1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991 The Regents of the University of California. 6 * All rights reserved. 7 * Copyright (c) 1993, 1994 John S. Dyson 8 * Copyright (c) 1995, David Greenman 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 43 */ 44 45 /* 46 * Page to/from files (vnodes). 47 */ 48 49 /* 50 * TODO: 51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 52 * greatly re-simplify the vnode_pager. 53 */ 54 55 #include <sys/cdefs.h> 56 __FBSDID("$FreeBSD$"); 57 58 #include "opt_vm.h" 59 60 #include <sys/param.h> 61 #include <sys/kernel.h> 62 #include <sys/systm.h> 63 #include <sys/sysctl.h> 64 #include <sys/proc.h> 65 #include <sys/vnode.h> 66 #include <sys/mount.h> 67 #include <sys/bio.h> 68 #include <sys/buf.h> 69 #include <sys/vmmeter.h> 70 #include <sys/ktr.h> 71 #include <sys/limits.h> 72 #include <sys/conf.h> 73 #include <sys/rwlock.h> 74 #include <sys/sf_buf.h> 75 #include <sys/domainset.h> 76 77 #include <machine/atomic.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_object.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pager.h> 84 #include <vm/vm_map.h> 85 #include <vm/vnode_pager.h> 86 #include <vm/vm_extern.h> 87 #include <vm/uma.h> 88 89 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 90 daddr_t *rtaddress, int *run); 91 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 92 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 93 static void vnode_pager_dealloc(vm_object_t); 94 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *); 95 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 96 int *, vop_getpages_iodone_t, void *); 97 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *); 98 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 99 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, 100 vm_ooffset_t, struct ucred *cred); 101 static int vnode_pager_generic_getpages_done(struct buf *); 102 static void vnode_pager_generic_getpages_done_async(struct buf *); 103 static void vnode_pager_update_writecount(vm_object_t, vm_offset_t, 104 vm_offset_t); 105 static void vnode_pager_release_writecount(vm_object_t, vm_offset_t, 106 vm_offset_t); 107 108 struct pagerops vnodepagerops = { 109 .pgo_alloc = vnode_pager_alloc, 110 .pgo_dealloc = vnode_pager_dealloc, 111 .pgo_getpages = vnode_pager_getpages, 112 .pgo_getpages_async = vnode_pager_getpages_async, 113 .pgo_putpages = vnode_pager_putpages, 114 .pgo_haspage = vnode_pager_haspage, 115 .pgo_update_writecount = vnode_pager_update_writecount, 116 .pgo_release_writecount = vnode_pager_release_writecount, 117 }; 118 119 static struct domainset *vnode_domainset = NULL; 120 121 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW, 122 &vnode_domainset, 0, sysctl_handle_domainset, "A", 123 "Default vnode NUMA policy"); 124 125 static int nvnpbufs; 126 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 127 &nvnpbufs, 0, "number of physical buffers allocated for vnode pager"); 128 129 static uma_zone_t vnode_pbuf_zone; 130 131 static void 132 vnode_pager_init(void *dummy) 133 { 134 135 #ifdef __LP64__ 136 nvnpbufs = nswbuf * 2; 137 #else 138 nvnpbufs = nswbuf / 2; 139 #endif 140 TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs); 141 vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs); 142 } 143 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL); 144 145 /* Create the VM system backing object for this vnode */ 146 int 147 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 148 { 149 vm_object_t object; 150 vm_ooffset_t size = isize; 151 struct vattr va; 152 153 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 154 return (0); 155 156 object = vp->v_object; 157 if (object != NULL) 158 return (0); 159 160 if (size == 0) { 161 if (vn_isdisk(vp, NULL)) { 162 size = IDX_TO_OFF(INT_MAX); 163 } else { 164 if (VOP_GETATTR(vp, &va, td->td_ucred)) 165 return (0); 166 size = va.va_size; 167 } 168 } 169 170 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); 171 /* 172 * Dereference the reference we just created. This assumes 173 * that the object is associated with the vp. 174 */ 175 VM_OBJECT_WLOCK(object); 176 object->ref_count--; 177 VM_OBJECT_WUNLOCK(object); 178 vrele(vp); 179 180 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 181 182 return (0); 183 } 184 185 void 186 vnode_destroy_vobject(struct vnode *vp) 187 { 188 struct vm_object *obj; 189 190 obj = vp->v_object; 191 if (obj == NULL || obj->handle != vp) 192 return; 193 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 194 VM_OBJECT_WLOCK(obj); 195 MPASS(obj->type == OBJT_VNODE); 196 umtx_shm_object_terminated(obj); 197 if (obj->ref_count == 0) { 198 /* 199 * don't double-terminate the object 200 */ 201 if ((obj->flags & OBJ_DEAD) == 0) { 202 vm_object_set_flag(obj, OBJ_DEAD); 203 204 /* 205 * Clean pages and flush buffers. 206 */ 207 vm_object_page_clean(obj, 0, 0, OBJPC_SYNC); 208 VM_OBJECT_WUNLOCK(obj); 209 210 vinvalbuf(vp, V_SAVE, 0, 0); 211 212 BO_LOCK(&vp->v_bufobj); 213 vp->v_bufobj.bo_flag |= BO_DEAD; 214 BO_UNLOCK(&vp->v_bufobj); 215 216 VM_OBJECT_WLOCK(obj); 217 vm_object_terminate(obj); 218 } else { 219 /* 220 * Waiters were already handled during object 221 * termination. The exclusive vnode lock hopefully 222 * prevented new waiters from referencing the dying 223 * object. 224 */ 225 vp->v_object = NULL; 226 VM_OBJECT_WUNLOCK(obj); 227 } 228 } else { 229 /* 230 * Woe to the process that tries to page now :-). 231 */ 232 vm_pager_deallocate(obj); 233 VM_OBJECT_WUNLOCK(obj); 234 } 235 KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object)); 236 } 237 238 239 /* 240 * Allocate (or lookup) pager for a vnode. 241 * Handle is a vnode pointer. 242 */ 243 vm_object_t 244 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 245 vm_ooffset_t offset, struct ucred *cred) 246 { 247 vm_object_t object; 248 struct vnode *vp; 249 250 /* 251 * Pageout to vnode, no can do yet. 252 */ 253 if (handle == NULL) 254 return (NULL); 255 256 vp = (struct vnode *)handle; 257 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 258 KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference")); 259 retry: 260 object = vp->v_object; 261 262 if (object == NULL) { 263 /* 264 * Add an object of the appropriate size 265 */ 266 object = vm_object_allocate(OBJT_VNODE, 267 OFF_TO_IDX(round_page(size))); 268 269 object->un_pager.vnp.vnp_size = size; 270 object->un_pager.vnp.writemappings = 0; 271 object->domain.dr_policy = vnode_domainset; 272 object->handle = handle; 273 if ((vp->v_vflag & VV_VMSIZEVNLOCK) != 0) { 274 VM_OBJECT_WLOCK(object); 275 vm_object_set_flag(object, OBJ_SIZEVNLOCK); 276 VM_OBJECT_WUNLOCK(object); 277 } 278 VI_LOCK(vp); 279 if (vp->v_object != NULL) { 280 /* 281 * Object has been created while we were allocating. 282 */ 283 VI_UNLOCK(vp); 284 VM_OBJECT_WLOCK(object); 285 KASSERT(object->ref_count == 1, 286 ("leaked ref %p %d", object, object->ref_count)); 287 object->type = OBJT_DEAD; 288 object->ref_count = 0; 289 VM_OBJECT_WUNLOCK(object); 290 vm_object_destroy(object); 291 goto retry; 292 } 293 vp->v_object = object; 294 VI_UNLOCK(vp); 295 } else { 296 VM_OBJECT_WLOCK(object); 297 object->ref_count++; 298 #if VM_NRESERVLEVEL > 0 299 vm_object_color(object, 0); 300 #endif 301 VM_OBJECT_WUNLOCK(object); 302 } 303 vrefact(vp); 304 return (object); 305 } 306 307 /* 308 * The object must be locked. 309 */ 310 static void 311 vnode_pager_dealloc(vm_object_t object) 312 { 313 struct vnode *vp; 314 int refs; 315 316 vp = object->handle; 317 if (vp == NULL) 318 panic("vnode_pager_dealloc: pager already dealloced"); 319 320 VM_OBJECT_ASSERT_WLOCKED(object); 321 vm_object_pip_wait(object, "vnpdea"); 322 refs = object->ref_count; 323 324 object->handle = NULL; 325 object->type = OBJT_DEAD; 326 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 327 if (object->un_pager.vnp.writemappings > 0) { 328 object->un_pager.vnp.writemappings = 0; 329 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 330 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 331 __func__, vp, vp->v_writecount); 332 } 333 vp->v_object = NULL; 334 VI_LOCK(vp); 335 336 /* 337 * vm_map_entry_set_vnode_text() cannot reach this vnode by 338 * following object->handle. Clear all text references now. 339 * This also clears the transient references from 340 * kern_execve(), which is fine because dead_vnodeops uses nop 341 * for VOP_UNSET_TEXT(). 342 */ 343 if (vp->v_writecount < 0) 344 vp->v_writecount = 0; 345 VI_UNLOCK(vp); 346 VM_OBJECT_WUNLOCK(object); 347 while (refs-- > 0) 348 vunref(vp); 349 VM_OBJECT_WLOCK(object); 350 } 351 352 static boolean_t 353 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 354 int *after) 355 { 356 struct vnode *vp = object->handle; 357 daddr_t bn; 358 uintptr_t lockstate; 359 int err; 360 daddr_t reqblock; 361 int poff; 362 int bsize; 363 int pagesperblock, blocksperpage; 364 365 VM_OBJECT_ASSERT_LOCKED(object); 366 /* 367 * If no vp or vp is doomed or marked transparent to VM, we do not 368 * have the page. 369 */ 370 if (vp == NULL || vp->v_iflag & VI_DOOMED) 371 return FALSE; 372 /* 373 * If the offset is beyond end of file we do 374 * not have the page. 375 */ 376 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 377 return FALSE; 378 379 bsize = vp->v_mount->mnt_stat.f_iosize; 380 pagesperblock = bsize / PAGE_SIZE; 381 blocksperpage = 0; 382 if (pagesperblock > 0) { 383 reqblock = pindex / pagesperblock; 384 } else { 385 blocksperpage = (PAGE_SIZE / bsize); 386 reqblock = pindex * blocksperpage; 387 } 388 lockstate = VM_OBJECT_DROP(object); 389 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 390 VM_OBJECT_PICKUP(object, lockstate); 391 if (err) 392 return TRUE; 393 if (bn == -1) 394 return FALSE; 395 if (pagesperblock > 0) { 396 poff = pindex - (reqblock * pagesperblock); 397 if (before) { 398 *before *= pagesperblock; 399 *before += poff; 400 } 401 if (after) { 402 /* 403 * The BMAP vop can report a partial block in the 404 * 'after', but must not report blocks after EOF. 405 * Assert the latter, and truncate 'after' in case 406 * of the former. 407 */ 408 KASSERT((reqblock + *after) * pagesperblock < 409 roundup2(object->size, pagesperblock), 410 ("%s: reqblock %jd after %d size %ju", __func__, 411 (intmax_t )reqblock, *after, 412 (uintmax_t )object->size)); 413 *after *= pagesperblock; 414 *after += pagesperblock - (poff + 1); 415 if (pindex + *after >= object->size) 416 *after = object->size - 1 - pindex; 417 } 418 } else { 419 if (before) { 420 *before /= blocksperpage; 421 } 422 423 if (after) { 424 *after /= blocksperpage; 425 } 426 } 427 return TRUE; 428 } 429 430 /* 431 * Lets the VM system know about a change in size for a file. 432 * We adjust our own internal size and flush any cached pages in 433 * the associated object that are affected by the size change. 434 * 435 * Note: this routine may be invoked as a result of a pager put 436 * operation (possibly at object termination time), so we must be careful. 437 */ 438 void 439 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize) 440 { 441 vm_object_t object; 442 vm_page_t m; 443 vm_pindex_t nobjsize; 444 445 if ((object = vp->v_object) == NULL) 446 return; 447 #ifdef DEBUG_VFS_LOCKS 448 { 449 struct mount *mp; 450 451 mp = vp->v_mount; 452 if (mp != NULL && (mp->mnt_kern_flag & MNTK_VMSETSIZE_BUG) == 0) 453 assert_vop_elocked(vp, 454 "vnode_pager_setsize and not locked vnode"); 455 } 456 #endif 457 VM_OBJECT_WLOCK(object); 458 if (object->type == OBJT_DEAD) { 459 VM_OBJECT_WUNLOCK(object); 460 return; 461 } 462 KASSERT(object->type == OBJT_VNODE, 463 ("not vnode-backed object %p", object)); 464 if (nsize == object->un_pager.vnp.vnp_size) { 465 /* 466 * Hasn't changed size 467 */ 468 VM_OBJECT_WUNLOCK(object); 469 return; 470 } 471 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 472 if (nsize < object->un_pager.vnp.vnp_size) { 473 /* 474 * File has shrunk. Toss any cached pages beyond the new EOF. 475 */ 476 if (nobjsize < object->size) 477 vm_object_page_remove(object, nobjsize, object->size, 478 0); 479 /* 480 * this gets rid of garbage at the end of a page that is now 481 * only partially backed by the vnode. 482 * 483 * XXX for some reason (I don't know yet), if we take a 484 * completely invalid page and mark it partially valid 485 * it can screw up NFS reads, so we don't allow the case. 486 */ 487 if (!(nsize & PAGE_MASK)) 488 goto out; 489 m = vm_page_grab(object, OFF_TO_IDX(nsize), VM_ALLOC_NOCREAT); 490 if (m == NULL) 491 goto out; 492 if (!vm_page_none_valid(m)) { 493 int base = (int)nsize & PAGE_MASK; 494 int size = PAGE_SIZE - base; 495 496 /* 497 * Clear out partial-page garbage in case 498 * the page has been mapped. 499 */ 500 pmap_zero_page_area(m, base, size); 501 502 /* 503 * Update the valid bits to reflect the blocks that 504 * have been zeroed. Some of these valid bits may 505 * have already been set. 506 */ 507 vm_page_set_valid_range(m, base, size); 508 509 /* 510 * Round "base" to the next block boundary so that the 511 * dirty bit for a partially zeroed block is not 512 * cleared. 513 */ 514 base = roundup2(base, DEV_BSIZE); 515 516 /* 517 * Clear out partial-page dirty bits. 518 * 519 * note that we do not clear out the valid 520 * bits. This would prevent bogus_page 521 * replacement from working properly. 522 */ 523 vm_page_clear_dirty(m, base, PAGE_SIZE - base); 524 } 525 vm_page_xunbusy(m); 526 } 527 out: 528 object->un_pager.vnp.vnp_size = nsize; 529 object->size = nobjsize; 530 VM_OBJECT_WUNLOCK(object); 531 } 532 533 /* 534 * calculate the linear (byte) disk address of specified virtual 535 * file address 536 */ 537 static int 538 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 539 int *run) 540 { 541 int bsize; 542 int err; 543 daddr_t vblock; 544 daddr_t voffset; 545 546 if (address < 0) 547 return -1; 548 549 if (vp->v_iflag & VI_DOOMED) 550 return -1; 551 552 bsize = vp->v_mount->mnt_stat.f_iosize; 553 vblock = address / bsize; 554 voffset = address % bsize; 555 556 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 557 if (err == 0) { 558 if (*rtaddress != -1) 559 *rtaddress += voffset / DEV_BSIZE; 560 if (run) { 561 *run += 1; 562 *run *= bsize / PAGE_SIZE; 563 *run -= voffset / PAGE_SIZE; 564 } 565 } 566 567 return (err); 568 } 569 570 /* 571 * small block filesystem vnode pager input 572 */ 573 static int 574 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m) 575 { 576 struct vnode *vp; 577 struct bufobj *bo; 578 struct buf *bp; 579 struct sf_buf *sf; 580 daddr_t fileaddr; 581 vm_offset_t bsize; 582 vm_page_bits_t bits; 583 int error, i; 584 585 error = 0; 586 vp = object->handle; 587 if (vp->v_iflag & VI_DOOMED) 588 return VM_PAGER_BAD; 589 590 bsize = vp->v_mount->mnt_stat.f_iosize; 591 592 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 593 594 sf = sf_buf_alloc(m, 0); 595 596 for (i = 0; i < PAGE_SIZE / bsize; i++) { 597 vm_ooffset_t address; 598 599 bits = vm_page_bits(i * bsize, bsize); 600 if (m->valid & bits) 601 continue; 602 603 address = IDX_TO_OFF(m->pindex) + i * bsize; 604 if (address >= object->un_pager.vnp.vnp_size) { 605 fileaddr = -1; 606 } else { 607 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 608 if (error) 609 break; 610 } 611 if (fileaddr != -1) { 612 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 613 614 /* build a minimal buffer header */ 615 bp->b_iocmd = BIO_READ; 616 bp->b_iodone = bdone; 617 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 618 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 619 bp->b_rcred = crhold(curthread->td_ucred); 620 bp->b_wcred = crhold(curthread->td_ucred); 621 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 622 bp->b_blkno = fileaddr; 623 pbgetbo(bo, bp); 624 bp->b_vp = vp; 625 bp->b_bcount = bsize; 626 bp->b_bufsize = bsize; 627 bp->b_runningbufspace = bp->b_bufsize; 628 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 629 630 /* do the input */ 631 bp->b_iooffset = dbtob(bp->b_blkno); 632 bstrategy(bp); 633 634 bwait(bp, PVM, "vnsrd"); 635 636 if ((bp->b_ioflags & BIO_ERROR) != 0) 637 error = EIO; 638 639 /* 640 * free the buffer header back to the swap buffer pool 641 */ 642 bp->b_vp = NULL; 643 pbrelbo(bp); 644 uma_zfree(vnode_pbuf_zone, bp); 645 if (error) 646 break; 647 } else 648 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 649 KASSERT((m->dirty & bits) == 0, 650 ("vnode_pager_input_smlfs: page %p is dirty", m)); 651 VM_OBJECT_WLOCK(object); 652 m->valid |= bits; 653 VM_OBJECT_WUNLOCK(object); 654 } 655 sf_buf_free(sf); 656 if (error) { 657 return VM_PAGER_ERROR; 658 } 659 return VM_PAGER_OK; 660 } 661 662 /* 663 * old style vnode pager input routine 664 */ 665 static int 666 vnode_pager_input_old(vm_object_t object, vm_page_t m) 667 { 668 struct uio auio; 669 struct iovec aiov; 670 int error; 671 int size; 672 struct sf_buf *sf; 673 struct vnode *vp; 674 675 VM_OBJECT_ASSERT_WLOCKED(object); 676 error = 0; 677 678 /* 679 * Return failure if beyond current EOF 680 */ 681 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 682 return VM_PAGER_BAD; 683 } else { 684 size = PAGE_SIZE; 685 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 686 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 687 vp = object->handle; 688 VM_OBJECT_WUNLOCK(object); 689 690 /* 691 * Allocate a kernel virtual address and initialize so that 692 * we can use VOP_READ/WRITE routines. 693 */ 694 sf = sf_buf_alloc(m, 0); 695 696 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 697 aiov.iov_len = size; 698 auio.uio_iov = &aiov; 699 auio.uio_iovcnt = 1; 700 auio.uio_offset = IDX_TO_OFF(m->pindex); 701 auio.uio_segflg = UIO_SYSSPACE; 702 auio.uio_rw = UIO_READ; 703 auio.uio_resid = size; 704 auio.uio_td = curthread; 705 706 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 707 if (!error) { 708 int count = size - auio.uio_resid; 709 710 if (count == 0) 711 error = EINVAL; 712 else if (count != PAGE_SIZE) 713 bzero((caddr_t)sf_buf_kva(sf) + count, 714 PAGE_SIZE - count); 715 } 716 sf_buf_free(sf); 717 718 VM_OBJECT_WLOCK(object); 719 } 720 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 721 if (!error) 722 vm_page_valid(m); 723 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 724 } 725 726 /* 727 * generic vnode pager input routine 728 */ 729 730 /* 731 * Local media VFS's that do not implement their own VOP_GETPAGES 732 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 733 * to implement the previous behaviour. 734 * 735 * All other FS's should use the bypass to get to the local media 736 * backing vp's VOP_GETPAGES. 737 */ 738 static int 739 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 740 int *rahead) 741 { 742 struct vnode *vp; 743 int rtval; 744 745 vp = object->handle; 746 VM_OBJECT_WUNLOCK(object); 747 rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead); 748 KASSERT(rtval != EOPNOTSUPP, 749 ("vnode_pager: FS getpages not implemented\n")); 750 VM_OBJECT_WLOCK(object); 751 return rtval; 752 } 753 754 static int 755 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 756 int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg) 757 { 758 struct vnode *vp; 759 int rtval; 760 761 vp = object->handle; 762 VM_OBJECT_WUNLOCK(object); 763 rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg); 764 KASSERT(rtval != EOPNOTSUPP, 765 ("vnode_pager: FS getpages_async not implemented\n")); 766 VM_OBJECT_WLOCK(object); 767 return (rtval); 768 } 769 770 /* 771 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for 772 * local filesystems, where partially valid pages can only occur at 773 * the end of file. 774 */ 775 int 776 vnode_pager_local_getpages(struct vop_getpages_args *ap) 777 { 778 779 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 780 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 781 } 782 783 int 784 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap) 785 { 786 787 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 788 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg)); 789 } 790 791 /* 792 * This is now called from local media FS's to operate against their 793 * own vnodes if they fail to implement VOP_GETPAGES. 794 */ 795 int 796 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count, 797 int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg) 798 { 799 vm_object_t object; 800 struct bufobj *bo; 801 struct buf *bp; 802 off_t foff; 803 #ifdef INVARIANTS 804 off_t blkno0; 805 #endif 806 int bsize, pagesperblock; 807 int error, before, after, rbehind, rahead, poff, i; 808 int bytecount, secmask; 809 810 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 811 ("%s does not support devices", __func__)); 812 813 if (vp->v_iflag & VI_DOOMED) 814 return (VM_PAGER_BAD); 815 816 object = vp->v_object; 817 foff = IDX_TO_OFF(m[0]->pindex); 818 bsize = vp->v_mount->mnt_stat.f_iosize; 819 pagesperblock = bsize / PAGE_SIZE; 820 821 KASSERT(foff < object->un_pager.vnp.vnp_size, 822 ("%s: page %p offset beyond vp %p size", __func__, m[0], vp)); 823 KASSERT(count <= nitems(bp->b_pages), 824 ("%s: requested %d pages", __func__, count)); 825 826 /* 827 * The last page has valid blocks. Invalid part can only 828 * exist at the end of file, and the page is made fully valid 829 * by zeroing in vm_pager_get_pages(). 830 */ 831 if (!vm_page_none_valid(m[count - 1]) && --count == 0) { 832 if (iodone != NULL) 833 iodone(arg, m, 1, 0); 834 return (VM_PAGER_OK); 835 } 836 837 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 838 839 /* 840 * Get the underlying device blocks for the file with VOP_BMAP(). 841 * If the file system doesn't support VOP_BMAP, use old way of 842 * getting pages via VOP_READ. 843 */ 844 error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before); 845 if (error == EOPNOTSUPP) { 846 uma_zfree(vnode_pbuf_zone, bp); 847 VM_OBJECT_WLOCK(object); 848 for (i = 0; i < count; i++) { 849 VM_CNT_INC(v_vnodein); 850 VM_CNT_INC(v_vnodepgsin); 851 error = vnode_pager_input_old(object, m[i]); 852 if (error) 853 break; 854 } 855 VM_OBJECT_WUNLOCK(object); 856 return (error); 857 } else if (error != 0) { 858 uma_zfree(vnode_pbuf_zone, bp); 859 return (VM_PAGER_ERROR); 860 } 861 862 /* 863 * If the file system supports BMAP, but blocksize is smaller 864 * than a page size, then use special small filesystem code. 865 */ 866 if (pagesperblock == 0) { 867 uma_zfree(vnode_pbuf_zone, bp); 868 for (i = 0; i < count; i++) { 869 VM_CNT_INC(v_vnodein); 870 VM_CNT_INC(v_vnodepgsin); 871 error = vnode_pager_input_smlfs(object, m[i]); 872 if (error) 873 break; 874 } 875 return (error); 876 } 877 878 /* 879 * A sparse file can be encountered only for a single page request, 880 * which may not be preceded by call to vm_pager_haspage(). 881 */ 882 if (bp->b_blkno == -1) { 883 KASSERT(count == 1, 884 ("%s: array[%d] request to a sparse file %p", __func__, 885 count, vp)); 886 uma_zfree(vnode_pbuf_zone, bp); 887 pmap_zero_page(m[0]); 888 KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty", 889 __func__, m[0])); 890 VM_OBJECT_WLOCK(object); 891 vm_page_valid(m[0]); 892 VM_OBJECT_WUNLOCK(object); 893 return (VM_PAGER_OK); 894 } 895 896 #ifdef INVARIANTS 897 blkno0 = bp->b_blkno; 898 #endif 899 bp->b_blkno += (foff % bsize) / DEV_BSIZE; 900 901 /* Recalculate blocks available after/before to pages. */ 902 poff = (foff % bsize) / PAGE_SIZE; 903 before *= pagesperblock; 904 before += poff; 905 after *= pagesperblock; 906 after += pagesperblock - (poff + 1); 907 if (m[0]->pindex + after >= object->size) 908 after = object->size - 1 - m[0]->pindex; 909 KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d", 910 __func__, count, after + 1)); 911 after -= count - 1; 912 913 /* Trim requested rbehind/rahead to possible values. */ 914 rbehind = a_rbehind ? *a_rbehind : 0; 915 rahead = a_rahead ? *a_rahead : 0; 916 rbehind = min(rbehind, before); 917 rbehind = min(rbehind, m[0]->pindex); 918 rahead = min(rahead, after); 919 rahead = min(rahead, object->size - m[count - 1]->pindex); 920 /* 921 * Check that total amount of pages fit into buf. Trim rbehind and 922 * rahead evenly if not. 923 */ 924 if (rbehind + rahead + count > nitems(bp->b_pages)) { 925 int trim, sum; 926 927 trim = rbehind + rahead + count - nitems(bp->b_pages) + 1; 928 sum = rbehind + rahead; 929 if (rbehind == before) { 930 /* Roundup rbehind trim to block size. */ 931 rbehind -= roundup(trim * rbehind / sum, pagesperblock); 932 if (rbehind < 0) 933 rbehind = 0; 934 } else 935 rbehind -= trim * rbehind / sum; 936 rahead -= trim * rahead / sum; 937 } 938 KASSERT(rbehind + rahead + count <= nitems(bp->b_pages), 939 ("%s: behind %d ahead %d count %d", __func__, 940 rbehind, rahead, count)); 941 942 /* 943 * Fill in the bp->b_pages[] array with requested and optional 944 * read behind or read ahead pages. Read behind pages are looked 945 * up in a backward direction, down to a first cached page. Same 946 * for read ahead pages, but there is no need to shift the array 947 * in case of encountering a cached page. 948 */ 949 i = bp->b_npages = 0; 950 if (rbehind) { 951 vm_pindex_t startpindex, tpindex; 952 vm_page_t p; 953 954 VM_OBJECT_WLOCK(object); 955 startpindex = m[0]->pindex - rbehind; 956 if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL && 957 p->pindex >= startpindex) 958 startpindex = p->pindex + 1; 959 960 /* tpindex is unsigned; beware of numeric underflow. */ 961 for (tpindex = m[0]->pindex - 1; 962 tpindex >= startpindex && tpindex < m[0]->pindex; 963 tpindex--, i++) { 964 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 965 if (p == NULL) { 966 /* Shift the array. */ 967 for (int j = 0; j < i; j++) 968 bp->b_pages[j] = bp->b_pages[j + 969 tpindex + 1 - startpindex]; 970 break; 971 } 972 bp->b_pages[tpindex - startpindex] = p; 973 } 974 975 bp->b_pgbefore = i; 976 bp->b_npages += i; 977 bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE; 978 } else 979 bp->b_pgbefore = 0; 980 981 /* Requested pages. */ 982 for (int j = 0; j < count; j++, i++) 983 bp->b_pages[i] = m[j]; 984 bp->b_npages += count; 985 986 if (rahead) { 987 vm_pindex_t endpindex, tpindex; 988 vm_page_t p; 989 990 if (!VM_OBJECT_WOWNED(object)) 991 VM_OBJECT_WLOCK(object); 992 endpindex = m[count - 1]->pindex + rahead + 1; 993 if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL && 994 p->pindex < endpindex) 995 endpindex = p->pindex; 996 if (endpindex > object->size) 997 endpindex = object->size; 998 999 for (tpindex = m[count - 1]->pindex + 1; 1000 tpindex < endpindex; i++, tpindex++) { 1001 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 1002 if (p == NULL) 1003 break; 1004 bp->b_pages[i] = p; 1005 } 1006 1007 bp->b_pgafter = i - bp->b_npages; 1008 bp->b_npages = i; 1009 } else 1010 bp->b_pgafter = 0; 1011 1012 if (VM_OBJECT_WOWNED(object)) 1013 VM_OBJECT_WUNLOCK(object); 1014 1015 /* Report back actual behind/ahead read. */ 1016 if (a_rbehind) 1017 *a_rbehind = bp->b_pgbefore; 1018 if (a_rahead) 1019 *a_rahead = bp->b_pgafter; 1020 1021 #ifdef INVARIANTS 1022 KASSERT(bp->b_npages <= nitems(bp->b_pages), 1023 ("%s: buf %p overflowed", __func__, bp)); 1024 for (int j = 1, prev = 0; j < bp->b_npages; j++) { 1025 if (bp->b_pages[j] == bogus_page) 1026 continue; 1027 KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex == 1028 j - prev, ("%s: pages array not consecutive, bp %p", 1029 __func__, bp)); 1030 prev = j; 1031 } 1032 #endif 1033 1034 /* 1035 * Recalculate first offset and bytecount with regards to read behind. 1036 * Truncate bytecount to vnode real size and round up physical size 1037 * for real devices. 1038 */ 1039 foff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1040 bytecount = bp->b_npages << PAGE_SHIFT; 1041 if ((foff + bytecount) > object->un_pager.vnp.vnp_size) 1042 bytecount = object->un_pager.vnp.vnp_size - foff; 1043 secmask = bo->bo_bsize - 1; 1044 KASSERT(secmask < PAGE_SIZE && secmask > 0, 1045 ("%s: sector size %d too large", __func__, secmask + 1)); 1046 bytecount = (bytecount + secmask) & ~secmask; 1047 1048 /* 1049 * And map the pages to be read into the kva, if the filesystem 1050 * requires mapped buffers. 1051 */ 1052 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && 1053 unmapped_buf_allowed) { 1054 bp->b_data = unmapped_buf; 1055 bp->b_offset = 0; 1056 } else { 1057 bp->b_data = bp->b_kvabase; 1058 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 1059 } 1060 1061 /* Build a minimal buffer header. */ 1062 bp->b_iocmd = BIO_READ; 1063 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 1064 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 1065 bp->b_rcred = crhold(curthread->td_ucred); 1066 bp->b_wcred = crhold(curthread->td_ucred); 1067 pbgetbo(bo, bp); 1068 bp->b_vp = vp; 1069 bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount; 1070 bp->b_iooffset = dbtob(bp->b_blkno); 1071 KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) == 1072 (blkno0 - bp->b_blkno) * DEV_BSIZE + 1073 IDX_TO_OFF(m[0]->pindex) % bsize, 1074 ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju " 1075 "blkno0 %ju b_blkno %ju", bsize, 1076 (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex, 1077 (uintmax_t)blkno0, (uintmax_t)bp->b_blkno)); 1078 1079 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 1080 VM_CNT_INC(v_vnodein); 1081 VM_CNT_ADD(v_vnodepgsin, bp->b_npages); 1082 1083 if (iodone != NULL) { /* async */ 1084 bp->b_pgiodone = iodone; 1085 bp->b_caller1 = arg; 1086 bp->b_iodone = vnode_pager_generic_getpages_done_async; 1087 bp->b_flags |= B_ASYNC; 1088 BUF_KERNPROC(bp); 1089 bstrategy(bp); 1090 return (VM_PAGER_OK); 1091 } else { 1092 bp->b_iodone = bdone; 1093 bstrategy(bp); 1094 bwait(bp, PVM, "vnread"); 1095 error = vnode_pager_generic_getpages_done(bp); 1096 for (i = 0; i < bp->b_npages; i++) 1097 bp->b_pages[i] = NULL; 1098 bp->b_vp = NULL; 1099 pbrelbo(bp); 1100 uma_zfree(vnode_pbuf_zone, bp); 1101 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); 1102 } 1103 } 1104 1105 static void 1106 vnode_pager_generic_getpages_done_async(struct buf *bp) 1107 { 1108 int error; 1109 1110 error = vnode_pager_generic_getpages_done(bp); 1111 /* Run the iodone upon the requested range. */ 1112 bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore, 1113 bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error); 1114 for (int i = 0; i < bp->b_npages; i++) 1115 bp->b_pages[i] = NULL; 1116 bp->b_vp = NULL; 1117 pbrelbo(bp); 1118 uma_zfree(vnode_pbuf_zone, bp); 1119 } 1120 1121 static int 1122 vnode_pager_generic_getpages_done(struct buf *bp) 1123 { 1124 vm_object_t object; 1125 off_t tfoff, nextoff; 1126 int i, error; 1127 1128 error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0; 1129 object = bp->b_vp->v_object; 1130 1131 if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) { 1132 if (!buf_mapped(bp)) { 1133 bp->b_data = bp->b_kvabase; 1134 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, 1135 bp->b_npages); 1136 } 1137 bzero(bp->b_data + bp->b_bcount, 1138 PAGE_SIZE * bp->b_npages - bp->b_bcount); 1139 } 1140 if (buf_mapped(bp)) { 1141 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1142 bp->b_data = unmapped_buf; 1143 } 1144 1145 VM_OBJECT_WLOCK(object); 1146 for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1147 i < bp->b_npages; i++, tfoff = nextoff) { 1148 vm_page_t mt; 1149 1150 nextoff = tfoff + PAGE_SIZE; 1151 mt = bp->b_pages[i]; 1152 if (mt == bogus_page) 1153 continue; 1154 1155 if (nextoff <= object->un_pager.vnp.vnp_size) { 1156 /* 1157 * Read filled up entire page. 1158 */ 1159 vm_page_valid(mt); 1160 KASSERT(mt->dirty == 0, 1161 ("%s: page %p is dirty", __func__, mt)); 1162 KASSERT(!pmap_page_is_mapped(mt), 1163 ("%s: page %p is mapped", __func__, mt)); 1164 } else { 1165 /* 1166 * Read did not fill up entire page. 1167 * 1168 * Currently we do not set the entire page valid, 1169 * we just try to clear the piece that we couldn't 1170 * read. 1171 */ 1172 vm_page_set_valid_range(mt, 0, 1173 object->un_pager.vnp.vnp_size - tfoff); 1174 KASSERT((mt->dirty & vm_page_bits(0, 1175 object->un_pager.vnp.vnp_size - tfoff)) == 0, 1176 ("%s: page %p is dirty", __func__, mt)); 1177 } 1178 1179 if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter) 1180 vm_page_readahead_finish(mt); 1181 } 1182 VM_OBJECT_WUNLOCK(object); 1183 if (error != 0) 1184 printf("%s: I/O read error %d\n", __func__, error); 1185 1186 return (error); 1187 } 1188 1189 /* 1190 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 1191 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 1192 * vnode_pager_generic_putpages() to implement the previous behaviour. 1193 * 1194 * All other FS's should use the bypass to get to the local media 1195 * backing vp's VOP_PUTPAGES. 1196 */ 1197 static void 1198 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1199 int flags, int *rtvals) 1200 { 1201 int rtval; 1202 struct vnode *vp; 1203 int bytes = count * PAGE_SIZE; 1204 1205 /* 1206 * Force synchronous operation if we are extremely low on memory 1207 * to prevent a low-memory deadlock. VOP operations often need to 1208 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1209 * operation ). The swapper handles the case by limiting the amount 1210 * of asynchronous I/O, but that sort of solution doesn't scale well 1211 * for the vnode pager without a lot of work. 1212 * 1213 * Also, the backing vnode's iodone routine may not wake the pageout 1214 * daemon up. This should be probably be addressed XXX. 1215 */ 1216 1217 if (vm_page_count_min()) 1218 flags |= VM_PAGER_PUT_SYNC; 1219 1220 /* 1221 * Call device-specific putpages function 1222 */ 1223 vp = object->handle; 1224 VM_OBJECT_WUNLOCK(object); 1225 rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals); 1226 KASSERT(rtval != EOPNOTSUPP, 1227 ("vnode_pager: stale FS putpages\n")); 1228 VM_OBJECT_WLOCK(object); 1229 } 1230 1231 static int 1232 vn_off2bidx(vm_ooffset_t offset) 1233 { 1234 1235 return ((offset & PAGE_MASK) / DEV_BSIZE); 1236 } 1237 1238 static bool 1239 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset) 1240 { 1241 1242 KASSERT(IDX_TO_OFF(m->pindex) <= offset && 1243 offset < IDX_TO_OFF(m->pindex + 1), 1244 ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex, 1245 (uintmax_t)offset)); 1246 return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0); 1247 } 1248 1249 /* 1250 * This is now called from local media FS's to operate against their 1251 * own vnodes if they fail to implement VOP_PUTPAGES. 1252 * 1253 * This is typically called indirectly via the pageout daemon and 1254 * clustering has already typically occurred, so in general we ask the 1255 * underlying filesystem to write the data out asynchronously rather 1256 * then delayed. 1257 */ 1258 int 1259 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, 1260 int flags, int *rtvals) 1261 { 1262 vm_object_t object; 1263 vm_page_t m; 1264 vm_ooffset_t maxblksz, next_offset, poffset, prev_offset; 1265 struct uio auio; 1266 struct iovec aiov; 1267 off_t prev_resid, wrsz; 1268 int count, error, i, maxsize, ncount, pgoff, ppscheck; 1269 bool in_hole; 1270 static struct timeval lastfail; 1271 static int curfail; 1272 1273 object = vp->v_object; 1274 count = bytecount / PAGE_SIZE; 1275 1276 for (i = 0; i < count; i++) 1277 rtvals[i] = VM_PAGER_ERROR; 1278 1279 if ((int64_t)ma[0]->pindex < 0) { 1280 printf("vnode_pager_generic_putpages: " 1281 "attempt to write meta-data 0x%jx(%lx)\n", 1282 (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty); 1283 rtvals[0] = VM_PAGER_BAD; 1284 return (VM_PAGER_BAD); 1285 } 1286 1287 maxsize = count * PAGE_SIZE; 1288 ncount = count; 1289 1290 poffset = IDX_TO_OFF(ma[0]->pindex); 1291 1292 /* 1293 * If the page-aligned write is larger then the actual file we 1294 * have to invalidate pages occurring beyond the file EOF. However, 1295 * there is an edge case where a file may not be page-aligned where 1296 * the last page is partially invalid. In this case the filesystem 1297 * may not properly clear the dirty bits for the entire page (which 1298 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1299 * With the page locked we are free to fix-up the dirty bits here. 1300 * 1301 * We do not under any circumstances truncate the valid bits, as 1302 * this will screw up bogus page replacement. 1303 */ 1304 VM_OBJECT_RLOCK(object); 1305 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1306 if (!VM_OBJECT_TRYUPGRADE(object)) { 1307 VM_OBJECT_RUNLOCK(object); 1308 VM_OBJECT_WLOCK(object); 1309 if (maxsize + poffset <= object->un_pager.vnp.vnp_size) 1310 goto downgrade; 1311 } 1312 if (object->un_pager.vnp.vnp_size > poffset) { 1313 maxsize = object->un_pager.vnp.vnp_size - poffset; 1314 ncount = btoc(maxsize); 1315 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1316 pgoff = roundup2(pgoff, DEV_BSIZE); 1317 1318 /* 1319 * If the object is locked and the following 1320 * conditions hold, then the page's dirty 1321 * field cannot be concurrently changed by a 1322 * pmap operation. 1323 */ 1324 m = ma[ncount - 1]; 1325 vm_page_assert_sbusied(m); 1326 KASSERT(!pmap_page_is_write_mapped(m), 1327 ("vnode_pager_generic_putpages: page %p is not read-only", m)); 1328 MPASS(m->dirty != 0); 1329 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 1330 pgoff); 1331 } 1332 } else { 1333 maxsize = 0; 1334 ncount = 0; 1335 } 1336 for (i = ncount; i < count; i++) 1337 rtvals[i] = VM_PAGER_BAD; 1338 downgrade: 1339 VM_OBJECT_LOCK_DOWNGRADE(object); 1340 } 1341 1342 auio.uio_iov = &aiov; 1343 auio.uio_segflg = UIO_NOCOPY; 1344 auio.uio_rw = UIO_WRITE; 1345 auio.uio_td = NULL; 1346 maxblksz = roundup2(poffset + maxsize, DEV_BSIZE); 1347 1348 for (prev_offset = poffset; prev_offset < maxblksz;) { 1349 /* Skip clean blocks. */ 1350 for (in_hole = true; in_hole && prev_offset < maxblksz;) { 1351 m = ma[OFF_TO_IDX(prev_offset - poffset)]; 1352 for (i = vn_off2bidx(prev_offset); 1353 i < sizeof(vm_page_bits_t) * NBBY && 1354 prev_offset < maxblksz; i++) { 1355 if (vn_dirty_blk(m, prev_offset)) { 1356 in_hole = false; 1357 break; 1358 } 1359 prev_offset += DEV_BSIZE; 1360 } 1361 } 1362 if (in_hole) 1363 goto write_done; 1364 1365 /* Find longest run of dirty blocks. */ 1366 for (next_offset = prev_offset; next_offset < maxblksz;) { 1367 m = ma[OFF_TO_IDX(next_offset - poffset)]; 1368 for (i = vn_off2bidx(next_offset); 1369 i < sizeof(vm_page_bits_t) * NBBY && 1370 next_offset < maxblksz; i++) { 1371 if (!vn_dirty_blk(m, next_offset)) 1372 goto start_write; 1373 next_offset += DEV_BSIZE; 1374 } 1375 } 1376 start_write: 1377 if (next_offset > poffset + maxsize) 1378 next_offset = poffset + maxsize; 1379 1380 /* 1381 * Getting here requires finding a dirty block in the 1382 * 'skip clean blocks' loop. 1383 */ 1384 MPASS(prev_offset < next_offset); 1385 1386 VM_OBJECT_RUNLOCK(object); 1387 aiov.iov_base = NULL; 1388 auio.uio_iovcnt = 1; 1389 auio.uio_offset = prev_offset; 1390 prev_resid = auio.uio_resid = aiov.iov_len = next_offset - 1391 prev_offset; 1392 error = VOP_WRITE(vp, &auio, 1393 vnode_pager_putpages_ioflags(flags), curthread->td_ucred); 1394 1395 wrsz = prev_resid - auio.uio_resid; 1396 if (wrsz == 0) { 1397 if (ppsratecheck(&lastfail, &curfail, 1) != 0) { 1398 vn_printf(vp, "vnode_pager_putpages: " 1399 "zero-length write at %ju resid %zd\n", 1400 auio.uio_offset, auio.uio_resid); 1401 } 1402 VM_OBJECT_RLOCK(object); 1403 break; 1404 } 1405 1406 /* Adjust the starting offset for next iteration. */ 1407 prev_offset += wrsz; 1408 MPASS(auio.uio_offset == prev_offset); 1409 1410 ppscheck = 0; 1411 if (error != 0 && (ppscheck = ppsratecheck(&lastfail, 1412 &curfail, 1)) != 0) 1413 vn_printf(vp, "vnode_pager_putpages: I/O error %d\n", 1414 error); 1415 if (auio.uio_resid != 0 && (ppscheck != 0 || 1416 ppsratecheck(&lastfail, &curfail, 1) != 0)) 1417 vn_printf(vp, "vnode_pager_putpages: residual I/O %zd " 1418 "at %ju\n", auio.uio_resid, 1419 (uintmax_t)ma[0]->pindex); 1420 VM_OBJECT_RLOCK(object); 1421 if (error != 0 || auio.uio_resid != 0) 1422 break; 1423 } 1424 write_done: 1425 /* Mark completely processed pages. */ 1426 for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++) 1427 rtvals[i] = VM_PAGER_OK; 1428 /* Mark partial EOF page. */ 1429 if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0) 1430 rtvals[i++] = VM_PAGER_OK; 1431 /* Unwritten pages in range, free bonus if the page is clean. */ 1432 for (; i < ncount; i++) 1433 rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR; 1434 VM_OBJECT_RUNLOCK(object); 1435 VM_CNT_ADD(v_vnodepgsout, i); 1436 VM_CNT_INC(v_vnodeout); 1437 return (rtvals[0]); 1438 } 1439 1440 int 1441 vnode_pager_putpages_ioflags(int pager_flags) 1442 { 1443 int ioflags; 1444 1445 /* 1446 * Pageouts are already clustered, use IO_ASYNC to force a 1447 * bawrite() rather then a bdwrite() to prevent paging I/O 1448 * from saturating the buffer cache. Dummy-up the sequential 1449 * heuristic to cause large ranges to cluster. If neither 1450 * IO_SYNC or IO_ASYNC is set, the system decides how to 1451 * cluster. 1452 */ 1453 ioflags = IO_VMIO; 1454 if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0) 1455 ioflags |= IO_SYNC; 1456 else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0) 1457 ioflags |= IO_ASYNC; 1458 ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0; 1459 ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0; 1460 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1461 return (ioflags); 1462 } 1463 1464 /* 1465 * vnode_pager_undirty_pages(). 1466 * 1467 * A helper to mark pages as clean after pageout that was possibly 1468 * done with a short write. The lpos argument specifies the page run 1469 * length in bytes, and the written argument specifies how many bytes 1470 * were actually written. eof is the offset past the last valid byte 1471 * in the vnode using the absolute file position of the first byte in 1472 * the run as the base from which it is computed. 1473 */ 1474 void 1475 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof, 1476 int lpos) 1477 { 1478 vm_object_t obj; 1479 int i, pos, pos_devb; 1480 1481 if (written == 0 && eof >= lpos) 1482 return; 1483 obj = ma[0]->object; 1484 VM_OBJECT_WLOCK(obj); 1485 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { 1486 if (pos < trunc_page(written)) { 1487 rtvals[i] = VM_PAGER_OK; 1488 vm_page_undirty(ma[i]); 1489 } else { 1490 /* Partially written page. */ 1491 rtvals[i] = VM_PAGER_AGAIN; 1492 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); 1493 } 1494 } 1495 if (eof >= lpos) /* avoid truncation */ 1496 goto done; 1497 for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) { 1498 if (pos != trunc_page(pos)) { 1499 /* 1500 * The page contains the last valid byte in 1501 * the vnode, mark the rest of the page as 1502 * clean, potentially making the whole page 1503 * clean. 1504 */ 1505 pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE); 1506 vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE - 1507 pos_devb); 1508 1509 /* 1510 * If the page was cleaned, report the pageout 1511 * on it as successful. msync() no longer 1512 * needs to write out the page, endlessly 1513 * creating write requests and dirty buffers. 1514 */ 1515 if (ma[i]->dirty == 0) 1516 rtvals[i] = VM_PAGER_OK; 1517 1518 pos = round_page(pos); 1519 } else { 1520 /* vm_pageout_flush() clears dirty */ 1521 rtvals[i] = VM_PAGER_BAD; 1522 pos += PAGE_SIZE; 1523 } 1524 } 1525 done: 1526 VM_OBJECT_WUNLOCK(obj); 1527 } 1528 1529 static void 1530 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, 1531 vm_offset_t end) 1532 { 1533 struct vnode *vp; 1534 vm_ooffset_t old_wm; 1535 1536 VM_OBJECT_WLOCK(object); 1537 if (object->type != OBJT_VNODE) { 1538 VM_OBJECT_WUNLOCK(object); 1539 return; 1540 } 1541 old_wm = object->un_pager.vnp.writemappings; 1542 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; 1543 vp = object->handle; 1544 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { 1545 ASSERT_VOP_LOCKED(vp, "v_writecount inc"); 1546 VOP_ADD_WRITECOUNT_CHECKED(vp, 1); 1547 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 1548 __func__, vp, vp->v_writecount); 1549 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { 1550 ASSERT_VOP_LOCKED(vp, "v_writecount dec"); 1551 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 1552 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 1553 __func__, vp, vp->v_writecount); 1554 } 1555 VM_OBJECT_WUNLOCK(object); 1556 } 1557 1558 static void 1559 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, 1560 vm_offset_t end) 1561 { 1562 struct vnode *vp; 1563 struct mount *mp; 1564 vm_offset_t inc; 1565 1566 VM_OBJECT_WLOCK(object); 1567 1568 /* 1569 * First, recheck the object type to account for the race when 1570 * the vnode is reclaimed. 1571 */ 1572 if (object->type != OBJT_VNODE) { 1573 VM_OBJECT_WUNLOCK(object); 1574 return; 1575 } 1576 1577 /* 1578 * Optimize for the case when writemappings is not going to 1579 * zero. 1580 */ 1581 inc = end - start; 1582 if (object->un_pager.vnp.writemappings != inc) { 1583 object->un_pager.vnp.writemappings -= inc; 1584 VM_OBJECT_WUNLOCK(object); 1585 return; 1586 } 1587 1588 vp = object->handle; 1589 vhold(vp); 1590 VM_OBJECT_WUNLOCK(object); 1591 mp = NULL; 1592 vn_start_write(vp, &mp, V_WAIT); 1593 vn_lock(vp, LK_SHARED | LK_RETRY); 1594 1595 /* 1596 * Decrement the object's writemappings, by swapping the start 1597 * and end arguments for vnode_pager_update_writecount(). If 1598 * there was not a race with vnode reclaimation, then the 1599 * vnode's v_writecount is decremented. 1600 */ 1601 vnode_pager_update_writecount(object, end, start); 1602 VOP_UNLOCK(vp, 0); 1603 vdrop(vp); 1604 if (mp != NULL) 1605 vn_finished_write(mp); 1606 } 1607