xref: /freebsd/sys/vm/vnode_pager.c (revision edca4938f74db18d091868237592abbf7e718669)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
43  */
44 
45 /*
46  * Page to/from files (vnodes).
47  */
48 
49 /*
50  * TODO:
51  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52  *	greatly re-simplify the vnode_pager.
53  */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include "opt_vm.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/systm.h>
63 #include <sys/sysctl.h>
64 #include <sys/proc.h>
65 #include <sys/vnode.h>
66 #include <sys/mount.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/vmmeter.h>
70 #include <sys/ktr.h>
71 #include <sys/limits.h>
72 #include <sys/conf.h>
73 #include <sys/rwlock.h>
74 #include <sys/sf_buf.h>
75 #include <sys/domainset.h>
76 
77 #include <machine/atomic.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vm_map.h>
85 #include <vm/vnode_pager.h>
86 #include <vm/vm_extern.h>
87 #include <vm/uma.h>
88 
89 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
90     daddr_t *rtaddress, int *run);
91 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
92 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
93 static void vnode_pager_dealloc(vm_object_t);
94 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
95 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
96     int *, vop_getpages_iodone_t, void *);
97 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
98 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
99 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
100     vm_ooffset_t, struct ucred *cred);
101 static int vnode_pager_generic_getpages_done(struct buf *);
102 static void vnode_pager_generic_getpages_done_async(struct buf *);
103 static void vnode_pager_update_writecount(vm_object_t, vm_offset_t,
104     vm_offset_t);
105 static void vnode_pager_release_writecount(vm_object_t, vm_offset_t,
106     vm_offset_t);
107 
108 struct pagerops vnodepagerops = {
109 	.pgo_alloc =	vnode_pager_alloc,
110 	.pgo_dealloc =	vnode_pager_dealloc,
111 	.pgo_getpages =	vnode_pager_getpages,
112 	.pgo_getpages_async = vnode_pager_getpages_async,
113 	.pgo_putpages =	vnode_pager_putpages,
114 	.pgo_haspage =	vnode_pager_haspage,
115 	.pgo_update_writecount = vnode_pager_update_writecount,
116 	.pgo_release_writecount = vnode_pager_release_writecount,
117 };
118 
119 static struct domainset *vnode_domainset = NULL;
120 
121 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW,
122     &vnode_domainset, 0, sysctl_handle_domainset, "A",
123     "Default vnode NUMA policy");
124 
125 static int nvnpbufs;
126 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
127     &nvnpbufs, 0, "number of physical buffers allocated for vnode pager");
128 
129 static uma_zone_t vnode_pbuf_zone;
130 
131 static void
132 vnode_pager_init(void *dummy)
133 {
134 
135 #ifdef __LP64__
136 	nvnpbufs = nswbuf * 2;
137 #else
138 	nvnpbufs = nswbuf / 2;
139 #endif
140 	TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs);
141 	vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs);
142 }
143 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL);
144 
145 /* Create the VM system backing object for this vnode */
146 int
147 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
148 {
149 	vm_object_t object;
150 	vm_ooffset_t size = isize;
151 	struct vattr va;
152 
153 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
154 		return (0);
155 
156 	object = vp->v_object;
157 	if (object != NULL)
158 		return (0);
159 
160 	if (size == 0) {
161 		if (vn_isdisk(vp, NULL)) {
162 			size = IDX_TO_OFF(INT_MAX);
163 		} else {
164 			if (VOP_GETATTR(vp, &va, td->td_ucred))
165 				return (0);
166 			size = va.va_size;
167 		}
168 	}
169 
170 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
171 	/*
172 	 * Dereference the reference we just created.  This assumes
173 	 * that the object is associated with the vp.
174 	 */
175 	VM_OBJECT_WLOCK(object);
176 	object->ref_count--;
177 	VM_OBJECT_WUNLOCK(object);
178 	vrele(vp);
179 
180 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
181 
182 	return (0);
183 }
184 
185 void
186 vnode_destroy_vobject(struct vnode *vp)
187 {
188 	struct vm_object *obj;
189 
190 	obj = vp->v_object;
191 	if (obj == NULL || obj->handle != vp)
192 		return;
193 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
194 	VM_OBJECT_WLOCK(obj);
195 	MPASS(obj->type == OBJT_VNODE);
196 	umtx_shm_object_terminated(obj);
197 	if (obj->ref_count == 0) {
198 		/*
199 		 * don't double-terminate the object
200 		 */
201 		if ((obj->flags & OBJ_DEAD) == 0) {
202 			vm_object_set_flag(obj, OBJ_DEAD);
203 
204 			/*
205 			 * Clean pages and flush buffers.
206 			 */
207 			vm_object_page_clean(obj, 0, 0, OBJPC_SYNC);
208 			VM_OBJECT_WUNLOCK(obj);
209 
210 			vinvalbuf(vp, V_SAVE, 0, 0);
211 
212 			BO_LOCK(&vp->v_bufobj);
213 			vp->v_bufobj.bo_flag |= BO_DEAD;
214 			BO_UNLOCK(&vp->v_bufobj);
215 
216 			VM_OBJECT_WLOCK(obj);
217 			vm_object_terminate(obj);
218 		} else {
219 			/*
220 			 * Waiters were already handled during object
221 			 * termination.  The exclusive vnode lock hopefully
222 			 * prevented new waiters from referencing the dying
223 			 * object.
224 			 */
225 			vp->v_object = NULL;
226 			VM_OBJECT_WUNLOCK(obj);
227 		}
228 	} else {
229 		/*
230 		 * Woe to the process that tries to page now :-).
231 		 */
232 		vm_pager_deallocate(obj);
233 		VM_OBJECT_WUNLOCK(obj);
234 	}
235 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
236 }
237 
238 
239 /*
240  * Allocate (or lookup) pager for a vnode.
241  * Handle is a vnode pointer.
242  */
243 vm_object_t
244 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
245     vm_ooffset_t offset, struct ucred *cred)
246 {
247 	vm_object_t object;
248 	struct vnode *vp;
249 
250 	/*
251 	 * Pageout to vnode, no can do yet.
252 	 */
253 	if (handle == NULL)
254 		return (NULL);
255 
256 	vp = (struct vnode *)handle;
257 	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
258 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
259 retry:
260 	object = vp->v_object;
261 
262 	if (object == NULL) {
263 		/*
264 		 * Add an object of the appropriate size
265 		 */
266 		object = vm_object_allocate(OBJT_VNODE,
267 		    OFF_TO_IDX(round_page(size)));
268 
269 		object->un_pager.vnp.vnp_size = size;
270 		object->un_pager.vnp.writemappings = 0;
271 		object->domain.dr_policy = vnode_domainset;
272 
273 		object->handle = handle;
274 		VI_LOCK(vp);
275 		if (vp->v_object != NULL) {
276 			/*
277 			 * Object has been created while we were allocating.
278 			 */
279 			VI_UNLOCK(vp);
280 			VM_OBJECT_WLOCK(object);
281 			KASSERT(object->ref_count == 1,
282 			    ("leaked ref %p %d", object, object->ref_count));
283 			object->type = OBJT_DEAD;
284 			object->ref_count = 0;
285 			VM_OBJECT_WUNLOCK(object);
286 			vm_object_destroy(object);
287 			goto retry;
288 		}
289 		vp->v_object = object;
290 		VI_UNLOCK(vp);
291 	} else {
292 		VM_OBJECT_WLOCK(object);
293 		object->ref_count++;
294 #if VM_NRESERVLEVEL > 0
295 		vm_object_color(object, 0);
296 #endif
297 		VM_OBJECT_WUNLOCK(object);
298 	}
299 	vrefact(vp);
300 	return (object);
301 }
302 
303 /*
304  *	The object must be locked.
305  */
306 static void
307 vnode_pager_dealloc(vm_object_t object)
308 {
309 	struct vnode *vp;
310 	int refs;
311 
312 	vp = object->handle;
313 	if (vp == NULL)
314 		panic("vnode_pager_dealloc: pager already dealloced");
315 
316 	VM_OBJECT_ASSERT_WLOCKED(object);
317 	vm_object_pip_wait(object, "vnpdea");
318 	refs = object->ref_count;
319 
320 	object->handle = NULL;
321 	object->type = OBJT_DEAD;
322 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
323 	if (object->un_pager.vnp.writemappings > 0) {
324 		object->un_pager.vnp.writemappings = 0;
325 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
326 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
327 		    __func__, vp, vp->v_writecount);
328 	}
329 	vp->v_object = NULL;
330 	VI_LOCK(vp);
331 
332 	/*
333 	 * vm_map_entry_set_vnode_text() cannot reach this vnode by
334 	 * following object->handle.  Clear all text references now.
335 	 * This also clears the transient references from
336 	 * kern_execve(), which is fine because dead_vnodeops uses nop
337 	 * for VOP_UNSET_TEXT().
338 	 */
339 	if (vp->v_writecount < 0)
340 		vp->v_writecount = 0;
341 	VI_UNLOCK(vp);
342 	VM_OBJECT_WUNLOCK(object);
343 	while (refs-- > 0)
344 		vunref(vp);
345 	VM_OBJECT_WLOCK(object);
346 }
347 
348 static boolean_t
349 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
350     int *after)
351 {
352 	struct vnode *vp = object->handle;
353 	daddr_t bn;
354 	uintptr_t lockstate;
355 	int err;
356 	daddr_t reqblock;
357 	int poff;
358 	int bsize;
359 	int pagesperblock, blocksperpage;
360 
361 	VM_OBJECT_ASSERT_LOCKED(object);
362 	/*
363 	 * If no vp or vp is doomed or marked transparent to VM, we do not
364 	 * have the page.
365 	 */
366 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
367 		return FALSE;
368 	/*
369 	 * If the offset is beyond end of file we do
370 	 * not have the page.
371 	 */
372 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
373 		return FALSE;
374 
375 	bsize = vp->v_mount->mnt_stat.f_iosize;
376 	pagesperblock = bsize / PAGE_SIZE;
377 	blocksperpage = 0;
378 	if (pagesperblock > 0) {
379 		reqblock = pindex / pagesperblock;
380 	} else {
381 		blocksperpage = (PAGE_SIZE / bsize);
382 		reqblock = pindex * blocksperpage;
383 	}
384 	lockstate = VM_OBJECT_DROP(object);
385 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
386 	VM_OBJECT_PICKUP(object, lockstate);
387 	if (err)
388 		return TRUE;
389 	if (bn == -1)
390 		return FALSE;
391 	if (pagesperblock > 0) {
392 		poff = pindex - (reqblock * pagesperblock);
393 		if (before) {
394 			*before *= pagesperblock;
395 			*before += poff;
396 		}
397 		if (after) {
398 			/*
399 			 * The BMAP vop can report a partial block in the
400 			 * 'after', but must not report blocks after EOF.
401 			 * Assert the latter, and truncate 'after' in case
402 			 * of the former.
403 			 */
404 			KASSERT((reqblock + *after) * pagesperblock <
405 			    roundup2(object->size, pagesperblock),
406 			    ("%s: reqblock %jd after %d size %ju", __func__,
407 			    (intmax_t )reqblock, *after,
408 			    (uintmax_t )object->size));
409 			*after *= pagesperblock;
410 			*after += pagesperblock - (poff + 1);
411 			if (pindex + *after >= object->size)
412 				*after = object->size - 1 - pindex;
413 		}
414 	} else {
415 		if (before) {
416 			*before /= blocksperpage;
417 		}
418 
419 		if (after) {
420 			*after /= blocksperpage;
421 		}
422 	}
423 	return TRUE;
424 }
425 
426 /*
427  * Lets the VM system know about a change in size for a file.
428  * We adjust our own internal size and flush any cached pages in
429  * the associated object that are affected by the size change.
430  *
431  * Note: this routine may be invoked as a result of a pager put
432  * operation (possibly at object termination time), so we must be careful.
433  */
434 void
435 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
436 {
437 	vm_object_t object;
438 	vm_page_t m;
439 	vm_pindex_t nobjsize;
440 
441 	if ((object = vp->v_object) == NULL)
442 		return;
443 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
444 	VM_OBJECT_WLOCK(object);
445 	if (object->type == OBJT_DEAD) {
446 		VM_OBJECT_WUNLOCK(object);
447 		return;
448 	}
449 	KASSERT(object->type == OBJT_VNODE,
450 	    ("not vnode-backed object %p", object));
451 	if (nsize == object->un_pager.vnp.vnp_size) {
452 		/*
453 		 * Hasn't changed size
454 		 */
455 		VM_OBJECT_WUNLOCK(object);
456 		return;
457 	}
458 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
459 	if (nsize < object->un_pager.vnp.vnp_size) {
460 		/*
461 		 * File has shrunk. Toss any cached pages beyond the new EOF.
462 		 */
463 		if (nobjsize < object->size)
464 			vm_object_page_remove(object, nobjsize, object->size,
465 			    0);
466 		/*
467 		 * this gets rid of garbage at the end of a page that is now
468 		 * only partially backed by the vnode.
469 		 *
470 		 * XXX for some reason (I don't know yet), if we take a
471 		 * completely invalid page and mark it partially valid
472 		 * it can screw up NFS reads, so we don't allow the case.
473 		 */
474 		if (!(nsize & PAGE_MASK))
475 			goto out;
476 		m = vm_page_grab(object, OFF_TO_IDX(nsize), VM_ALLOC_NOCREAT);
477 		if (m == NULL)
478 			goto out;
479 		if (!vm_page_none_valid(m)) {
480 			int base = (int)nsize & PAGE_MASK;
481 			int size = PAGE_SIZE - base;
482 
483 			/*
484 			 * Clear out partial-page garbage in case
485 			 * the page has been mapped.
486 			 */
487 			pmap_zero_page_area(m, base, size);
488 
489 			/*
490 			 * Update the valid bits to reflect the blocks that
491 			 * have been zeroed.  Some of these valid bits may
492 			 * have already been set.
493 			 */
494 			vm_page_set_valid_range(m, base, size);
495 
496 			/*
497 			 * Round "base" to the next block boundary so that the
498 			 * dirty bit for a partially zeroed block is not
499 			 * cleared.
500 			 */
501 			base = roundup2(base, DEV_BSIZE);
502 
503 			/*
504 			 * Clear out partial-page dirty bits.
505 			 *
506 			 * note that we do not clear out the valid
507 			 * bits.  This would prevent bogus_page
508 			 * replacement from working properly.
509 			 */
510 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
511 		}
512 		vm_page_xunbusy(m);
513 	}
514 out:
515 	object->un_pager.vnp.vnp_size = nsize;
516 	object->size = nobjsize;
517 	VM_OBJECT_WUNLOCK(object);
518 }
519 
520 /*
521  * calculate the linear (byte) disk address of specified virtual
522  * file address
523  */
524 static int
525 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
526     int *run)
527 {
528 	int bsize;
529 	int err;
530 	daddr_t vblock;
531 	daddr_t voffset;
532 
533 	if (address < 0)
534 		return -1;
535 
536 	if (vp->v_iflag & VI_DOOMED)
537 		return -1;
538 
539 	bsize = vp->v_mount->mnt_stat.f_iosize;
540 	vblock = address / bsize;
541 	voffset = address % bsize;
542 
543 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
544 	if (err == 0) {
545 		if (*rtaddress != -1)
546 			*rtaddress += voffset / DEV_BSIZE;
547 		if (run) {
548 			*run += 1;
549 			*run *= bsize / PAGE_SIZE;
550 			*run -= voffset / PAGE_SIZE;
551 		}
552 	}
553 
554 	return (err);
555 }
556 
557 /*
558  * small block filesystem vnode pager input
559  */
560 static int
561 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
562 {
563 	struct vnode *vp;
564 	struct bufobj *bo;
565 	struct buf *bp;
566 	struct sf_buf *sf;
567 	daddr_t fileaddr;
568 	vm_offset_t bsize;
569 	vm_page_bits_t bits;
570 	int error, i;
571 
572 	error = 0;
573 	vp = object->handle;
574 	if (vp->v_iflag & VI_DOOMED)
575 		return VM_PAGER_BAD;
576 
577 	bsize = vp->v_mount->mnt_stat.f_iosize;
578 
579 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
580 
581 	sf = sf_buf_alloc(m, 0);
582 
583 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
584 		vm_ooffset_t address;
585 
586 		bits = vm_page_bits(i * bsize, bsize);
587 		if (m->valid & bits)
588 			continue;
589 
590 		address = IDX_TO_OFF(m->pindex) + i * bsize;
591 		if (address >= object->un_pager.vnp.vnp_size) {
592 			fileaddr = -1;
593 		} else {
594 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
595 			if (error)
596 				break;
597 		}
598 		if (fileaddr != -1) {
599 			bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
600 
601 			/* build a minimal buffer header */
602 			bp->b_iocmd = BIO_READ;
603 			bp->b_iodone = bdone;
604 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
605 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
606 			bp->b_rcred = crhold(curthread->td_ucred);
607 			bp->b_wcred = crhold(curthread->td_ucred);
608 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
609 			bp->b_blkno = fileaddr;
610 			pbgetbo(bo, bp);
611 			bp->b_vp = vp;
612 			bp->b_bcount = bsize;
613 			bp->b_bufsize = bsize;
614 			bp->b_runningbufspace = bp->b_bufsize;
615 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
616 
617 			/* do the input */
618 			bp->b_iooffset = dbtob(bp->b_blkno);
619 			bstrategy(bp);
620 
621 			bwait(bp, PVM, "vnsrd");
622 
623 			if ((bp->b_ioflags & BIO_ERROR) != 0)
624 				error = EIO;
625 
626 			/*
627 			 * free the buffer header back to the swap buffer pool
628 			 */
629 			bp->b_vp = NULL;
630 			pbrelbo(bp);
631 			uma_zfree(vnode_pbuf_zone, bp);
632 			if (error)
633 				break;
634 		} else
635 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
636 		KASSERT((m->dirty & bits) == 0,
637 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
638 		VM_OBJECT_WLOCK(object);
639 		m->valid |= bits;
640 		VM_OBJECT_WUNLOCK(object);
641 	}
642 	sf_buf_free(sf);
643 	if (error) {
644 		return VM_PAGER_ERROR;
645 	}
646 	return VM_PAGER_OK;
647 }
648 
649 /*
650  * old style vnode pager input routine
651  */
652 static int
653 vnode_pager_input_old(vm_object_t object, vm_page_t m)
654 {
655 	struct uio auio;
656 	struct iovec aiov;
657 	int error;
658 	int size;
659 	struct sf_buf *sf;
660 	struct vnode *vp;
661 
662 	VM_OBJECT_ASSERT_WLOCKED(object);
663 	error = 0;
664 
665 	/*
666 	 * Return failure if beyond current EOF
667 	 */
668 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
669 		return VM_PAGER_BAD;
670 	} else {
671 		size = PAGE_SIZE;
672 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
673 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
674 		vp = object->handle;
675 		VM_OBJECT_WUNLOCK(object);
676 
677 		/*
678 		 * Allocate a kernel virtual address and initialize so that
679 		 * we can use VOP_READ/WRITE routines.
680 		 */
681 		sf = sf_buf_alloc(m, 0);
682 
683 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
684 		aiov.iov_len = size;
685 		auio.uio_iov = &aiov;
686 		auio.uio_iovcnt = 1;
687 		auio.uio_offset = IDX_TO_OFF(m->pindex);
688 		auio.uio_segflg = UIO_SYSSPACE;
689 		auio.uio_rw = UIO_READ;
690 		auio.uio_resid = size;
691 		auio.uio_td = curthread;
692 
693 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
694 		if (!error) {
695 			int count = size - auio.uio_resid;
696 
697 			if (count == 0)
698 				error = EINVAL;
699 			else if (count != PAGE_SIZE)
700 				bzero((caddr_t)sf_buf_kva(sf) + count,
701 				    PAGE_SIZE - count);
702 		}
703 		sf_buf_free(sf);
704 
705 		VM_OBJECT_WLOCK(object);
706 	}
707 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
708 	if (!error)
709 		vm_page_valid(m);
710 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
711 }
712 
713 /*
714  * generic vnode pager input routine
715  */
716 
717 /*
718  * Local media VFS's that do not implement their own VOP_GETPAGES
719  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
720  * to implement the previous behaviour.
721  *
722  * All other FS's should use the bypass to get to the local media
723  * backing vp's VOP_GETPAGES.
724  */
725 static int
726 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
727     int *rahead)
728 {
729 	struct vnode *vp;
730 	int rtval;
731 
732 	vp = object->handle;
733 	VM_OBJECT_WUNLOCK(object);
734 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
735 	KASSERT(rtval != EOPNOTSUPP,
736 	    ("vnode_pager: FS getpages not implemented\n"));
737 	VM_OBJECT_WLOCK(object);
738 	return rtval;
739 }
740 
741 static int
742 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
743     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
744 {
745 	struct vnode *vp;
746 	int rtval;
747 
748 	vp = object->handle;
749 	VM_OBJECT_WUNLOCK(object);
750 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
751 	KASSERT(rtval != EOPNOTSUPP,
752 	    ("vnode_pager: FS getpages_async not implemented\n"));
753 	VM_OBJECT_WLOCK(object);
754 	return (rtval);
755 }
756 
757 /*
758  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
759  * local filesystems, where partially valid pages can only occur at
760  * the end of file.
761  */
762 int
763 vnode_pager_local_getpages(struct vop_getpages_args *ap)
764 {
765 
766 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
767 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
768 }
769 
770 int
771 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
772 {
773 
774 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
775 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
776 }
777 
778 /*
779  * This is now called from local media FS's to operate against their
780  * own vnodes if they fail to implement VOP_GETPAGES.
781  */
782 int
783 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
784     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
785 {
786 	vm_object_t object;
787 	struct bufobj *bo;
788 	struct buf *bp;
789 	off_t foff;
790 #ifdef INVARIANTS
791 	off_t blkno0;
792 #endif
793 	int bsize, pagesperblock;
794 	int error, before, after, rbehind, rahead, poff, i;
795 	int bytecount, secmask;
796 
797 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
798 	    ("%s does not support devices", __func__));
799 
800 	if (vp->v_iflag & VI_DOOMED)
801 		return (VM_PAGER_BAD);
802 
803 	object = vp->v_object;
804 	foff = IDX_TO_OFF(m[0]->pindex);
805 	bsize = vp->v_mount->mnt_stat.f_iosize;
806 	pagesperblock = bsize / PAGE_SIZE;
807 
808 	KASSERT(foff < object->un_pager.vnp.vnp_size,
809 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
810 	KASSERT(count <= nitems(bp->b_pages),
811 	    ("%s: requested %d pages", __func__, count));
812 
813 	/*
814 	 * The last page has valid blocks.  Invalid part can only
815 	 * exist at the end of file, and the page is made fully valid
816 	 * by zeroing in vm_pager_get_pages().
817 	 */
818 	if (!vm_page_none_valid(m[count - 1]) && --count == 0) {
819 		if (iodone != NULL)
820 			iodone(arg, m, 1, 0);
821 		return (VM_PAGER_OK);
822 	}
823 
824 	bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
825 
826 	/*
827 	 * Get the underlying device blocks for the file with VOP_BMAP().
828 	 * If the file system doesn't support VOP_BMAP, use old way of
829 	 * getting pages via VOP_READ.
830 	 */
831 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
832 	if (error == EOPNOTSUPP) {
833 		uma_zfree(vnode_pbuf_zone, bp);
834 		VM_OBJECT_WLOCK(object);
835 		for (i = 0; i < count; i++) {
836 			VM_CNT_INC(v_vnodein);
837 			VM_CNT_INC(v_vnodepgsin);
838 			error = vnode_pager_input_old(object, m[i]);
839 			if (error)
840 				break;
841 		}
842 		VM_OBJECT_WUNLOCK(object);
843 		return (error);
844 	} else if (error != 0) {
845 		uma_zfree(vnode_pbuf_zone, bp);
846 		return (VM_PAGER_ERROR);
847 	}
848 
849 	/*
850 	 * If the file system supports BMAP, but blocksize is smaller
851 	 * than a page size, then use special small filesystem code.
852 	 */
853 	if (pagesperblock == 0) {
854 		uma_zfree(vnode_pbuf_zone, bp);
855 		for (i = 0; i < count; i++) {
856 			VM_CNT_INC(v_vnodein);
857 			VM_CNT_INC(v_vnodepgsin);
858 			error = vnode_pager_input_smlfs(object, m[i]);
859 			if (error)
860 				break;
861 		}
862 		return (error);
863 	}
864 
865 	/*
866 	 * A sparse file can be encountered only for a single page request,
867 	 * which may not be preceded by call to vm_pager_haspage().
868 	 */
869 	if (bp->b_blkno == -1) {
870 		KASSERT(count == 1,
871 		    ("%s: array[%d] request to a sparse file %p", __func__,
872 		    count, vp));
873 		uma_zfree(vnode_pbuf_zone, bp);
874 		pmap_zero_page(m[0]);
875 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
876 		    __func__, m[0]));
877 		VM_OBJECT_WLOCK(object);
878 		vm_page_valid(m[0]);
879 		VM_OBJECT_WUNLOCK(object);
880 		return (VM_PAGER_OK);
881 	}
882 
883 #ifdef INVARIANTS
884 	blkno0 = bp->b_blkno;
885 #endif
886 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
887 
888 	/* Recalculate blocks available after/before to pages. */
889 	poff = (foff % bsize) / PAGE_SIZE;
890 	before *= pagesperblock;
891 	before += poff;
892 	after *= pagesperblock;
893 	after += pagesperblock - (poff + 1);
894 	if (m[0]->pindex + after >= object->size)
895 		after = object->size - 1 - m[0]->pindex;
896 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
897 	    __func__, count, after + 1));
898 	after -= count - 1;
899 
900 	/* Trim requested rbehind/rahead to possible values. */
901 	rbehind = a_rbehind ? *a_rbehind : 0;
902 	rahead = a_rahead ? *a_rahead : 0;
903 	rbehind = min(rbehind, before);
904 	rbehind = min(rbehind, m[0]->pindex);
905 	rahead = min(rahead, after);
906 	rahead = min(rahead, object->size - m[count - 1]->pindex);
907 	/*
908 	 * Check that total amount of pages fit into buf.  Trim rbehind and
909 	 * rahead evenly if not.
910 	 */
911 	if (rbehind + rahead + count > nitems(bp->b_pages)) {
912 		int trim, sum;
913 
914 		trim = rbehind + rahead + count - nitems(bp->b_pages) + 1;
915 		sum = rbehind + rahead;
916 		if (rbehind == before) {
917 			/* Roundup rbehind trim to block size. */
918 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
919 			if (rbehind < 0)
920 				rbehind = 0;
921 		} else
922 			rbehind -= trim * rbehind / sum;
923 		rahead -= trim * rahead / sum;
924 	}
925 	KASSERT(rbehind + rahead + count <= nitems(bp->b_pages),
926 	    ("%s: behind %d ahead %d count %d", __func__,
927 	    rbehind, rahead, count));
928 
929 	/*
930 	 * Fill in the bp->b_pages[] array with requested and optional
931 	 * read behind or read ahead pages.  Read behind pages are looked
932 	 * up in a backward direction, down to a first cached page.  Same
933 	 * for read ahead pages, but there is no need to shift the array
934 	 * in case of encountering a cached page.
935 	 */
936 	i = bp->b_npages = 0;
937 	if (rbehind) {
938 		vm_pindex_t startpindex, tpindex;
939 		vm_page_t p;
940 
941 		VM_OBJECT_WLOCK(object);
942 		startpindex = m[0]->pindex - rbehind;
943 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
944 		    p->pindex >= startpindex)
945 			startpindex = p->pindex + 1;
946 
947 		/* tpindex is unsigned; beware of numeric underflow. */
948 		for (tpindex = m[0]->pindex - 1;
949 		    tpindex >= startpindex && tpindex < m[0]->pindex;
950 		    tpindex--, i++) {
951 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
952 			if (p == NULL) {
953 				/* Shift the array. */
954 				for (int j = 0; j < i; j++)
955 					bp->b_pages[j] = bp->b_pages[j +
956 					    tpindex + 1 - startpindex];
957 				break;
958 			}
959 			bp->b_pages[tpindex - startpindex] = p;
960 		}
961 
962 		bp->b_pgbefore = i;
963 		bp->b_npages += i;
964 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
965 	} else
966 		bp->b_pgbefore = 0;
967 
968 	/* Requested pages. */
969 	for (int j = 0; j < count; j++, i++)
970 		bp->b_pages[i] = m[j];
971 	bp->b_npages += count;
972 
973 	if (rahead) {
974 		vm_pindex_t endpindex, tpindex;
975 		vm_page_t p;
976 
977 		if (!VM_OBJECT_WOWNED(object))
978 			VM_OBJECT_WLOCK(object);
979 		endpindex = m[count - 1]->pindex + rahead + 1;
980 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
981 		    p->pindex < endpindex)
982 			endpindex = p->pindex;
983 		if (endpindex > object->size)
984 			endpindex = object->size;
985 
986 		for (tpindex = m[count - 1]->pindex + 1;
987 		    tpindex < endpindex; i++, tpindex++) {
988 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
989 			if (p == NULL)
990 				break;
991 			bp->b_pages[i] = p;
992 		}
993 
994 		bp->b_pgafter = i - bp->b_npages;
995 		bp->b_npages = i;
996 	} else
997 		bp->b_pgafter = 0;
998 
999 	if (VM_OBJECT_WOWNED(object))
1000 		VM_OBJECT_WUNLOCK(object);
1001 
1002 	/* Report back actual behind/ahead read. */
1003 	if (a_rbehind)
1004 		*a_rbehind = bp->b_pgbefore;
1005 	if (a_rahead)
1006 		*a_rahead = bp->b_pgafter;
1007 
1008 #ifdef INVARIANTS
1009 	KASSERT(bp->b_npages <= nitems(bp->b_pages),
1010 	    ("%s: buf %p overflowed", __func__, bp));
1011 	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
1012 		if (bp->b_pages[j] == bogus_page)
1013 			continue;
1014 		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1015 		    j - prev, ("%s: pages array not consecutive, bp %p",
1016 		     __func__, bp));
1017 		prev = j;
1018 	}
1019 #endif
1020 
1021 	/*
1022 	 * Recalculate first offset and bytecount with regards to read behind.
1023 	 * Truncate bytecount to vnode real size and round up physical size
1024 	 * for real devices.
1025 	 */
1026 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1027 	bytecount = bp->b_npages << PAGE_SHIFT;
1028 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1029 		bytecount = object->un_pager.vnp.vnp_size - foff;
1030 	secmask = bo->bo_bsize - 1;
1031 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1032 	    ("%s: sector size %d too large", __func__, secmask + 1));
1033 	bytecount = (bytecount + secmask) & ~secmask;
1034 
1035 	/*
1036 	 * And map the pages to be read into the kva, if the filesystem
1037 	 * requires mapped buffers.
1038 	 */
1039 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1040 	    unmapped_buf_allowed) {
1041 		bp->b_data = unmapped_buf;
1042 		bp->b_offset = 0;
1043 	} else {
1044 		bp->b_data = bp->b_kvabase;
1045 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1046 	}
1047 
1048 	/* Build a minimal buffer header. */
1049 	bp->b_iocmd = BIO_READ;
1050 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1051 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1052 	bp->b_rcred = crhold(curthread->td_ucred);
1053 	bp->b_wcred = crhold(curthread->td_ucred);
1054 	pbgetbo(bo, bp);
1055 	bp->b_vp = vp;
1056 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1057 	bp->b_iooffset = dbtob(bp->b_blkno);
1058 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1059 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1060 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1061 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1062 	    "blkno0 %ju b_blkno %ju", bsize,
1063 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1064 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1065 
1066 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1067 	VM_CNT_INC(v_vnodein);
1068 	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1069 
1070 	if (iodone != NULL) { /* async */
1071 		bp->b_pgiodone = iodone;
1072 		bp->b_caller1 = arg;
1073 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1074 		bp->b_flags |= B_ASYNC;
1075 		BUF_KERNPROC(bp);
1076 		bstrategy(bp);
1077 		return (VM_PAGER_OK);
1078 	} else {
1079 		bp->b_iodone = bdone;
1080 		bstrategy(bp);
1081 		bwait(bp, PVM, "vnread");
1082 		error = vnode_pager_generic_getpages_done(bp);
1083 		for (i = 0; i < bp->b_npages; i++)
1084 			bp->b_pages[i] = NULL;
1085 		bp->b_vp = NULL;
1086 		pbrelbo(bp);
1087 		uma_zfree(vnode_pbuf_zone, bp);
1088 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1089 	}
1090 }
1091 
1092 static void
1093 vnode_pager_generic_getpages_done_async(struct buf *bp)
1094 {
1095 	int error;
1096 
1097 	error = vnode_pager_generic_getpages_done(bp);
1098 	/* Run the iodone upon the requested range. */
1099 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1100 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1101 	for (int i = 0; i < bp->b_npages; i++)
1102 		bp->b_pages[i] = NULL;
1103 	bp->b_vp = NULL;
1104 	pbrelbo(bp);
1105 	uma_zfree(vnode_pbuf_zone, bp);
1106 }
1107 
1108 static int
1109 vnode_pager_generic_getpages_done(struct buf *bp)
1110 {
1111 	vm_object_t object;
1112 	off_t tfoff, nextoff;
1113 	int i, error;
1114 
1115 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1116 	object = bp->b_vp->v_object;
1117 
1118 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1119 		if (!buf_mapped(bp)) {
1120 			bp->b_data = bp->b_kvabase;
1121 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1122 			    bp->b_npages);
1123 		}
1124 		bzero(bp->b_data + bp->b_bcount,
1125 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1126 	}
1127 	if (buf_mapped(bp)) {
1128 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1129 		bp->b_data = unmapped_buf;
1130 	}
1131 
1132 	VM_OBJECT_WLOCK(object);
1133 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1134 	    i < bp->b_npages; i++, tfoff = nextoff) {
1135 		vm_page_t mt;
1136 
1137 		nextoff = tfoff + PAGE_SIZE;
1138 		mt = bp->b_pages[i];
1139 
1140 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1141 			/*
1142 			 * Read filled up entire page.
1143 			 */
1144 			vm_page_valid(mt);
1145 			KASSERT(mt->dirty == 0,
1146 			    ("%s: page %p is dirty", __func__, mt));
1147 			KASSERT(!pmap_page_is_mapped(mt),
1148 			    ("%s: page %p is mapped", __func__, mt));
1149 		} else {
1150 			/*
1151 			 * Read did not fill up entire page.
1152 			 *
1153 			 * Currently we do not set the entire page valid,
1154 			 * we just try to clear the piece that we couldn't
1155 			 * read.
1156 			 */
1157 			vm_page_set_valid_range(mt, 0,
1158 			    object->un_pager.vnp.vnp_size - tfoff);
1159 			KASSERT((mt->dirty & vm_page_bits(0,
1160 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1161 			    ("%s: page %p is dirty", __func__, mt));
1162 		}
1163 
1164 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1165 			vm_page_readahead_finish(mt);
1166 	}
1167 	VM_OBJECT_WUNLOCK(object);
1168 	if (error != 0)
1169 		printf("%s: I/O read error %d\n", __func__, error);
1170 
1171 	return (error);
1172 }
1173 
1174 /*
1175  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1176  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1177  * vnode_pager_generic_putpages() to implement the previous behaviour.
1178  *
1179  * All other FS's should use the bypass to get to the local media
1180  * backing vp's VOP_PUTPAGES.
1181  */
1182 static void
1183 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1184     int flags, int *rtvals)
1185 {
1186 	int rtval;
1187 	struct vnode *vp;
1188 	int bytes = count * PAGE_SIZE;
1189 
1190 	/*
1191 	 * Force synchronous operation if we are extremely low on memory
1192 	 * to prevent a low-memory deadlock.  VOP operations often need to
1193 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1194 	 * operation ).  The swapper handles the case by limiting the amount
1195 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1196 	 * for the vnode pager without a lot of work.
1197 	 *
1198 	 * Also, the backing vnode's iodone routine may not wake the pageout
1199 	 * daemon up.  This should be probably be addressed XXX.
1200 	 */
1201 
1202 	if (vm_page_count_min())
1203 		flags |= VM_PAGER_PUT_SYNC;
1204 
1205 	/*
1206 	 * Call device-specific putpages function
1207 	 */
1208 	vp = object->handle;
1209 	VM_OBJECT_WUNLOCK(object);
1210 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1211 	KASSERT(rtval != EOPNOTSUPP,
1212 	    ("vnode_pager: stale FS putpages\n"));
1213 	VM_OBJECT_WLOCK(object);
1214 }
1215 
1216 static int
1217 vn_off2bidx(vm_ooffset_t offset)
1218 {
1219 
1220 	return ((offset & PAGE_MASK) / DEV_BSIZE);
1221 }
1222 
1223 static bool
1224 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1225 {
1226 
1227 	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1228 	    offset < IDX_TO_OFF(m->pindex + 1),
1229 	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1230 	    (uintmax_t)offset));
1231 	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1232 }
1233 
1234 /*
1235  * This is now called from local media FS's to operate against their
1236  * own vnodes if they fail to implement VOP_PUTPAGES.
1237  *
1238  * This is typically called indirectly via the pageout daemon and
1239  * clustering has already typically occurred, so in general we ask the
1240  * underlying filesystem to write the data out asynchronously rather
1241  * then delayed.
1242  */
1243 int
1244 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1245     int flags, int *rtvals)
1246 {
1247 	vm_object_t object;
1248 	vm_page_t m;
1249 	vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1250 	struct uio auio;
1251 	struct iovec aiov;
1252 	off_t prev_resid, wrsz;
1253 	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1254 	bool in_hole;
1255 	static struct timeval lastfail;
1256 	static int curfail;
1257 
1258 	object = vp->v_object;
1259 	count = bytecount / PAGE_SIZE;
1260 
1261 	for (i = 0; i < count; i++)
1262 		rtvals[i] = VM_PAGER_ERROR;
1263 
1264 	if ((int64_t)ma[0]->pindex < 0) {
1265 		printf("vnode_pager_generic_putpages: "
1266 		    "attempt to write meta-data 0x%jx(%lx)\n",
1267 		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1268 		rtvals[0] = VM_PAGER_BAD;
1269 		return (VM_PAGER_BAD);
1270 	}
1271 
1272 	maxsize = count * PAGE_SIZE;
1273 	ncount = count;
1274 
1275 	poffset = IDX_TO_OFF(ma[0]->pindex);
1276 
1277 	/*
1278 	 * If the page-aligned write is larger then the actual file we
1279 	 * have to invalidate pages occurring beyond the file EOF.  However,
1280 	 * there is an edge case where a file may not be page-aligned where
1281 	 * the last page is partially invalid.  In this case the filesystem
1282 	 * may not properly clear the dirty bits for the entire page (which
1283 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1284 	 * With the page locked we are free to fix-up the dirty bits here.
1285 	 *
1286 	 * We do not under any circumstances truncate the valid bits, as
1287 	 * this will screw up bogus page replacement.
1288 	 */
1289 	VM_OBJECT_RLOCK(object);
1290 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1291 		if (!VM_OBJECT_TRYUPGRADE(object)) {
1292 			VM_OBJECT_RUNLOCK(object);
1293 			VM_OBJECT_WLOCK(object);
1294 			if (maxsize + poffset <= object->un_pager.vnp.vnp_size)
1295 				goto downgrade;
1296 		}
1297 		if (object->un_pager.vnp.vnp_size > poffset) {
1298 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1299 			ncount = btoc(maxsize);
1300 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1301 				pgoff = roundup2(pgoff, DEV_BSIZE);
1302 
1303 				/*
1304 				 * If the object is locked and the following
1305 				 * conditions hold, then the page's dirty
1306 				 * field cannot be concurrently changed by a
1307 				 * pmap operation.
1308 				 */
1309 				m = ma[ncount - 1];
1310 				vm_page_assert_sbusied(m);
1311 				KASSERT(!pmap_page_is_write_mapped(m),
1312 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1313 				MPASS(m->dirty != 0);
1314 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1315 				    pgoff);
1316 			}
1317 		} else {
1318 			maxsize = 0;
1319 			ncount = 0;
1320 		}
1321 		for (i = ncount; i < count; i++)
1322 			rtvals[i] = VM_PAGER_BAD;
1323 downgrade:
1324 		VM_OBJECT_LOCK_DOWNGRADE(object);
1325 	}
1326 
1327 	auio.uio_iov = &aiov;
1328 	auio.uio_segflg = UIO_NOCOPY;
1329 	auio.uio_rw = UIO_WRITE;
1330 	auio.uio_td = NULL;
1331 	maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1332 
1333 	for (prev_offset = poffset; prev_offset < maxblksz;) {
1334 		/* Skip clean blocks. */
1335 		for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1336 			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1337 			for (i = vn_off2bidx(prev_offset);
1338 			    i < sizeof(vm_page_bits_t) * NBBY &&
1339 			    prev_offset < maxblksz; i++) {
1340 				if (vn_dirty_blk(m, prev_offset)) {
1341 					in_hole = false;
1342 					break;
1343 				}
1344 				prev_offset += DEV_BSIZE;
1345 			}
1346 		}
1347 		if (in_hole)
1348 			goto write_done;
1349 
1350 		/* Find longest run of dirty blocks. */
1351 		for (next_offset = prev_offset; next_offset < maxblksz;) {
1352 			m = ma[OFF_TO_IDX(next_offset - poffset)];
1353 			for (i = vn_off2bidx(next_offset);
1354 			    i < sizeof(vm_page_bits_t) * NBBY &&
1355 			    next_offset < maxblksz; i++) {
1356 				if (!vn_dirty_blk(m, next_offset))
1357 					goto start_write;
1358 				next_offset += DEV_BSIZE;
1359 			}
1360 		}
1361 start_write:
1362 		if (next_offset > poffset + maxsize)
1363 			next_offset = poffset + maxsize;
1364 
1365 		/*
1366 		 * Getting here requires finding a dirty block in the
1367 		 * 'skip clean blocks' loop.
1368 		 */
1369 		MPASS(prev_offset < next_offset);
1370 
1371 		VM_OBJECT_RUNLOCK(object);
1372 		aiov.iov_base = NULL;
1373 		auio.uio_iovcnt = 1;
1374 		auio.uio_offset = prev_offset;
1375 		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1376 		    prev_offset;
1377 		error = VOP_WRITE(vp, &auio,
1378 		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1379 
1380 		wrsz = prev_resid - auio.uio_resid;
1381 		if (wrsz == 0) {
1382 			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1383 				vn_printf(vp, "vnode_pager_putpages: "
1384 				    "zero-length write at %ju resid %zd\n",
1385 				    auio.uio_offset, auio.uio_resid);
1386 			}
1387 			VM_OBJECT_RLOCK(object);
1388 			break;
1389 		}
1390 
1391 		/* Adjust the starting offset for next iteration. */
1392 		prev_offset += wrsz;
1393 		MPASS(auio.uio_offset == prev_offset);
1394 
1395 		ppscheck = 0;
1396 		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1397 		    &curfail, 1)) != 0)
1398 			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1399 			    error);
1400 		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1401 		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1402 			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1403 			    "at %ju\n", auio.uio_resid,
1404 			    (uintmax_t)ma[0]->pindex);
1405 		VM_OBJECT_RLOCK(object);
1406 		if (error != 0 || auio.uio_resid != 0)
1407 			break;
1408 	}
1409 write_done:
1410 	/* Mark completely processed pages. */
1411 	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1412 		rtvals[i] = VM_PAGER_OK;
1413 	/* Mark partial EOF page. */
1414 	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1415 		rtvals[i++] = VM_PAGER_OK;
1416 	/* Unwritten pages in range, free bonus if the page is clean. */
1417 	for (; i < ncount; i++)
1418 		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1419 	VM_OBJECT_RUNLOCK(object);
1420 	VM_CNT_ADD(v_vnodepgsout, i);
1421 	VM_CNT_INC(v_vnodeout);
1422 	return (rtvals[0]);
1423 }
1424 
1425 int
1426 vnode_pager_putpages_ioflags(int pager_flags)
1427 {
1428 	int ioflags;
1429 
1430 	/*
1431 	 * Pageouts are already clustered, use IO_ASYNC to force a
1432 	 * bawrite() rather then a bdwrite() to prevent paging I/O
1433 	 * from saturating the buffer cache.  Dummy-up the sequential
1434 	 * heuristic to cause large ranges to cluster.  If neither
1435 	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1436 	 * cluster.
1437 	 */
1438 	ioflags = IO_VMIO;
1439 	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1440 		ioflags |= IO_SYNC;
1441 	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1442 		ioflags |= IO_ASYNC;
1443 	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1444 	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1445 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1446 	return (ioflags);
1447 }
1448 
1449 /*
1450  * vnode_pager_undirty_pages().
1451  *
1452  * A helper to mark pages as clean after pageout that was possibly
1453  * done with a short write.  The lpos argument specifies the page run
1454  * length in bytes, and the written argument specifies how many bytes
1455  * were actually written.  eof is the offset past the last valid byte
1456  * in the vnode using the absolute file position of the first byte in
1457  * the run as the base from which it is computed.
1458  */
1459 void
1460 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1461     int lpos)
1462 {
1463 	vm_object_t obj;
1464 	int i, pos, pos_devb;
1465 
1466 	if (written == 0 && eof >= lpos)
1467 		return;
1468 	obj = ma[0]->object;
1469 	VM_OBJECT_WLOCK(obj);
1470 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1471 		if (pos < trunc_page(written)) {
1472 			rtvals[i] = VM_PAGER_OK;
1473 			vm_page_undirty(ma[i]);
1474 		} else {
1475 			/* Partially written page. */
1476 			rtvals[i] = VM_PAGER_AGAIN;
1477 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1478 		}
1479 	}
1480 	if (eof >= lpos) /* avoid truncation */
1481 		goto done;
1482 	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1483 		if (pos != trunc_page(pos)) {
1484 			/*
1485 			 * The page contains the last valid byte in
1486 			 * the vnode, mark the rest of the page as
1487 			 * clean, potentially making the whole page
1488 			 * clean.
1489 			 */
1490 			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1491 			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1492 			    pos_devb);
1493 
1494 			/*
1495 			 * If the page was cleaned, report the pageout
1496 			 * on it as successful.  msync() no longer
1497 			 * needs to write out the page, endlessly
1498 			 * creating write requests and dirty buffers.
1499 			 */
1500 			if (ma[i]->dirty == 0)
1501 				rtvals[i] = VM_PAGER_OK;
1502 
1503 			pos = round_page(pos);
1504 		} else {
1505 			/* vm_pageout_flush() clears dirty */
1506 			rtvals[i] = VM_PAGER_BAD;
1507 			pos += PAGE_SIZE;
1508 		}
1509 	}
1510 done:
1511 	VM_OBJECT_WUNLOCK(obj);
1512 }
1513 
1514 static void
1515 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1516     vm_offset_t end)
1517 {
1518 	struct vnode *vp;
1519 	vm_ooffset_t old_wm;
1520 
1521 	VM_OBJECT_WLOCK(object);
1522 	if (object->type != OBJT_VNODE) {
1523 		VM_OBJECT_WUNLOCK(object);
1524 		return;
1525 	}
1526 	old_wm = object->un_pager.vnp.writemappings;
1527 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1528 	vp = object->handle;
1529 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1530 		ASSERT_VOP_LOCKED(vp, "v_writecount inc");
1531 		VOP_ADD_WRITECOUNT_CHECKED(vp, 1);
1532 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1533 		    __func__, vp, vp->v_writecount);
1534 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1535 		ASSERT_VOP_LOCKED(vp, "v_writecount dec");
1536 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1537 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1538 		    __func__, vp, vp->v_writecount);
1539 	}
1540 	VM_OBJECT_WUNLOCK(object);
1541 }
1542 
1543 static void
1544 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1545     vm_offset_t end)
1546 {
1547 	struct vnode *vp;
1548 	struct mount *mp;
1549 	vm_offset_t inc;
1550 
1551 	VM_OBJECT_WLOCK(object);
1552 
1553 	/*
1554 	 * First, recheck the object type to account for the race when
1555 	 * the vnode is reclaimed.
1556 	 */
1557 	if (object->type != OBJT_VNODE) {
1558 		VM_OBJECT_WUNLOCK(object);
1559 		return;
1560 	}
1561 
1562 	/*
1563 	 * Optimize for the case when writemappings is not going to
1564 	 * zero.
1565 	 */
1566 	inc = end - start;
1567 	if (object->un_pager.vnp.writemappings != inc) {
1568 		object->un_pager.vnp.writemappings -= inc;
1569 		VM_OBJECT_WUNLOCK(object);
1570 		return;
1571 	}
1572 
1573 	vp = object->handle;
1574 	vhold(vp);
1575 	VM_OBJECT_WUNLOCK(object);
1576 	mp = NULL;
1577 	vn_start_write(vp, &mp, V_WAIT);
1578 	vn_lock(vp, LK_SHARED | LK_RETRY);
1579 
1580 	/*
1581 	 * Decrement the object's writemappings, by swapping the start
1582 	 * and end arguments for vnode_pager_update_writecount().  If
1583 	 * there was not a race with vnode reclaimation, then the
1584 	 * vnode's v_writecount is decremented.
1585 	 */
1586 	vnode_pager_update_writecount(object, end, start);
1587 	VOP_UNLOCK(vp, 0);
1588 	vdrop(vp);
1589 	if (mp != NULL)
1590 		vn_finished_write(mp);
1591 }
1592