1 /* 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/conf.h> 65 66 #include <vm/vm.h> 67 #include <vm/vm_object.h> 68 #include <vm/vm_page.h> 69 #include <vm/vm_pager.h> 70 #include <vm/vm_map.h> 71 #include <vm/vnode_pager.h> 72 #include <vm/vm_extern.h> 73 74 static void vnode_pager_init(void); 75 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 76 int *run); 77 static void vnode_pager_iodone(struct buf *bp); 78 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 79 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 80 static void vnode_pager_dealloc(vm_object_t); 81 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 82 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 83 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 84 85 struct pagerops vnodepagerops = { 86 vnode_pager_init, 87 vnode_pager_alloc, 88 vnode_pager_dealloc, 89 vnode_pager_getpages, 90 vnode_pager_putpages, 91 vnode_pager_haspage, 92 NULL 93 }; 94 95 int vnode_pbuf_freecnt; 96 97 static void 98 vnode_pager_init(void) 99 { 100 101 vnode_pbuf_freecnt = nswbuf / 2 + 1; 102 } 103 104 /* 105 * Allocate (or lookup) pager for a vnode. 106 * Handle is a vnode pointer. 107 * 108 * MPSAFE 109 */ 110 vm_object_t 111 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 112 vm_ooffset_t offset) 113 { 114 vm_object_t object; 115 struct vnode *vp; 116 117 /* 118 * Pageout to vnode, no can do yet. 119 */ 120 if (handle == NULL) 121 return (NULL); 122 123 vp = (struct vnode *) handle; 124 125 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 126 127 mtx_lock(&Giant); 128 /* 129 * Prevent race condition when allocating the object. This 130 * can happen with NFS vnodes since the nfsnode isn't locked. 131 */ 132 VI_LOCK(vp); 133 while (vp->v_iflag & VI_OLOCK) { 134 vp->v_iflag |= VI_OWANT; 135 msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0); 136 } 137 vp->v_iflag |= VI_OLOCK; 138 VI_UNLOCK(vp); 139 140 /* 141 * If the object is being terminated, wait for it to 142 * go away. 143 */ 144 while ((object = vp->v_object) != NULL) { 145 VM_OBJECT_LOCK(object); 146 if ((object->flags & OBJ_DEAD) == 0) 147 break; 148 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 149 } 150 151 if (vp->v_usecount == 0) 152 panic("vnode_pager_alloc: no vnode reference"); 153 154 if (object == NULL) { 155 /* 156 * And an object of the appropriate size 157 */ 158 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 159 160 object->un_pager.vnp.vnp_size = size; 161 162 object->handle = handle; 163 vp->v_object = object; 164 } else { 165 object->ref_count++; 166 VM_OBJECT_UNLOCK(object); 167 } 168 VI_LOCK(vp); 169 vp->v_usecount++; 170 vp->v_iflag &= ~VI_OLOCK; 171 if (vp->v_iflag & VI_OWANT) { 172 vp->v_iflag &= ~VI_OWANT; 173 wakeup(vp); 174 } 175 VI_UNLOCK(vp); 176 mtx_unlock(&Giant); 177 return (object); 178 } 179 180 /* 181 * The object must be locked. 182 */ 183 static void 184 vnode_pager_dealloc(object) 185 vm_object_t object; 186 { 187 struct vnode *vp = object->handle; 188 189 if (vp == NULL) 190 panic("vnode_pager_dealloc: pager already dealloced"); 191 192 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 193 vm_object_pip_wait(object, "vnpdea"); 194 195 object->handle = NULL; 196 object->type = OBJT_DEAD; 197 ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc"); 198 vp->v_object = NULL; 199 vp->v_vflag &= ~(VV_TEXT | VV_OBJBUF); 200 } 201 202 static boolean_t 203 vnode_pager_haspage(object, pindex, before, after) 204 vm_object_t object; 205 vm_pindex_t pindex; 206 int *before; 207 int *after; 208 { 209 struct vnode *vp = object->handle; 210 daddr_t bn; 211 int err; 212 daddr_t reqblock; 213 int poff; 214 int bsize; 215 int pagesperblock, blocksperpage; 216 217 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 218 /* 219 * If no vp or vp is doomed or marked transparent to VM, we do not 220 * have the page. 221 */ 222 if (vp == NULL) 223 return FALSE; 224 225 VI_LOCK(vp); 226 if (vp->v_iflag & VI_DOOMED) { 227 VI_UNLOCK(vp); 228 return FALSE; 229 } 230 VI_UNLOCK(vp); 231 /* 232 * If filesystem no longer mounted or offset beyond end of file we do 233 * not have the page. 234 */ 235 if ((vp->v_mount == NULL) || 236 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)) 237 return FALSE; 238 239 bsize = vp->v_mount->mnt_stat.f_iosize; 240 pagesperblock = bsize / PAGE_SIZE; 241 blocksperpage = 0; 242 if (pagesperblock > 0) { 243 reqblock = pindex / pagesperblock; 244 } else { 245 blocksperpage = (PAGE_SIZE / bsize); 246 reqblock = pindex * blocksperpage; 247 } 248 VM_OBJECT_UNLOCK(object); 249 err = VOP_BMAP(vp, reqblock, (struct vnode **) 0, &bn, 250 after, before); 251 VM_OBJECT_LOCK(object); 252 if (err) 253 return TRUE; 254 if (bn == -1) 255 return FALSE; 256 if (pagesperblock > 0) { 257 poff = pindex - (reqblock * pagesperblock); 258 if (before) { 259 *before *= pagesperblock; 260 *before += poff; 261 } 262 if (after) { 263 int numafter; 264 *after *= pagesperblock; 265 numafter = pagesperblock - (poff + 1); 266 if (IDX_TO_OFF(pindex + numafter) > 267 object->un_pager.vnp.vnp_size) { 268 numafter = 269 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 270 pindex; 271 } 272 *after += numafter; 273 } 274 } else { 275 if (before) { 276 *before /= blocksperpage; 277 } 278 279 if (after) { 280 *after /= blocksperpage; 281 } 282 } 283 return TRUE; 284 } 285 286 /* 287 * Lets the VM system know about a change in size for a file. 288 * We adjust our own internal size and flush any cached pages in 289 * the associated object that are affected by the size change. 290 * 291 * Note: this routine may be invoked as a result of a pager put 292 * operation (possibly at object termination time), so we must be careful. 293 */ 294 void 295 vnode_pager_setsize(vp, nsize) 296 struct vnode *vp; 297 vm_ooffset_t nsize; 298 { 299 vm_object_t object; 300 vm_page_t m; 301 vm_pindex_t nobjsize; 302 303 if ((object = vp->v_object) == NULL) 304 return; 305 VM_OBJECT_LOCK(object); 306 if (nsize == object->un_pager.vnp.vnp_size) { 307 /* 308 * Hasn't changed size 309 */ 310 VM_OBJECT_UNLOCK(object); 311 return; 312 } 313 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 314 if (nsize < object->un_pager.vnp.vnp_size) { 315 /* 316 * File has shrunk. Toss any cached pages beyond the new EOF. 317 */ 318 if (nobjsize < object->size) 319 vm_object_page_remove(object, nobjsize, object->size, 320 FALSE); 321 /* 322 * this gets rid of garbage at the end of a page that is now 323 * only partially backed by the vnode. 324 * 325 * XXX for some reason (I don't know yet), if we take a 326 * completely invalid page and mark it partially valid 327 * it can screw up NFS reads, so we don't allow the case. 328 */ 329 if ((nsize & PAGE_MASK) && 330 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL) { 331 vm_page_lock_queues(); 332 if (m->valid) { 333 int base = (int)nsize & PAGE_MASK; 334 int size = PAGE_SIZE - base; 335 336 /* 337 * Clear out partial-page garbage in case 338 * the page has been mapped. 339 */ 340 pmap_zero_page_area(m, base, size); 341 342 /* 343 * XXX work around SMP data integrity race 344 * by unmapping the page from user processes. 345 * The garbage we just cleared may be mapped 346 * to a user process running on another cpu 347 * and this code is not running through normal 348 * I/O channels which handle SMP issues for 349 * us, so unmap page to synchronize all cpus. 350 * 351 * XXX should vm_pager_unmap_page() have 352 * dealt with this? 353 */ 354 pmap_remove_all(m); 355 356 /* 357 * Clear out partial-page dirty bits. This 358 * has the side effect of setting the valid 359 * bits, but that is ok. There are a bunch 360 * of places in the VM system where we expected 361 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 362 * case is one of them. If the page is still 363 * partially dirty, make it fully dirty. 364 * 365 * note that we do not clear out the valid 366 * bits. This would prevent bogus_page 367 * replacement from working properly. 368 */ 369 vm_page_set_validclean(m, base, size); 370 if (m->dirty != 0) 371 m->dirty = VM_PAGE_BITS_ALL; 372 } 373 vm_page_unlock_queues(); 374 } 375 } 376 object->un_pager.vnp.vnp_size = nsize; 377 object->size = nobjsize; 378 VM_OBJECT_UNLOCK(object); 379 } 380 381 /* 382 * calculate the linear (byte) disk address of specified virtual 383 * file address 384 */ 385 static vm_offset_t 386 vnode_pager_addr(vp, address, run) 387 struct vnode *vp; 388 vm_ooffset_t address; 389 int *run; 390 { 391 int rtaddress; 392 int bsize; 393 daddr_t block; 394 struct vnode *rtvp; 395 int err; 396 daddr_t vblock; 397 int voffset; 398 399 GIANT_REQUIRED; 400 if ((int) address < 0) 401 return -1; 402 403 if (vp->v_mount == NULL) 404 return -1; 405 406 bsize = vp->v_mount->mnt_stat.f_iosize; 407 vblock = address / bsize; 408 voffset = address % bsize; 409 410 err = VOP_BMAP(vp, vblock, &rtvp, &block, run, NULL); 411 412 if (err || (block == -1)) 413 rtaddress = -1; 414 else { 415 rtaddress = block + voffset / DEV_BSIZE; 416 if (run) { 417 *run += 1; 418 *run *= bsize/PAGE_SIZE; 419 *run -= voffset/PAGE_SIZE; 420 } 421 } 422 423 return rtaddress; 424 } 425 426 /* 427 * interrupt routine for I/O completion 428 */ 429 static void 430 vnode_pager_iodone(bp) 431 struct buf *bp; 432 { 433 bp->b_flags |= B_DONE; 434 wakeup(bp); 435 } 436 437 /* 438 * small block filesystem vnode pager input 439 */ 440 static int 441 vnode_pager_input_smlfs(object, m) 442 vm_object_t object; 443 vm_page_t m; 444 { 445 int i; 446 int s; 447 struct vnode *dp, *vp; 448 struct buf *bp; 449 vm_offset_t kva; 450 int fileaddr; 451 vm_offset_t bsize; 452 int error = 0; 453 454 GIANT_REQUIRED; 455 456 vp = object->handle; 457 if (vp->v_mount == NULL) 458 return VM_PAGER_BAD; 459 460 bsize = vp->v_mount->mnt_stat.f_iosize; 461 462 VOP_BMAP(vp, 0, &dp, 0, NULL, NULL); 463 464 kva = vm_pager_map_page(m); 465 466 for (i = 0; i < PAGE_SIZE / bsize; i++) { 467 vm_ooffset_t address; 468 469 if (vm_page_bits(i * bsize, bsize) & m->valid) 470 continue; 471 472 address = IDX_TO_OFF(m->pindex) + i * bsize; 473 if (address >= object->un_pager.vnp.vnp_size) { 474 fileaddr = -1; 475 } else { 476 fileaddr = vnode_pager_addr(vp, address, NULL); 477 } 478 if (fileaddr != -1) { 479 bp = getpbuf(&vnode_pbuf_freecnt); 480 481 /* build a minimal buffer header */ 482 bp->b_iocmd = BIO_READ; 483 bp->b_iodone = vnode_pager_iodone; 484 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 485 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 486 bp->b_rcred = crhold(curthread->td_ucred); 487 bp->b_wcred = crhold(curthread->td_ucred); 488 bp->b_data = (caddr_t) kva + i * bsize; 489 bp->b_blkno = fileaddr; 490 pbgetvp(dp, bp); 491 bp->b_bcount = bsize; 492 bp->b_bufsize = bsize; 493 bp->b_runningbufspace = bp->b_bufsize; 494 runningbufspace += bp->b_runningbufspace; 495 496 /* do the input */ 497 VOP_SPECSTRATEGY(bp->b_vp, bp); 498 499 /* we definitely need to be at splvm here */ 500 501 s = splvm(); 502 while ((bp->b_flags & B_DONE) == 0) { 503 tsleep(bp, PVM, "vnsrd", 0); 504 } 505 splx(s); 506 if ((bp->b_ioflags & BIO_ERROR) != 0) 507 error = EIO; 508 509 /* 510 * free the buffer header back to the swap buffer pool 511 */ 512 relpbuf(bp, &vnode_pbuf_freecnt); 513 if (error) 514 break; 515 516 vm_page_lock_queues(); 517 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 518 vm_page_unlock_queues(); 519 } else { 520 vm_page_lock_queues(); 521 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 522 vm_page_unlock_queues(); 523 bzero((caddr_t) kva + i * bsize, bsize); 524 } 525 } 526 vm_pager_unmap_page(kva); 527 vm_page_lock_queues(); 528 pmap_clear_modify(m); 529 vm_page_flag_clear(m, PG_ZERO); 530 vm_page_unlock_queues(); 531 if (error) { 532 return VM_PAGER_ERROR; 533 } 534 return VM_PAGER_OK; 535 536 } 537 538 539 /* 540 * old style vnode pager output routine 541 */ 542 static int 543 vnode_pager_input_old(object, m) 544 vm_object_t object; 545 vm_page_t m; 546 { 547 struct uio auio; 548 struct iovec aiov; 549 int error; 550 int size; 551 vm_offset_t kva; 552 struct vnode *vp; 553 554 GIANT_REQUIRED; 555 error = 0; 556 557 /* 558 * Return failure if beyond current EOF 559 */ 560 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 561 return VM_PAGER_BAD; 562 } else { 563 size = PAGE_SIZE; 564 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 565 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 566 567 /* 568 * Allocate a kernel virtual address and initialize so that 569 * we can use VOP_READ/WRITE routines. 570 */ 571 kva = vm_pager_map_page(m); 572 573 vp = object->handle; 574 aiov.iov_base = (caddr_t) kva; 575 aiov.iov_len = size; 576 auio.uio_iov = &aiov; 577 auio.uio_iovcnt = 1; 578 auio.uio_offset = IDX_TO_OFF(m->pindex); 579 auio.uio_segflg = UIO_SYSSPACE; 580 auio.uio_rw = UIO_READ; 581 auio.uio_resid = size; 582 auio.uio_td = curthread; 583 584 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 585 if (!error) { 586 int count = size - auio.uio_resid; 587 588 if (count == 0) 589 error = EINVAL; 590 else if (count != PAGE_SIZE) 591 bzero((caddr_t) kva + count, PAGE_SIZE - count); 592 } 593 vm_pager_unmap_page(kva); 594 } 595 vm_page_lock_queues(); 596 pmap_clear_modify(m); 597 vm_page_undirty(m); 598 vm_page_flag_clear(m, PG_ZERO); 599 if (!error) 600 m->valid = VM_PAGE_BITS_ALL; 601 vm_page_unlock_queues(); 602 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 603 } 604 605 /* 606 * generic vnode pager input routine 607 */ 608 609 /* 610 * Local media VFS's that do not implement their own VOP_GETPAGES 611 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 612 * to implement the previous behaviour. 613 * 614 * All other FS's should use the bypass to get to the local media 615 * backing vp's VOP_GETPAGES. 616 */ 617 static int 618 vnode_pager_getpages(object, m, count, reqpage) 619 vm_object_t object; 620 vm_page_t *m; 621 int count; 622 int reqpage; 623 { 624 int rtval; 625 struct vnode *vp; 626 int bytes = count * PAGE_SIZE; 627 628 vp = object->handle; 629 VM_OBJECT_UNLOCK(object); 630 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 631 KASSERT(rtval != EOPNOTSUPP, 632 ("vnode_pager: FS getpages not implemented\n")); 633 VM_OBJECT_LOCK(object); 634 return rtval; 635 } 636 637 /* 638 * This is now called from local media FS's to operate against their 639 * own vnodes if they fail to implement VOP_GETPAGES. 640 */ 641 int 642 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 643 struct vnode *vp; 644 vm_page_t *m; 645 int bytecount; 646 int reqpage; 647 { 648 vm_object_t object; 649 vm_offset_t kva; 650 off_t foff, tfoff, nextoff; 651 int i, j, size, bsize, first, firstaddr; 652 struct vnode *dp; 653 int runpg; 654 int runend; 655 struct buf *bp; 656 int s; 657 int count; 658 int error = 0; 659 660 GIANT_REQUIRED; 661 object = vp->v_object; 662 count = bytecount / PAGE_SIZE; 663 664 if (vp->v_mount == NULL) 665 return VM_PAGER_BAD; 666 667 bsize = vp->v_mount->mnt_stat.f_iosize; 668 669 /* get the UNDERLYING device for the file with VOP_BMAP() */ 670 671 /* 672 * originally, we did not check for an error return value -- assuming 673 * an fs always has a bmap entry point -- that assumption is wrong!!! 674 */ 675 foff = IDX_TO_OFF(m[reqpage]->pindex); 676 677 /* 678 * if we can't bmap, use old VOP code 679 */ 680 if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) { 681 VM_OBJECT_LOCK(object); 682 vm_page_lock_queues(); 683 for (i = 0; i < count; i++) 684 if (i != reqpage) 685 vm_page_free(m[i]); 686 vm_page_unlock_queues(); 687 VM_OBJECT_UNLOCK(object); 688 cnt.v_vnodein++; 689 cnt.v_vnodepgsin++; 690 return vnode_pager_input_old(object, m[reqpage]); 691 692 /* 693 * if the blocksize is smaller than a page size, then use 694 * special small filesystem code. NFS sometimes has a small 695 * blocksize, but it can handle large reads itself. 696 */ 697 } else if ((PAGE_SIZE / bsize) > 1 && 698 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 699 VM_OBJECT_LOCK(object); 700 vm_page_lock_queues(); 701 for (i = 0; i < count; i++) 702 if (i != reqpage) 703 vm_page_free(m[i]); 704 vm_page_unlock_queues(); 705 VM_OBJECT_UNLOCK(object); 706 cnt.v_vnodein++; 707 cnt.v_vnodepgsin++; 708 return vnode_pager_input_smlfs(object, m[reqpage]); 709 } 710 711 /* 712 * If we have a completely valid page available to us, we can 713 * clean up and return. Otherwise we have to re-read the 714 * media. 715 */ 716 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 717 VM_OBJECT_LOCK(object); 718 vm_page_lock_queues(); 719 for (i = 0; i < count; i++) 720 if (i != reqpage) 721 vm_page_free(m[i]); 722 vm_page_unlock_queues(); 723 VM_OBJECT_UNLOCK(object); 724 return VM_PAGER_OK; 725 } 726 m[reqpage]->valid = 0; 727 728 /* 729 * here on direct device I/O 730 */ 731 firstaddr = -1; 732 733 /* 734 * calculate the run that includes the required page 735 */ 736 for (first = 0, i = 0; i < count; i = runend) { 737 firstaddr = vnode_pager_addr(vp, 738 IDX_TO_OFF(m[i]->pindex), &runpg); 739 if (firstaddr == -1) { 740 VM_OBJECT_LOCK(object); 741 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 742 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 743 firstaddr, (uintmax_t)(foff >> 32), 744 (uintmax_t)foff, 745 (uintmax_t) 746 (object->un_pager.vnp.vnp_size >> 32), 747 (uintmax_t)object->un_pager.vnp.vnp_size); 748 } 749 vm_page_lock_queues(); 750 vm_page_free(m[i]); 751 vm_page_unlock_queues(); 752 VM_OBJECT_UNLOCK(object); 753 runend = i + 1; 754 first = runend; 755 continue; 756 } 757 runend = i + runpg; 758 if (runend <= reqpage) { 759 VM_OBJECT_LOCK(object); 760 vm_page_lock_queues(); 761 for (j = i; j < runend; j++) 762 vm_page_free(m[j]); 763 vm_page_unlock_queues(); 764 VM_OBJECT_UNLOCK(object); 765 } else { 766 if (runpg < (count - first)) { 767 VM_OBJECT_LOCK(object); 768 vm_page_lock_queues(); 769 for (i = first + runpg; i < count; i++) 770 vm_page_free(m[i]); 771 vm_page_unlock_queues(); 772 VM_OBJECT_UNLOCK(object); 773 count = first + runpg; 774 } 775 break; 776 } 777 first = runend; 778 } 779 780 /* 781 * the first and last page have been calculated now, move input pages 782 * to be zero based... 783 */ 784 if (first != 0) { 785 for (i = first; i < count; i++) { 786 m[i - first] = m[i]; 787 } 788 count -= first; 789 reqpage -= first; 790 } 791 792 /* 793 * calculate the file virtual address for the transfer 794 */ 795 foff = IDX_TO_OFF(m[0]->pindex); 796 797 /* 798 * calculate the size of the transfer 799 */ 800 size = count * PAGE_SIZE; 801 if ((foff + size) > object->un_pager.vnp.vnp_size) 802 size = object->un_pager.vnp.vnp_size - foff; 803 804 /* 805 * round up physical size for real devices. 806 */ 807 if (dp->v_type == VBLK || dp->v_type == VCHR) { 808 int secmask = dp->v_rdev->si_bsize_phys - 1; 809 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1)); 810 size = (size + secmask) & ~secmask; 811 } 812 813 bp = getpbuf(&vnode_pbuf_freecnt); 814 kva = (vm_offset_t) bp->b_data; 815 816 /* 817 * and map the pages to be read into the kva 818 */ 819 pmap_qenter(kva, m, count); 820 821 /* build a minimal buffer header */ 822 bp->b_iocmd = BIO_READ; 823 bp->b_iodone = vnode_pager_iodone; 824 /* B_PHYS is not set, but it is nice to fill this in */ 825 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 826 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 827 bp->b_rcred = crhold(curthread->td_ucred); 828 bp->b_wcred = crhold(curthread->td_ucred); 829 bp->b_blkno = firstaddr; 830 pbgetvp(dp, bp); 831 bp->b_bcount = size; 832 bp->b_bufsize = size; 833 bp->b_runningbufspace = bp->b_bufsize; 834 runningbufspace += bp->b_runningbufspace; 835 836 cnt.v_vnodein++; 837 cnt.v_vnodepgsin += count; 838 839 /* do the input */ 840 if (dp->v_type == VCHR) 841 VOP_SPECSTRATEGY(bp->b_vp, bp); 842 else 843 VOP_STRATEGY(bp->b_vp, bp); 844 845 s = splvm(); 846 /* we definitely need to be at splvm here */ 847 848 while ((bp->b_flags & B_DONE) == 0) { 849 tsleep(bp, PVM, "vnread", 0); 850 } 851 splx(s); 852 if ((bp->b_ioflags & BIO_ERROR) != 0) 853 error = EIO; 854 855 if (!error) { 856 if (size != count * PAGE_SIZE) 857 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 858 } 859 pmap_qremove(kva, count); 860 861 /* 862 * free the buffer header back to the swap buffer pool 863 */ 864 relpbuf(bp, &vnode_pbuf_freecnt); 865 866 VM_OBJECT_LOCK(object); 867 vm_page_lock_queues(); 868 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 869 vm_page_t mt; 870 871 nextoff = tfoff + PAGE_SIZE; 872 mt = m[i]; 873 874 if (nextoff <= object->un_pager.vnp.vnp_size) { 875 /* 876 * Read filled up entire page. 877 */ 878 mt->valid = VM_PAGE_BITS_ALL; 879 vm_page_undirty(mt); /* should be an assert? XXX */ 880 pmap_clear_modify(mt); 881 } else { 882 /* 883 * Read did not fill up entire page. Since this 884 * is getpages, the page may be mapped, so we have 885 * to zero the invalid portions of the page even 886 * though we aren't setting them valid. 887 * 888 * Currently we do not set the entire page valid, 889 * we just try to clear the piece that we couldn't 890 * read. 891 */ 892 vm_page_set_validclean(mt, 0, 893 object->un_pager.vnp.vnp_size - tfoff); 894 /* handled by vm_fault now */ 895 /* vm_page_zero_invalid(mt, FALSE); */ 896 } 897 898 vm_page_flag_clear(mt, PG_ZERO); 899 if (i != reqpage) { 900 901 /* 902 * whether or not to leave the page activated is up in 903 * the air, but we should put the page on a page queue 904 * somewhere. (it already is in the object). Result: 905 * It appears that empirical results show that 906 * deactivating pages is best. 907 */ 908 909 /* 910 * just in case someone was asking for this page we 911 * now tell them that it is ok to use 912 */ 913 if (!error) { 914 if (mt->flags & PG_WANTED) 915 vm_page_activate(mt); 916 else 917 vm_page_deactivate(mt); 918 vm_page_wakeup(mt); 919 } else { 920 vm_page_free(mt); 921 } 922 } 923 } 924 vm_page_unlock_queues(); 925 VM_OBJECT_UNLOCK(object); 926 if (error) { 927 printf("vnode_pager_getpages: I/O read error\n"); 928 } 929 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 930 } 931 932 /* 933 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 934 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 935 * vnode_pager_generic_putpages() to implement the previous behaviour. 936 * 937 * All other FS's should use the bypass to get to the local media 938 * backing vp's VOP_PUTPAGES. 939 */ 940 static void 941 vnode_pager_putpages(object, m, count, sync, rtvals) 942 vm_object_t object; 943 vm_page_t *m; 944 int count; 945 boolean_t sync; 946 int *rtvals; 947 { 948 int rtval; 949 struct vnode *vp; 950 struct mount *mp; 951 int bytes = count * PAGE_SIZE; 952 953 GIANT_REQUIRED; 954 /* 955 * Force synchronous operation if we are extremely low on memory 956 * to prevent a low-memory deadlock. VOP operations often need to 957 * allocate more memory to initiate the I/O ( i.e. do a BMAP 958 * operation ). The swapper handles the case by limiting the amount 959 * of asynchronous I/O, but that sort of solution doesn't scale well 960 * for the vnode pager without a lot of work. 961 * 962 * Also, the backing vnode's iodone routine may not wake the pageout 963 * daemon up. This should be probably be addressed XXX. 964 */ 965 966 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 967 sync |= OBJPC_SYNC; 968 969 /* 970 * Call device-specific putpages function 971 */ 972 vp = object->handle; 973 if (vp->v_type != VREG) 974 mp = NULL; 975 (void)vn_start_write(vp, &mp, V_WAIT); 976 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 977 KASSERT(rtval != EOPNOTSUPP, 978 ("vnode_pager: stale FS putpages\n")); 979 vn_finished_write(mp); 980 } 981 982 983 /* 984 * This is now called from local media FS's to operate against their 985 * own vnodes if they fail to implement VOP_PUTPAGES. 986 * 987 * This is typically called indirectly via the pageout daemon and 988 * clustering has already typically occured, so in general we ask the 989 * underlying filesystem to write the data out asynchronously rather 990 * then delayed. 991 */ 992 int 993 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 994 struct vnode *vp; 995 vm_page_t *m; 996 int bytecount; 997 int flags; 998 int *rtvals; 999 { 1000 int i; 1001 vm_object_t object; 1002 int count; 1003 1004 int maxsize, ncount; 1005 vm_ooffset_t poffset; 1006 struct uio auio; 1007 struct iovec aiov; 1008 int error; 1009 int ioflags; 1010 1011 GIANT_REQUIRED; 1012 object = vp->v_object; 1013 count = bytecount / PAGE_SIZE; 1014 1015 for (i = 0; i < count; i++) 1016 rtvals[i] = VM_PAGER_AGAIN; 1017 1018 if ((int) m[0]->pindex < 0) { 1019 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n", 1020 (long)m[0]->pindex, m[0]->dirty); 1021 rtvals[0] = VM_PAGER_BAD; 1022 return VM_PAGER_BAD; 1023 } 1024 1025 maxsize = count * PAGE_SIZE; 1026 ncount = count; 1027 1028 poffset = IDX_TO_OFF(m[0]->pindex); 1029 1030 /* 1031 * If the page-aligned write is larger then the actual file we 1032 * have to invalidate pages occuring beyond the file EOF. However, 1033 * there is an edge case where a file may not be page-aligned where 1034 * the last page is partially invalid. In this case the filesystem 1035 * may not properly clear the dirty bits for the entire page (which 1036 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1037 * With the page locked we are free to fix-up the dirty bits here. 1038 * 1039 * We do not under any circumstances truncate the valid bits, as 1040 * this will screw up bogus page replacement. 1041 */ 1042 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1043 if (object->un_pager.vnp.vnp_size > poffset) { 1044 int pgoff; 1045 1046 maxsize = object->un_pager.vnp.vnp_size - poffset; 1047 ncount = btoc(maxsize); 1048 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1049 vm_page_clear_dirty(m[ncount - 1], pgoff, 1050 PAGE_SIZE - pgoff); 1051 } 1052 } else { 1053 maxsize = 0; 1054 ncount = 0; 1055 } 1056 if (ncount < count) { 1057 for (i = ncount; i < count; i++) { 1058 rtvals[i] = VM_PAGER_BAD; 1059 } 1060 } 1061 } 1062 1063 /* 1064 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1065 * rather then a bdwrite() to prevent paging I/O from saturating 1066 * the buffer cache. Dummy-up the sequential heuristic to cause 1067 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1068 * the system decides how to cluster. 1069 */ 1070 ioflags = IO_VMIO; 1071 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1072 ioflags |= IO_SYNC; 1073 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1074 ioflags |= IO_ASYNC; 1075 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1076 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1077 1078 aiov.iov_base = (caddr_t) 0; 1079 aiov.iov_len = maxsize; 1080 auio.uio_iov = &aiov; 1081 auio.uio_iovcnt = 1; 1082 auio.uio_offset = poffset; 1083 auio.uio_segflg = UIO_NOCOPY; 1084 auio.uio_rw = UIO_WRITE; 1085 auio.uio_resid = maxsize; 1086 auio.uio_td = (struct thread *) 0; 1087 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1088 cnt.v_vnodeout++; 1089 cnt.v_vnodepgsout += ncount; 1090 1091 if (error) { 1092 printf("vnode_pager_putpages: I/O error %d\n", error); 1093 } 1094 if (auio.uio_resid) { 1095 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1096 auio.uio_resid, (u_long)m[0]->pindex); 1097 } 1098 for (i = 0; i < ncount; i++) { 1099 rtvals[i] = VM_PAGER_OK; 1100 } 1101 return rtvals[0]; 1102 } 1103 1104 struct vnode * 1105 vnode_pager_lock(object) 1106 vm_object_t object; 1107 { 1108 struct thread *td = curthread; /* XXX */ 1109 1110 GIANT_REQUIRED; 1111 1112 for (; object != NULL; object = object->backing_object) { 1113 if (object->type != OBJT_VNODE) 1114 continue; 1115 if (object->flags & OBJ_DEAD) { 1116 return NULL; 1117 } 1118 1119 /* XXX; If object->handle can change, we need to cache it. */ 1120 while (vget(object->handle, 1121 LK_NOPAUSE | LK_SHARED | LK_RETRY | LK_CANRECURSE, td)){ 1122 if ((object->flags & OBJ_DEAD) || (object->type != OBJT_VNODE)) 1123 return NULL; 1124 printf("vnode_pager_lock: retrying\n"); 1125 } 1126 return object->handle; 1127 } 1128 return NULL; 1129 } 1130