1 /*- 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/limits.h> 65 #include <sys/conf.h> 66 #include <sys/sf_buf.h> 67 68 #include <machine/atomic.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_object.h> 72 #include <vm/vm_page.h> 73 #include <vm/vm_pager.h> 74 #include <vm/vm_map.h> 75 #include <vm/vnode_pager.h> 76 #include <vm/vm_extern.h> 77 78 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 79 daddr_t *rtaddress, int *run); 80 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 81 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 82 static void vnode_pager_dealloc(vm_object_t); 83 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 84 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 85 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 86 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t); 87 88 struct pagerops vnodepagerops = { 89 .pgo_alloc = vnode_pager_alloc, 90 .pgo_dealloc = vnode_pager_dealloc, 91 .pgo_getpages = vnode_pager_getpages, 92 .pgo_putpages = vnode_pager_putpages, 93 .pgo_haspage = vnode_pager_haspage, 94 }; 95 96 int vnode_pbuf_freecnt; 97 98 /* Create the VM system backing object for this vnode */ 99 int 100 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 101 { 102 vm_object_t object; 103 vm_ooffset_t size = isize; 104 struct vattr va; 105 106 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 107 return (0); 108 109 while ((object = vp->v_object) != NULL) { 110 VM_OBJECT_LOCK(object); 111 if (!(object->flags & OBJ_DEAD)) { 112 VM_OBJECT_UNLOCK(object); 113 return (0); 114 } 115 VOP_UNLOCK(vp, 0); 116 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 117 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0); 118 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 119 } 120 121 if (size == 0) { 122 if (vn_isdisk(vp, NULL)) { 123 size = IDX_TO_OFF(INT_MAX); 124 } else { 125 if (VOP_GETATTR(vp, &va, td->td_ucred, td) != 0) 126 return (0); 127 size = va.va_size; 128 } 129 } 130 131 object = vnode_pager_alloc(vp, size, 0, 0); 132 /* 133 * Dereference the reference we just created. This assumes 134 * that the object is associated with the vp. 135 */ 136 VM_OBJECT_LOCK(object); 137 object->ref_count--; 138 VM_OBJECT_UNLOCK(object); 139 vrele(vp); 140 141 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 142 143 return (0); 144 } 145 146 void 147 vnode_destroy_vobject(struct vnode *vp) 148 { 149 struct vm_object *obj; 150 151 obj = vp->v_object; 152 if (obj == NULL) 153 return; 154 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 155 VM_OBJECT_LOCK(obj); 156 if (obj->ref_count == 0) { 157 /* 158 * vclean() may be called twice. The first time 159 * removes the primary reference to the object, 160 * the second time goes one further and is a 161 * special-case to terminate the object. 162 * 163 * don't double-terminate the object 164 */ 165 if ((obj->flags & OBJ_DEAD) == 0) 166 vm_object_terminate(obj); 167 else 168 VM_OBJECT_UNLOCK(obj); 169 } else { 170 /* 171 * Woe to the process that tries to page now :-). 172 */ 173 vm_pager_deallocate(obj); 174 VM_OBJECT_UNLOCK(obj); 175 } 176 vp->v_object = NULL; 177 } 178 179 180 /* 181 * Allocate (or lookup) pager for a vnode. 182 * Handle is a vnode pointer. 183 * 184 * MPSAFE 185 */ 186 vm_object_t 187 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 188 vm_ooffset_t offset) 189 { 190 vm_object_t object; 191 struct vnode *vp; 192 193 /* 194 * Pageout to vnode, no can do yet. 195 */ 196 if (handle == NULL) 197 return (NULL); 198 199 vp = (struct vnode *) handle; 200 201 ASSERT_VOP_ELOCKED(vp, "vnode_pager_alloc"); 202 203 /* 204 * If the object is being terminated, wait for it to 205 * go away. 206 */ 207 while ((object = vp->v_object) != NULL) { 208 VM_OBJECT_LOCK(object); 209 if ((object->flags & OBJ_DEAD) == 0) 210 break; 211 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 212 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 213 } 214 215 if (vp->v_usecount == 0) 216 panic("vnode_pager_alloc: no vnode reference"); 217 218 if (object == NULL) { 219 /* 220 * And an object of the appropriate size 221 */ 222 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 223 224 object->un_pager.vnp.vnp_size = size; 225 226 object->handle = handle; 227 if (VFS_NEEDSGIANT(vp->v_mount)) 228 vm_object_set_flag(object, OBJ_NEEDGIANT); 229 vp->v_object = object; 230 } else { 231 object->ref_count++; 232 VM_OBJECT_UNLOCK(object); 233 } 234 vref(vp); 235 return (object); 236 } 237 238 /* 239 * The object must be locked. 240 */ 241 static void 242 vnode_pager_dealloc(object) 243 vm_object_t object; 244 { 245 struct vnode *vp = object->handle; 246 247 if (vp == NULL) 248 panic("vnode_pager_dealloc: pager already dealloced"); 249 250 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 251 vm_object_pip_wait(object, "vnpdea"); 252 253 object->handle = NULL; 254 object->type = OBJT_DEAD; 255 if (object->flags & OBJ_DISCONNECTWNT) { 256 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 257 wakeup(object); 258 } 259 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 260 vp->v_object = NULL; 261 vp->v_vflag &= ~VV_TEXT; 262 } 263 264 static boolean_t 265 vnode_pager_haspage(object, pindex, before, after) 266 vm_object_t object; 267 vm_pindex_t pindex; 268 int *before; 269 int *after; 270 { 271 struct vnode *vp = object->handle; 272 daddr_t bn; 273 int err; 274 daddr_t reqblock; 275 int poff; 276 int bsize; 277 int pagesperblock, blocksperpage; 278 int vfslocked; 279 280 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 281 /* 282 * If no vp or vp is doomed or marked transparent to VM, we do not 283 * have the page. 284 */ 285 if (vp == NULL || vp->v_iflag & VI_DOOMED) 286 return FALSE; 287 /* 288 * If the offset is beyond end of file we do 289 * not have the page. 290 */ 291 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 292 return FALSE; 293 294 bsize = vp->v_mount->mnt_stat.f_iosize; 295 pagesperblock = bsize / PAGE_SIZE; 296 blocksperpage = 0; 297 if (pagesperblock > 0) { 298 reqblock = pindex / pagesperblock; 299 } else { 300 blocksperpage = (PAGE_SIZE / bsize); 301 reqblock = pindex * blocksperpage; 302 } 303 VM_OBJECT_UNLOCK(object); 304 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 305 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 306 VFS_UNLOCK_GIANT(vfslocked); 307 VM_OBJECT_LOCK(object); 308 if (err) 309 return TRUE; 310 if (bn == -1) 311 return FALSE; 312 if (pagesperblock > 0) { 313 poff = pindex - (reqblock * pagesperblock); 314 if (before) { 315 *before *= pagesperblock; 316 *before += poff; 317 } 318 if (after) { 319 int numafter; 320 *after *= pagesperblock; 321 numafter = pagesperblock - (poff + 1); 322 if (IDX_TO_OFF(pindex + numafter) > 323 object->un_pager.vnp.vnp_size) { 324 numafter = 325 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 326 pindex; 327 } 328 *after += numafter; 329 } 330 } else { 331 if (before) { 332 *before /= blocksperpage; 333 } 334 335 if (after) { 336 *after /= blocksperpage; 337 } 338 } 339 return TRUE; 340 } 341 342 /* 343 * Lets the VM system know about a change in size for a file. 344 * We adjust our own internal size and flush any cached pages in 345 * the associated object that are affected by the size change. 346 * 347 * Note: this routine may be invoked as a result of a pager put 348 * operation (possibly at object termination time), so we must be careful. 349 */ 350 void 351 vnode_pager_setsize(vp, nsize) 352 struct vnode *vp; 353 vm_ooffset_t nsize; 354 { 355 vm_object_t object; 356 vm_page_t m; 357 vm_pindex_t nobjsize; 358 359 if ((object = vp->v_object) == NULL) 360 return; 361 VM_OBJECT_LOCK(object); 362 if (nsize == object->un_pager.vnp.vnp_size) { 363 /* 364 * Hasn't changed size 365 */ 366 VM_OBJECT_UNLOCK(object); 367 return; 368 } 369 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 370 if (nsize < object->un_pager.vnp.vnp_size) { 371 /* 372 * File has shrunk. Toss any cached pages beyond the new EOF. 373 */ 374 if (nobjsize < object->size) 375 vm_object_page_remove(object, nobjsize, object->size, 376 FALSE); 377 /* 378 * this gets rid of garbage at the end of a page that is now 379 * only partially backed by the vnode. 380 * 381 * XXX for some reason (I don't know yet), if we take a 382 * completely invalid page and mark it partially valid 383 * it can screw up NFS reads, so we don't allow the case. 384 */ 385 if ((nsize & PAGE_MASK) && 386 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 387 m->valid != 0) { 388 int base = (int)nsize & PAGE_MASK; 389 int size = PAGE_SIZE - base; 390 391 /* 392 * Clear out partial-page garbage in case 393 * the page has been mapped. 394 */ 395 pmap_zero_page_area(m, base, size); 396 397 /* 398 * Clear out partial-page dirty bits. This 399 * has the side effect of setting the valid 400 * bits, but that is ok. There are a bunch 401 * of places in the VM system where we expected 402 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 403 * case is one of them. If the page is still 404 * partially dirty, make it fully dirty. 405 * 406 * note that we do not clear out the valid 407 * bits. This would prevent bogus_page 408 * replacement from working properly. 409 */ 410 vm_page_lock_queues(); 411 vm_page_set_validclean(m, base, size); 412 if (m->dirty != 0) 413 m->dirty = VM_PAGE_BITS_ALL; 414 vm_page_unlock_queues(); 415 } else if ((nsize & PAGE_MASK) && 416 __predict_false(object->cache != NULL)) { 417 vm_page_cache_free(object, OFF_TO_IDX(nsize), 418 nobjsize); 419 } 420 } 421 object->un_pager.vnp.vnp_size = nsize; 422 object->size = nobjsize; 423 VM_OBJECT_UNLOCK(object); 424 } 425 426 /* 427 * calculate the linear (byte) disk address of specified virtual 428 * file address 429 */ 430 static int 431 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 432 int *run) 433 { 434 int bsize; 435 int err; 436 daddr_t vblock; 437 daddr_t voffset; 438 439 if (address < 0) 440 return -1; 441 442 if (vp->v_iflag & VI_DOOMED) 443 return -1; 444 445 bsize = vp->v_mount->mnt_stat.f_iosize; 446 vblock = address / bsize; 447 voffset = address % bsize; 448 449 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 450 if (err == 0) { 451 if (*rtaddress != -1) 452 *rtaddress += voffset / DEV_BSIZE; 453 if (run) { 454 *run += 1; 455 *run *= bsize/PAGE_SIZE; 456 *run -= voffset/PAGE_SIZE; 457 } 458 } 459 460 return (err); 461 } 462 463 /* 464 * small block filesystem vnode pager input 465 */ 466 static int 467 vnode_pager_input_smlfs(object, m) 468 vm_object_t object; 469 vm_page_t m; 470 { 471 int i; 472 struct vnode *vp; 473 struct bufobj *bo; 474 struct buf *bp; 475 struct sf_buf *sf; 476 daddr_t fileaddr; 477 vm_offset_t bsize; 478 int error = 0; 479 480 vp = object->handle; 481 if (vp->v_iflag & VI_DOOMED) 482 return VM_PAGER_BAD; 483 484 bsize = vp->v_mount->mnt_stat.f_iosize; 485 486 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 487 488 sf = sf_buf_alloc(m, 0); 489 490 for (i = 0; i < PAGE_SIZE / bsize; i++) { 491 vm_ooffset_t address; 492 493 if (vm_page_bits(i * bsize, bsize) & m->valid) 494 continue; 495 496 address = IDX_TO_OFF(m->pindex) + i * bsize; 497 if (address >= object->un_pager.vnp.vnp_size) { 498 fileaddr = -1; 499 } else { 500 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 501 if (error) 502 break; 503 } 504 if (fileaddr != -1) { 505 bp = getpbuf(&vnode_pbuf_freecnt); 506 507 /* build a minimal buffer header */ 508 bp->b_iocmd = BIO_READ; 509 bp->b_iodone = bdone; 510 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 511 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 512 bp->b_rcred = crhold(curthread->td_ucred); 513 bp->b_wcred = crhold(curthread->td_ucred); 514 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 515 bp->b_blkno = fileaddr; 516 pbgetbo(bo, bp); 517 bp->b_bcount = bsize; 518 bp->b_bufsize = bsize; 519 bp->b_runningbufspace = bp->b_bufsize; 520 atomic_add_int(&runningbufspace, bp->b_runningbufspace); 521 522 /* do the input */ 523 bp->b_iooffset = dbtob(bp->b_blkno); 524 bstrategy(bp); 525 526 bwait(bp, PVM, "vnsrd"); 527 528 if ((bp->b_ioflags & BIO_ERROR) != 0) 529 error = EIO; 530 531 /* 532 * free the buffer header back to the swap buffer pool 533 */ 534 pbrelbo(bp); 535 relpbuf(bp, &vnode_pbuf_freecnt); 536 if (error) 537 break; 538 539 VM_OBJECT_LOCK(object); 540 vm_page_lock_queues(); 541 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 542 vm_page_unlock_queues(); 543 VM_OBJECT_UNLOCK(object); 544 } else { 545 VM_OBJECT_LOCK(object); 546 vm_page_lock_queues(); 547 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 548 vm_page_unlock_queues(); 549 VM_OBJECT_UNLOCK(object); 550 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 551 } 552 } 553 sf_buf_free(sf); 554 vm_page_lock_queues(); 555 pmap_clear_modify(m); 556 vm_page_unlock_queues(); 557 if (error) { 558 return VM_PAGER_ERROR; 559 } 560 return VM_PAGER_OK; 561 562 } 563 564 565 /* 566 * old style vnode pager input routine 567 */ 568 static int 569 vnode_pager_input_old(object, m) 570 vm_object_t object; 571 vm_page_t m; 572 { 573 struct uio auio; 574 struct iovec aiov; 575 int error; 576 int size; 577 struct sf_buf *sf; 578 struct vnode *vp; 579 580 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 581 error = 0; 582 583 /* 584 * Return failure if beyond current EOF 585 */ 586 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 587 return VM_PAGER_BAD; 588 } else { 589 size = PAGE_SIZE; 590 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 591 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 592 vp = object->handle; 593 VM_OBJECT_UNLOCK(object); 594 595 /* 596 * Allocate a kernel virtual address and initialize so that 597 * we can use VOP_READ/WRITE routines. 598 */ 599 sf = sf_buf_alloc(m, 0); 600 601 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 602 aiov.iov_len = size; 603 auio.uio_iov = &aiov; 604 auio.uio_iovcnt = 1; 605 auio.uio_offset = IDX_TO_OFF(m->pindex); 606 auio.uio_segflg = UIO_SYSSPACE; 607 auio.uio_rw = UIO_READ; 608 auio.uio_resid = size; 609 auio.uio_td = curthread; 610 611 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 612 if (!error) { 613 int count = size - auio.uio_resid; 614 615 if (count == 0) 616 error = EINVAL; 617 else if (count != PAGE_SIZE) 618 bzero((caddr_t)sf_buf_kva(sf) + count, 619 PAGE_SIZE - count); 620 } 621 sf_buf_free(sf); 622 623 VM_OBJECT_LOCK(object); 624 } 625 vm_page_lock_queues(); 626 pmap_clear_modify(m); 627 vm_page_undirty(m); 628 vm_page_unlock_queues(); 629 if (!error) 630 m->valid = VM_PAGE_BITS_ALL; 631 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 632 } 633 634 /* 635 * generic vnode pager input routine 636 */ 637 638 /* 639 * Local media VFS's that do not implement their own VOP_GETPAGES 640 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 641 * to implement the previous behaviour. 642 * 643 * All other FS's should use the bypass to get to the local media 644 * backing vp's VOP_GETPAGES. 645 */ 646 static int 647 vnode_pager_getpages(object, m, count, reqpage) 648 vm_object_t object; 649 vm_page_t *m; 650 int count; 651 int reqpage; 652 { 653 int rtval; 654 struct vnode *vp; 655 int bytes = count * PAGE_SIZE; 656 int vfslocked; 657 658 vp = object->handle; 659 VM_OBJECT_UNLOCK(object); 660 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 661 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 662 KASSERT(rtval != EOPNOTSUPP, 663 ("vnode_pager: FS getpages not implemented\n")); 664 VFS_UNLOCK_GIANT(vfslocked); 665 VM_OBJECT_LOCK(object); 666 return rtval; 667 } 668 669 /* 670 * This is now called from local media FS's to operate against their 671 * own vnodes if they fail to implement VOP_GETPAGES. 672 */ 673 int 674 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 675 struct vnode *vp; 676 vm_page_t *m; 677 int bytecount; 678 int reqpage; 679 { 680 vm_object_t object; 681 vm_offset_t kva; 682 off_t foff, tfoff, nextoff; 683 int i, j, size, bsize, first; 684 daddr_t firstaddr, reqblock; 685 struct bufobj *bo; 686 int runpg; 687 int runend; 688 struct buf *bp; 689 int count; 690 int error; 691 692 object = vp->v_object; 693 count = bytecount / PAGE_SIZE; 694 695 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 696 ("vnode_pager_generic_getpages does not support devices")); 697 if (vp->v_iflag & VI_DOOMED) 698 return VM_PAGER_BAD; 699 700 bsize = vp->v_mount->mnt_stat.f_iosize; 701 702 /* get the UNDERLYING device for the file with VOP_BMAP() */ 703 704 /* 705 * originally, we did not check for an error return value -- assuming 706 * an fs always has a bmap entry point -- that assumption is wrong!!! 707 */ 708 foff = IDX_TO_OFF(m[reqpage]->pindex); 709 710 /* 711 * if we can't bmap, use old VOP code 712 */ 713 error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL); 714 if (error == EOPNOTSUPP) { 715 VM_OBJECT_LOCK(object); 716 vm_page_lock_queues(); 717 for (i = 0; i < count; i++) 718 if (i != reqpage) 719 vm_page_free(m[i]); 720 vm_page_unlock_queues(); 721 PCPU_INC(cnt.v_vnodein); 722 PCPU_INC(cnt.v_vnodepgsin); 723 error = vnode_pager_input_old(object, m[reqpage]); 724 VM_OBJECT_UNLOCK(object); 725 return (error); 726 } else if (error != 0) { 727 VM_OBJECT_LOCK(object); 728 vm_page_lock_queues(); 729 for (i = 0; i < count; i++) 730 if (i != reqpage) 731 vm_page_free(m[i]); 732 vm_page_unlock_queues(); 733 VM_OBJECT_UNLOCK(object); 734 return (VM_PAGER_ERROR); 735 736 /* 737 * if the blocksize is smaller than a page size, then use 738 * special small filesystem code. NFS sometimes has a small 739 * blocksize, but it can handle large reads itself. 740 */ 741 } else if ((PAGE_SIZE / bsize) > 1 && 742 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 743 VM_OBJECT_LOCK(object); 744 vm_page_lock_queues(); 745 for (i = 0; i < count; i++) 746 if (i != reqpage) 747 vm_page_free(m[i]); 748 vm_page_unlock_queues(); 749 VM_OBJECT_UNLOCK(object); 750 PCPU_INC(cnt.v_vnodein); 751 PCPU_INC(cnt.v_vnodepgsin); 752 return vnode_pager_input_smlfs(object, m[reqpage]); 753 } 754 755 /* 756 * If we have a completely valid page available to us, we can 757 * clean up and return. Otherwise we have to re-read the 758 * media. 759 */ 760 VM_OBJECT_LOCK(object); 761 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 762 vm_page_lock_queues(); 763 for (i = 0; i < count; i++) 764 if (i != reqpage) 765 vm_page_free(m[i]); 766 vm_page_unlock_queues(); 767 VM_OBJECT_UNLOCK(object); 768 return VM_PAGER_OK; 769 } else if (reqblock == -1) { 770 pmap_zero_page(m[reqpage]); 771 vm_page_undirty(m[reqpage]); 772 m[reqpage]->valid = VM_PAGE_BITS_ALL; 773 vm_page_lock_queues(); 774 for (i = 0; i < count; i++) 775 if (i != reqpage) 776 vm_page_free(m[i]); 777 vm_page_unlock_queues(); 778 VM_OBJECT_UNLOCK(object); 779 return (VM_PAGER_OK); 780 } 781 m[reqpage]->valid = 0; 782 VM_OBJECT_UNLOCK(object); 783 784 /* 785 * here on direct device I/O 786 */ 787 firstaddr = -1; 788 789 /* 790 * calculate the run that includes the required page 791 */ 792 for (first = 0, i = 0; i < count; i = runend) { 793 if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr, 794 &runpg) != 0) { 795 VM_OBJECT_LOCK(object); 796 vm_page_lock_queues(); 797 for (; i < count; i++) 798 if (i != reqpage) 799 vm_page_free(m[i]); 800 vm_page_unlock_queues(); 801 VM_OBJECT_UNLOCK(object); 802 return (VM_PAGER_ERROR); 803 } 804 if (firstaddr == -1) { 805 VM_OBJECT_LOCK(object); 806 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 807 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 808 (intmax_t)firstaddr, (uintmax_t)(foff >> 32), 809 (uintmax_t)foff, 810 (uintmax_t) 811 (object->un_pager.vnp.vnp_size >> 32), 812 (uintmax_t)object->un_pager.vnp.vnp_size); 813 } 814 vm_page_lock_queues(); 815 vm_page_free(m[i]); 816 vm_page_unlock_queues(); 817 VM_OBJECT_UNLOCK(object); 818 runend = i + 1; 819 first = runend; 820 continue; 821 } 822 runend = i + runpg; 823 if (runend <= reqpage) { 824 VM_OBJECT_LOCK(object); 825 vm_page_lock_queues(); 826 for (j = i; j < runend; j++) 827 vm_page_free(m[j]); 828 vm_page_unlock_queues(); 829 VM_OBJECT_UNLOCK(object); 830 } else { 831 if (runpg < (count - first)) { 832 VM_OBJECT_LOCK(object); 833 vm_page_lock_queues(); 834 for (i = first + runpg; i < count; i++) 835 vm_page_free(m[i]); 836 vm_page_unlock_queues(); 837 VM_OBJECT_UNLOCK(object); 838 count = first + runpg; 839 } 840 break; 841 } 842 first = runend; 843 } 844 845 /* 846 * the first and last page have been calculated now, move input pages 847 * to be zero based... 848 */ 849 if (first != 0) { 850 m += first; 851 count -= first; 852 reqpage -= first; 853 } 854 855 /* 856 * calculate the file virtual address for the transfer 857 */ 858 foff = IDX_TO_OFF(m[0]->pindex); 859 860 /* 861 * calculate the size of the transfer 862 */ 863 size = count * PAGE_SIZE; 864 KASSERT(count > 0, ("zero count")); 865 if ((foff + size) > object->un_pager.vnp.vnp_size) 866 size = object->un_pager.vnp.vnp_size - foff; 867 KASSERT(size > 0, ("zero size")); 868 869 /* 870 * round up physical size for real devices. 871 */ 872 if (1) { 873 int secmask = bo->bo_bsize - 1; 874 KASSERT(secmask < PAGE_SIZE && secmask > 0, 875 ("vnode_pager_generic_getpages: sector size %d too large", 876 secmask + 1)); 877 size = (size + secmask) & ~secmask; 878 } 879 880 bp = getpbuf(&vnode_pbuf_freecnt); 881 kva = (vm_offset_t) bp->b_data; 882 883 /* 884 * and map the pages to be read into the kva 885 */ 886 pmap_qenter(kva, m, count); 887 888 /* build a minimal buffer header */ 889 bp->b_iocmd = BIO_READ; 890 bp->b_iodone = bdone; 891 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 892 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 893 bp->b_rcred = crhold(curthread->td_ucred); 894 bp->b_wcred = crhold(curthread->td_ucred); 895 bp->b_blkno = firstaddr; 896 pbgetbo(bo, bp); 897 bp->b_bcount = size; 898 bp->b_bufsize = size; 899 bp->b_runningbufspace = bp->b_bufsize; 900 atomic_add_int(&runningbufspace, bp->b_runningbufspace); 901 902 PCPU_INC(cnt.v_vnodein); 903 PCPU_ADD(cnt.v_vnodepgsin, count); 904 905 /* do the input */ 906 bp->b_iooffset = dbtob(bp->b_blkno); 907 bstrategy(bp); 908 909 bwait(bp, PVM, "vnread"); 910 911 if ((bp->b_ioflags & BIO_ERROR) != 0) 912 error = EIO; 913 914 if (!error) { 915 if (size != count * PAGE_SIZE) 916 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 917 } 918 pmap_qremove(kva, count); 919 920 /* 921 * free the buffer header back to the swap buffer pool 922 */ 923 pbrelbo(bp); 924 relpbuf(bp, &vnode_pbuf_freecnt); 925 926 VM_OBJECT_LOCK(object); 927 vm_page_lock_queues(); 928 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 929 vm_page_t mt; 930 931 nextoff = tfoff + PAGE_SIZE; 932 mt = m[i]; 933 934 if (nextoff <= object->un_pager.vnp.vnp_size) { 935 /* 936 * Read filled up entire page. 937 */ 938 mt->valid = VM_PAGE_BITS_ALL; 939 vm_page_undirty(mt); /* should be an assert? XXX */ 940 pmap_clear_modify(mt); 941 } else { 942 /* 943 * Read did not fill up entire page. Since this 944 * is getpages, the page may be mapped, so we have 945 * to zero the invalid portions of the page even 946 * though we aren't setting them valid. 947 * 948 * Currently we do not set the entire page valid, 949 * we just try to clear the piece that we couldn't 950 * read. 951 */ 952 vm_page_set_validclean(mt, 0, 953 object->un_pager.vnp.vnp_size - tfoff); 954 /* handled by vm_fault now */ 955 /* vm_page_zero_invalid(mt, FALSE); */ 956 } 957 958 if (i != reqpage) { 959 960 /* 961 * whether or not to leave the page activated is up in 962 * the air, but we should put the page on a page queue 963 * somewhere. (it already is in the object). Result: 964 * It appears that empirical results show that 965 * deactivating pages is best. 966 */ 967 968 /* 969 * just in case someone was asking for this page we 970 * now tell them that it is ok to use 971 */ 972 if (!error) { 973 if (mt->oflags & VPO_WANTED) 974 vm_page_activate(mt); 975 else 976 vm_page_deactivate(mt); 977 vm_page_wakeup(mt); 978 } else { 979 vm_page_free(mt); 980 } 981 } 982 } 983 vm_page_unlock_queues(); 984 VM_OBJECT_UNLOCK(object); 985 if (error) { 986 printf("vnode_pager_getpages: I/O read error\n"); 987 } 988 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 989 } 990 991 /* 992 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 993 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 994 * vnode_pager_generic_putpages() to implement the previous behaviour. 995 * 996 * All other FS's should use the bypass to get to the local media 997 * backing vp's VOP_PUTPAGES. 998 */ 999 static void 1000 vnode_pager_putpages(object, m, count, sync, rtvals) 1001 vm_object_t object; 1002 vm_page_t *m; 1003 int count; 1004 boolean_t sync; 1005 int *rtvals; 1006 { 1007 int rtval; 1008 struct vnode *vp; 1009 struct mount *mp; 1010 int bytes = count * PAGE_SIZE; 1011 1012 /* 1013 * Force synchronous operation if we are extremely low on memory 1014 * to prevent a low-memory deadlock. VOP operations often need to 1015 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1016 * operation ). The swapper handles the case by limiting the amount 1017 * of asynchronous I/O, but that sort of solution doesn't scale well 1018 * for the vnode pager without a lot of work. 1019 * 1020 * Also, the backing vnode's iodone routine may not wake the pageout 1021 * daemon up. This should be probably be addressed XXX. 1022 */ 1023 1024 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 1025 sync |= OBJPC_SYNC; 1026 1027 /* 1028 * Call device-specific putpages function 1029 */ 1030 vp = object->handle; 1031 VM_OBJECT_UNLOCK(object); 1032 if (vp->v_type != VREG) 1033 mp = NULL; 1034 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 1035 KASSERT(rtval != EOPNOTSUPP, 1036 ("vnode_pager: stale FS putpages\n")); 1037 VM_OBJECT_LOCK(object); 1038 } 1039 1040 1041 /* 1042 * This is now called from local media FS's to operate against their 1043 * own vnodes if they fail to implement VOP_PUTPAGES. 1044 * 1045 * This is typically called indirectly via the pageout daemon and 1046 * clustering has already typically occured, so in general we ask the 1047 * underlying filesystem to write the data out asynchronously rather 1048 * then delayed. 1049 */ 1050 int 1051 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 1052 struct vnode *vp; 1053 vm_page_t *m; 1054 int bytecount; 1055 int flags; 1056 int *rtvals; 1057 { 1058 int i; 1059 vm_object_t object; 1060 int count; 1061 1062 int maxsize, ncount; 1063 vm_ooffset_t poffset; 1064 struct uio auio; 1065 struct iovec aiov; 1066 int error; 1067 int ioflags; 1068 int ppscheck = 0; 1069 static struct timeval lastfail; 1070 static int curfail; 1071 1072 object = vp->v_object; 1073 count = bytecount / PAGE_SIZE; 1074 1075 for (i = 0; i < count; i++) 1076 rtvals[i] = VM_PAGER_AGAIN; 1077 1078 if ((int64_t)m[0]->pindex < 0) { 1079 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1080 (long)m[0]->pindex, (u_long)m[0]->dirty); 1081 rtvals[0] = VM_PAGER_BAD; 1082 return VM_PAGER_BAD; 1083 } 1084 1085 maxsize = count * PAGE_SIZE; 1086 ncount = count; 1087 1088 poffset = IDX_TO_OFF(m[0]->pindex); 1089 1090 /* 1091 * If the page-aligned write is larger then the actual file we 1092 * have to invalidate pages occuring beyond the file EOF. However, 1093 * there is an edge case where a file may not be page-aligned where 1094 * the last page is partially invalid. In this case the filesystem 1095 * may not properly clear the dirty bits for the entire page (which 1096 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1097 * With the page locked we are free to fix-up the dirty bits here. 1098 * 1099 * We do not under any circumstances truncate the valid bits, as 1100 * this will screw up bogus page replacement. 1101 */ 1102 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1103 if (object->un_pager.vnp.vnp_size > poffset) { 1104 int pgoff; 1105 1106 maxsize = object->un_pager.vnp.vnp_size - poffset; 1107 ncount = btoc(maxsize); 1108 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1109 vm_page_lock_queues(); 1110 vm_page_clear_dirty(m[ncount - 1], pgoff, 1111 PAGE_SIZE - pgoff); 1112 vm_page_unlock_queues(); 1113 } 1114 } else { 1115 maxsize = 0; 1116 ncount = 0; 1117 } 1118 if (ncount < count) { 1119 for (i = ncount; i < count; i++) { 1120 rtvals[i] = VM_PAGER_BAD; 1121 } 1122 } 1123 } 1124 1125 /* 1126 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1127 * rather then a bdwrite() to prevent paging I/O from saturating 1128 * the buffer cache. Dummy-up the sequential heuristic to cause 1129 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1130 * the system decides how to cluster. 1131 */ 1132 ioflags = IO_VMIO; 1133 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1134 ioflags |= IO_SYNC; 1135 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1136 ioflags |= IO_ASYNC; 1137 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1138 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1139 1140 aiov.iov_base = (caddr_t) 0; 1141 aiov.iov_len = maxsize; 1142 auio.uio_iov = &aiov; 1143 auio.uio_iovcnt = 1; 1144 auio.uio_offset = poffset; 1145 auio.uio_segflg = UIO_NOCOPY; 1146 auio.uio_rw = UIO_WRITE; 1147 auio.uio_resid = maxsize; 1148 auio.uio_td = (struct thread *) 0; 1149 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1150 PCPU_INC(cnt.v_vnodeout); 1151 PCPU_ADD(cnt.v_vnodepgsout, ncount); 1152 1153 if (error) { 1154 if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1))) 1155 printf("vnode_pager_putpages: I/O error %d\n", error); 1156 } 1157 if (auio.uio_resid) { 1158 if (ppscheck || ppsratecheck(&lastfail, &curfail, 1)) 1159 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1160 auio.uio_resid, (u_long)m[0]->pindex); 1161 } 1162 for (i = 0; i < ncount; i++) { 1163 rtvals[i] = VM_PAGER_OK; 1164 } 1165 return rtvals[0]; 1166 } 1167 1168 struct vnode * 1169 vnode_pager_lock(vm_object_t first_object) 1170 { 1171 struct vnode *vp; 1172 vm_object_t backing_object, object; 1173 1174 VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED); 1175 for (object = first_object; object != NULL; object = backing_object) { 1176 if (object->type != OBJT_VNODE) { 1177 if ((backing_object = object->backing_object) != NULL) 1178 VM_OBJECT_LOCK(backing_object); 1179 if (object != first_object) 1180 VM_OBJECT_UNLOCK(object); 1181 continue; 1182 } 1183 retry: 1184 if (object->flags & OBJ_DEAD) { 1185 if (object != first_object) 1186 VM_OBJECT_UNLOCK(object); 1187 return NULL; 1188 } 1189 vp = object->handle; 1190 VI_LOCK(vp); 1191 VM_OBJECT_UNLOCK(object); 1192 if (first_object != object) 1193 VM_OBJECT_UNLOCK(first_object); 1194 VFS_ASSERT_GIANT(vp->v_mount); 1195 if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | 1196 LK_RETRY | LK_SHARED, curthread)) { 1197 VM_OBJECT_LOCK(first_object); 1198 if (object != first_object) 1199 VM_OBJECT_LOCK(object); 1200 if (object->type != OBJT_VNODE) { 1201 if (object != first_object) 1202 VM_OBJECT_UNLOCK(object); 1203 return NULL; 1204 } 1205 printf("vnode_pager_lock: retrying\n"); 1206 goto retry; 1207 } 1208 VM_OBJECT_LOCK(first_object); 1209 return (vp); 1210 } 1211 return NULL; 1212 } 1213