872 			 * to zero the invalid portions of the page even
873 			 * though we aren't setting them valid.
874 			 *
875 			 * Currently we do not set the entire page valid,
876 			 * we just try to clear the piece that we couldn't
877 			 * read.
878 			 */
879 			vm_page_set_validclean(mt, 0,
880 			    object->un_pager.vnp.vnp_size - tfoff);
881 			/* handled by vm_fault now */
882 			/* vm_page_zero_invalid(mt, FALSE); */
883 		}
884 
885 		if (i != reqpage) {
886 
887 			/*
888 			 * whether or not to leave the page activated is up in
889 			 * the air, but we should put the page on a page queue
890 			 * somewhere. (it already is in the object). Result:
891 			 * It appears that empirical results show that
892 			 * deactivating pages is best.
893 			 */
894 
895 			/*
896 			 * just in case someone was asking for this page we
897 			 * now tell them that it is ok to use
898 			 */
899 			if (!error) {
900 				if (mt->flags & PG_WANTED)
901 					vm_page_activate(mt);
902 				else
903 					vm_page_deactivate(mt);
904 				vm_page_wakeup(mt);
905 			} else {
906 				vm_page_free(mt);
907 			}
908 		}
909 	}
910 	vm_page_unlock_queues();
911 	VM_OBJECT_UNLOCK(object);
912 	if (error) {
913 		printf("vnode_pager_getpages: I/O read error\n");
914 	}
915 	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
916 }
917 
918 /*
919  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
920  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
921  * vnode_pager_generic_putpages() to implement the previous behaviour.
922  *
923  * All other FS's should use the bypass to get to the local media
924  * backing vp's VOP_PUTPAGES.
925  */
926 static void
927 vnode_pager_putpages(object, m, count, sync, rtvals)
928 	vm_object_t object;
929 	vm_page_t *m;
930 	int count;
931 	boolean_t sync;
932 	int *rtvals;
933 {
934 	int rtval;
935 	struct vnode *vp;
936 	struct mount *mp;
937 	int bytes = count * PAGE_SIZE;
938 
939 	GIANT_REQUIRED;
940 	/*
941 	 * Force synchronous operation if we are extremely low on memory
942 	 * to prevent a low-memory deadlock.  VOP operations often need to
943 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
944 	 * operation ).  The swapper handles the case by limiting the amount
945 	 * of asynchronous I/O, but that sort of solution doesn't scale well
946 	 * for the vnode pager without a lot of work.
947 	 *
948 	 * Also, the backing vnode's iodone routine may not wake the pageout
949 	 * daemon up.  This should be probably be addressed XXX.
950 	 */
951 
952 	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
953 		sync |= OBJPC_SYNC;
954 
955 	/*
956 	 * Call device-specific putpages function
957 	 */
958 	vp = object->handle;
959 	VM_OBJECT_UNLOCK(object);
960 	if (vp->v_type != VREG)
961 		mp = NULL;
962 	(void)vn_start_write(vp, &mp, V_WAIT);
963 	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
964 	KASSERT(rtval != EOPNOTSUPP,
965 	    ("vnode_pager: stale FS putpages\n"));
966 	vn_finished_write(mp);
967 	VM_OBJECT_LOCK(object);
968 }
969 
970 
971 /*
972  * This is now called from local media FS's to operate against their
973  * own vnodes if they fail to implement VOP_PUTPAGES.
974  *
975  * This is typically called indirectly via the pageout daemon and
976  * clustering has already typically occured, so in general we ask the
977  * underlying filesystem to write the data out asynchronously rather
978  * then delayed.
979  */
980 int
981 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
982 	struct vnode *vp;
983 	vm_page_t *m;
984 	int bytecount;
985 	int flags;
986 	int *rtvals;
987 {
988 	int i;
989 	vm_object_t object;
990 	int count;
991 
992 	int maxsize, ncount;
993 	vm_ooffset_t poffset;
994 	struct uio auio;
995 	struct iovec aiov;
996 	int error;
997 	int ioflags;
998 
999 	GIANT_REQUIRED;
1000 	object = vp->v_object;
1001 	count = bytecount / PAGE_SIZE;
1002 
1003 	for (i = 0; i < count; i++)
1004 		rtvals[i] = VM_PAGER_AGAIN;
1005 
1006 	if ((int) m[0]->pindex < 0) {
1007 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1008 			(long)m[0]->pindex, (u_long)m[0]->dirty);
1009 		rtvals[0] = VM_PAGER_BAD;
1010 		return VM_PAGER_BAD;
1011 	}
1012 
1013 	maxsize = count * PAGE_SIZE;
1014 	ncount = count;
1015 
1016 	poffset = IDX_TO_OFF(m[0]->pindex);
1017 
1018 	/*
1019 	 * If the page-aligned write is larger then the actual file we
1020 	 * have to invalidate pages occuring beyond the file EOF.  However,
1021 	 * there is an edge case where a file may not be page-aligned where
1022 	 * the last page is partially invalid.  In this case the filesystem
1023 	 * may not properly clear the dirty bits for the entire page (which
1024 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1025 	 * With the page locked we are free to fix-up the dirty bits here.
1026 	 *
1027 	 * We do not under any circumstances truncate the valid bits, as
1028 	 * this will screw up bogus page replacement.
1029 	 */
1030 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1031 		if (object->un_pager.vnp.vnp_size > poffset) {
1032 			int pgoff;
1033 
1034 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1035 			ncount = btoc(maxsize);
1036 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1037 				vm_page_lock_queues();
1038 				vm_page_clear_dirty(m[ncount - 1], pgoff,
1039 					PAGE_SIZE - pgoff);
1040 				vm_page_unlock_queues();
1041 			}
1042 		} else {
1043 			maxsize = 0;
1044 			ncount = 0;
1045 		}
1046 		if (ncount < count) {
1047 			for (i = ncount; i < count; i++) {
1048 				rtvals[i] = VM_PAGER_BAD;
1049 			}
1050 		}
1051 	}
1052 
1053 	/*
1054 	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1055 	 * rather then a bdwrite() to prevent paging I/O from saturating
1056 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1057 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1058 	 * the system decides how to cluster.
1059 	 */
1060 	ioflags = IO_VMIO;
1061 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1062 		ioflags |= IO_SYNC;
1063 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1064 		ioflags |= IO_ASYNC;
1065 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1066 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1067 
1068 	aiov.iov_base = (caddr_t) 0;
1069 	aiov.iov_len = maxsize;
1070 	auio.uio_iov = &aiov;
1071 	auio.uio_iovcnt = 1;
1072 	auio.uio_offset = poffset;
1073 	auio.uio_segflg = UIO_NOCOPY;
1074 	auio.uio_rw = UIO_WRITE;
1075 	auio.uio_resid = maxsize;
1076 	auio.uio_td = (struct thread *) 0;
1077 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1078 	cnt.v_vnodeout++;
1079 	cnt.v_vnodepgsout += ncount;
1080 
1081 	if (error) {
1082 		printf("vnode_pager_putpages: I/O error %d\n", error);
1083 	}
1084 	if (auio.uio_resid) {
1085 		printf("vnode_pager_putpages: residual I/O %d at %lu\n",
1086 		    auio.uio_resid, (u_long)m[0]->pindex);
1087 	}
1088 	for (i = 0; i < ncount; i++) {
1089 		rtvals[i] = VM_PAGER_OK;
1090 	}
1091 	return rtvals[0];
1092 }
1093 
1094 struct vnode *
1095 vnode_pager_lock(vm_object_t first_object)
1096 {
1097 	struct vnode *vp;
1098 	vm_object_t backing_object, object;
1099 
1100 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
1101 	for (object = first_object; object != NULL; object = backing_object) {
1102 		if (object->type != OBJT_VNODE) {
1103 			if ((backing_object = object->backing_object) != NULL)
1104 				VM_OBJECT_LOCK(backing_object);
1105 			if (object != first_object)
1106 				VM_OBJECT_UNLOCK(object);
1107 			continue;
1108 		}
1109 	retry:
1110 		if (object->flags & OBJ_DEAD) {
1111 			if (object != first_object)
1112 				VM_OBJECT_UNLOCK(object);
1113 			return NULL;
1114 		}
1115 		vp = object->handle;
1116 		VI_LOCK(vp);
1117 		VM_OBJECT_UNLOCK(object);
1118 		if (first_object != object)
1119 			VM_OBJECT_UNLOCK(first_object);
1120 		if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | LK_NOPAUSE |
1121 		    LK_RETRY | LK_SHARED, curthread)) {
1122 			VM_OBJECT_LOCK(first_object);
1123 			if (object != first_object)
1124 				VM_OBJECT_LOCK(object);
1125 			if (object->type != OBJT_VNODE) {
1126 				if (object != first_object)
1127 					VM_OBJECT_UNLOCK(object);
1128 				return NULL;
1129 			}
1130 			printf("vnode_pager_lock: retrying\n");
1131 			goto retry;
1132 		}
1133 		VM_OBJECT_LOCK(first_object);
1134 		return (vp);
1135 	}
1136 	return NULL;
1137 }
1138