1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991 The Regents of the University of California. 6 * All rights reserved. 7 * Copyright (c) 1993, 1994 John S. Dyson 8 * Copyright (c) 1995, David Greenman 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 43 */ 44 45 /* 46 * Page to/from files (vnodes). 47 */ 48 49 /* 50 * TODO: 51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 52 * greatly re-simplify the vnode_pager. 53 */ 54 55 #include <sys/cdefs.h> 56 __FBSDID("$FreeBSD$"); 57 58 #include "opt_vm.h" 59 60 #include <sys/param.h> 61 #include <sys/kernel.h> 62 #include <sys/systm.h> 63 #include <sys/sysctl.h> 64 #include <sys/proc.h> 65 #include <sys/vnode.h> 66 #include <sys/mount.h> 67 #include <sys/bio.h> 68 #include <sys/buf.h> 69 #include <sys/vmmeter.h> 70 #include <sys/limits.h> 71 #include <sys/conf.h> 72 #include <sys/rwlock.h> 73 #include <sys/sf_buf.h> 74 #include <sys/domainset.h> 75 76 #include <machine/atomic.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_page.h> 82 #include <vm/vm_pager.h> 83 #include <vm/vm_map.h> 84 #include <vm/vnode_pager.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 89 daddr_t *rtaddress, int *run); 90 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 91 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 92 static void vnode_pager_dealloc(vm_object_t); 93 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *); 94 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 95 int *, vop_getpages_iodone_t, void *); 96 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *); 97 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 98 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, 99 vm_ooffset_t, struct ucred *cred); 100 static int vnode_pager_generic_getpages_done(struct buf *); 101 static void vnode_pager_generic_getpages_done_async(struct buf *); 102 103 struct pagerops vnodepagerops = { 104 .pgo_alloc = vnode_pager_alloc, 105 .pgo_dealloc = vnode_pager_dealloc, 106 .pgo_getpages = vnode_pager_getpages, 107 .pgo_getpages_async = vnode_pager_getpages_async, 108 .pgo_putpages = vnode_pager_putpages, 109 .pgo_haspage = vnode_pager_haspage, 110 }; 111 112 static struct domainset *vnode_domainset = NULL; 113 114 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW, 115 &vnode_domainset, 0, sysctl_handle_domainset, "A", 116 "Default vnode NUMA policy"); 117 118 static int nvnpbufs; 119 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 120 &nvnpbufs, 0, "number of physical buffers allocated for vnode pager"); 121 122 static uma_zone_t vnode_pbuf_zone; 123 124 static void 125 vnode_pager_init(void *dummy) 126 { 127 128 #ifdef __LP64__ 129 nvnpbufs = nswbuf * 2; 130 #else 131 nvnpbufs = nswbuf / 2; 132 #endif 133 TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs); 134 vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs); 135 } 136 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL); 137 138 /* Create the VM system backing object for this vnode */ 139 int 140 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 141 { 142 vm_object_t object; 143 vm_ooffset_t size = isize; 144 struct vattr va; 145 146 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 147 return (0); 148 149 while ((object = vp->v_object) != NULL) { 150 VM_OBJECT_WLOCK(object); 151 if (!(object->flags & OBJ_DEAD)) { 152 VM_OBJECT_WUNLOCK(object); 153 return (0); 154 } 155 VOP_UNLOCK(vp, 0); 156 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 157 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0); 158 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 159 } 160 161 if (size == 0) { 162 if (vn_isdisk(vp, NULL)) { 163 size = IDX_TO_OFF(INT_MAX); 164 } else { 165 if (VOP_GETATTR(vp, &va, td->td_ucred)) 166 return (0); 167 size = va.va_size; 168 } 169 } 170 171 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); 172 /* 173 * Dereference the reference we just created. This assumes 174 * that the object is associated with the vp. 175 */ 176 VM_OBJECT_WLOCK(object); 177 object->ref_count--; 178 VM_OBJECT_WUNLOCK(object); 179 vrele(vp); 180 181 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 182 183 return (0); 184 } 185 186 void 187 vnode_destroy_vobject(struct vnode *vp) 188 { 189 struct vm_object *obj; 190 191 obj = vp->v_object; 192 if (obj == NULL) 193 return; 194 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 195 VM_OBJECT_WLOCK(obj); 196 umtx_shm_object_terminated(obj); 197 if (obj->ref_count == 0) { 198 /* 199 * don't double-terminate the object 200 */ 201 if ((obj->flags & OBJ_DEAD) == 0) { 202 vm_object_terminate(obj); 203 } else { 204 /* 205 * Waiters were already handled during object 206 * termination. The exclusive vnode lock hopefully 207 * prevented new waiters from referencing the dying 208 * object. 209 */ 210 KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0, 211 ("OBJ_DISCONNECTWNT set obj %p flags %x", 212 obj, obj->flags)); 213 vp->v_object = NULL; 214 VM_OBJECT_WUNLOCK(obj); 215 } 216 } else { 217 /* 218 * Woe to the process that tries to page now :-). 219 */ 220 vm_pager_deallocate(obj); 221 VM_OBJECT_WUNLOCK(obj); 222 } 223 KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object)); 224 } 225 226 227 /* 228 * Allocate (or lookup) pager for a vnode. 229 * Handle is a vnode pointer. 230 * 231 * MPSAFE 232 */ 233 vm_object_t 234 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 235 vm_ooffset_t offset, struct ucred *cred) 236 { 237 vm_object_t object; 238 struct vnode *vp; 239 240 /* 241 * Pageout to vnode, no can do yet. 242 */ 243 if (handle == NULL) 244 return (NULL); 245 246 vp = (struct vnode *) handle; 247 248 /* 249 * If the object is being terminated, wait for it to 250 * go away. 251 */ 252 retry: 253 while ((object = vp->v_object) != NULL) { 254 VM_OBJECT_WLOCK(object); 255 if ((object->flags & OBJ_DEAD) == 0) 256 break; 257 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 258 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0); 259 } 260 261 KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference")); 262 263 if (object == NULL) { 264 /* 265 * Add an object of the appropriate size 266 */ 267 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 268 269 object->un_pager.vnp.vnp_size = size; 270 object->un_pager.vnp.writemappings = 0; 271 object->domain.dr_policy = vnode_domainset; 272 273 object->handle = handle; 274 VI_LOCK(vp); 275 if (vp->v_object != NULL) { 276 /* 277 * Object has been created while we were sleeping 278 */ 279 VI_UNLOCK(vp); 280 VM_OBJECT_WLOCK(object); 281 KASSERT(object->ref_count == 1, 282 ("leaked ref %p %d", object, object->ref_count)); 283 object->type = OBJT_DEAD; 284 object->ref_count = 0; 285 VM_OBJECT_WUNLOCK(object); 286 vm_object_destroy(object); 287 goto retry; 288 } 289 vp->v_object = object; 290 VI_UNLOCK(vp); 291 } else { 292 object->ref_count++; 293 #if VM_NRESERVLEVEL > 0 294 vm_object_color(object, 0); 295 #endif 296 VM_OBJECT_WUNLOCK(object); 297 } 298 vrefact(vp); 299 return (object); 300 } 301 302 /* 303 * The object must be locked. 304 */ 305 static void 306 vnode_pager_dealloc(vm_object_t object) 307 { 308 struct vnode *vp; 309 int refs; 310 311 vp = object->handle; 312 if (vp == NULL) 313 panic("vnode_pager_dealloc: pager already dealloced"); 314 315 VM_OBJECT_ASSERT_WLOCKED(object); 316 vm_object_pip_wait(object, "vnpdea"); 317 refs = object->ref_count; 318 319 object->handle = NULL; 320 object->type = OBJT_DEAD; 321 if (object->flags & OBJ_DISCONNECTWNT) { 322 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 323 wakeup(object); 324 } 325 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 326 if (object->un_pager.vnp.writemappings > 0) { 327 object->un_pager.vnp.writemappings = 0; 328 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 329 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 330 __func__, vp, vp->v_writecount); 331 } 332 vp->v_object = NULL; 333 VI_LOCK(vp); 334 335 /* 336 * vm_map_entry_set_vnode_text() cannot reach this vnode by 337 * following object->handle. Clear all text references now. 338 * This also clears the transient references from 339 * kern_execve(), which is fine because dead_vnodeops uses nop 340 * for VOP_UNSET_TEXT(). 341 */ 342 if (vp->v_writecount < 0) 343 vp->v_writecount = 0; 344 VI_UNLOCK(vp); 345 VM_OBJECT_WUNLOCK(object); 346 while (refs-- > 0) 347 vunref(vp); 348 VM_OBJECT_WLOCK(object); 349 } 350 351 static boolean_t 352 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 353 int *after) 354 { 355 struct vnode *vp = object->handle; 356 daddr_t bn; 357 int err; 358 daddr_t reqblock; 359 int poff; 360 int bsize; 361 int pagesperblock, blocksperpage; 362 363 VM_OBJECT_ASSERT_WLOCKED(object); 364 /* 365 * If no vp or vp is doomed or marked transparent to VM, we do not 366 * have the page. 367 */ 368 if (vp == NULL || vp->v_iflag & VI_DOOMED) 369 return FALSE; 370 /* 371 * If the offset is beyond end of file we do 372 * not have the page. 373 */ 374 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 375 return FALSE; 376 377 bsize = vp->v_mount->mnt_stat.f_iosize; 378 pagesperblock = bsize / PAGE_SIZE; 379 blocksperpage = 0; 380 if (pagesperblock > 0) { 381 reqblock = pindex / pagesperblock; 382 } else { 383 blocksperpage = (PAGE_SIZE / bsize); 384 reqblock = pindex * blocksperpage; 385 } 386 VM_OBJECT_WUNLOCK(object); 387 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 388 VM_OBJECT_WLOCK(object); 389 if (err) 390 return TRUE; 391 if (bn == -1) 392 return FALSE; 393 if (pagesperblock > 0) { 394 poff = pindex - (reqblock * pagesperblock); 395 if (before) { 396 *before *= pagesperblock; 397 *before += poff; 398 } 399 if (after) { 400 /* 401 * The BMAP vop can report a partial block in the 402 * 'after', but must not report blocks after EOF. 403 * Assert the latter, and truncate 'after' in case 404 * of the former. 405 */ 406 KASSERT((reqblock + *after) * pagesperblock < 407 roundup2(object->size, pagesperblock), 408 ("%s: reqblock %jd after %d size %ju", __func__, 409 (intmax_t )reqblock, *after, 410 (uintmax_t )object->size)); 411 *after *= pagesperblock; 412 *after += pagesperblock - (poff + 1); 413 if (pindex + *after >= object->size) 414 *after = object->size - 1 - pindex; 415 } 416 } else { 417 if (before) { 418 *before /= blocksperpage; 419 } 420 421 if (after) { 422 *after /= blocksperpage; 423 } 424 } 425 return TRUE; 426 } 427 428 /* 429 * Lets the VM system know about a change in size for a file. 430 * We adjust our own internal size and flush any cached pages in 431 * the associated object that are affected by the size change. 432 * 433 * Note: this routine may be invoked as a result of a pager put 434 * operation (possibly at object termination time), so we must be careful. 435 */ 436 void 437 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize) 438 { 439 vm_object_t object; 440 vm_page_t m; 441 vm_pindex_t nobjsize; 442 443 if ((object = vp->v_object) == NULL) 444 return; 445 /* ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */ 446 VM_OBJECT_WLOCK(object); 447 if (object->type == OBJT_DEAD) { 448 VM_OBJECT_WUNLOCK(object); 449 return; 450 } 451 KASSERT(object->type == OBJT_VNODE, 452 ("not vnode-backed object %p", object)); 453 if (nsize == object->un_pager.vnp.vnp_size) { 454 /* 455 * Hasn't changed size 456 */ 457 VM_OBJECT_WUNLOCK(object); 458 return; 459 } 460 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 461 if (nsize < object->un_pager.vnp.vnp_size) { 462 /* 463 * File has shrunk. Toss any cached pages beyond the new EOF. 464 */ 465 if (nobjsize < object->size) 466 vm_object_page_remove(object, nobjsize, object->size, 467 0); 468 /* 469 * this gets rid of garbage at the end of a page that is now 470 * only partially backed by the vnode. 471 * 472 * XXX for some reason (I don't know yet), if we take a 473 * completely invalid page and mark it partially valid 474 * it can screw up NFS reads, so we don't allow the case. 475 */ 476 if ((nsize & PAGE_MASK) && 477 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 478 m->valid != 0) { 479 int base = (int)nsize & PAGE_MASK; 480 int size = PAGE_SIZE - base; 481 482 /* 483 * Clear out partial-page garbage in case 484 * the page has been mapped. 485 */ 486 pmap_zero_page_area(m, base, size); 487 488 /* 489 * Update the valid bits to reflect the blocks that 490 * have been zeroed. Some of these valid bits may 491 * have already been set. 492 */ 493 vm_page_set_valid_range(m, base, size); 494 495 /* 496 * Round "base" to the next block boundary so that the 497 * dirty bit for a partially zeroed block is not 498 * cleared. 499 */ 500 base = roundup2(base, DEV_BSIZE); 501 502 /* 503 * Clear out partial-page dirty bits. 504 * 505 * note that we do not clear out the valid 506 * bits. This would prevent bogus_page 507 * replacement from working properly. 508 */ 509 vm_page_clear_dirty(m, base, PAGE_SIZE - base); 510 } 511 } 512 object->un_pager.vnp.vnp_size = nsize; 513 object->size = nobjsize; 514 VM_OBJECT_WUNLOCK(object); 515 } 516 517 /* 518 * calculate the linear (byte) disk address of specified virtual 519 * file address 520 */ 521 static int 522 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 523 int *run) 524 { 525 int bsize; 526 int err; 527 daddr_t vblock; 528 daddr_t voffset; 529 530 if (address < 0) 531 return -1; 532 533 if (vp->v_iflag & VI_DOOMED) 534 return -1; 535 536 bsize = vp->v_mount->mnt_stat.f_iosize; 537 vblock = address / bsize; 538 voffset = address % bsize; 539 540 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 541 if (err == 0) { 542 if (*rtaddress != -1) 543 *rtaddress += voffset / DEV_BSIZE; 544 if (run) { 545 *run += 1; 546 *run *= bsize/PAGE_SIZE; 547 *run -= voffset/PAGE_SIZE; 548 } 549 } 550 551 return (err); 552 } 553 554 /* 555 * small block filesystem vnode pager input 556 */ 557 static int 558 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m) 559 { 560 struct vnode *vp; 561 struct bufobj *bo; 562 struct buf *bp; 563 struct sf_buf *sf; 564 daddr_t fileaddr; 565 vm_offset_t bsize; 566 vm_page_bits_t bits; 567 int error, i; 568 569 error = 0; 570 vp = object->handle; 571 if (vp->v_iflag & VI_DOOMED) 572 return VM_PAGER_BAD; 573 574 bsize = vp->v_mount->mnt_stat.f_iosize; 575 576 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 577 578 sf = sf_buf_alloc(m, 0); 579 580 for (i = 0; i < PAGE_SIZE / bsize; i++) { 581 vm_ooffset_t address; 582 583 bits = vm_page_bits(i * bsize, bsize); 584 if (m->valid & bits) 585 continue; 586 587 address = IDX_TO_OFF(m->pindex) + i * bsize; 588 if (address >= object->un_pager.vnp.vnp_size) { 589 fileaddr = -1; 590 } else { 591 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 592 if (error) 593 break; 594 } 595 if (fileaddr != -1) { 596 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 597 598 /* build a minimal buffer header */ 599 bp->b_iocmd = BIO_READ; 600 bp->b_iodone = bdone; 601 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 602 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 603 bp->b_rcred = crhold(curthread->td_ucred); 604 bp->b_wcred = crhold(curthread->td_ucred); 605 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 606 bp->b_blkno = fileaddr; 607 pbgetbo(bo, bp); 608 bp->b_vp = vp; 609 bp->b_bcount = bsize; 610 bp->b_bufsize = bsize; 611 bp->b_runningbufspace = bp->b_bufsize; 612 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 613 614 /* do the input */ 615 bp->b_iooffset = dbtob(bp->b_blkno); 616 bstrategy(bp); 617 618 bwait(bp, PVM, "vnsrd"); 619 620 if ((bp->b_ioflags & BIO_ERROR) != 0) 621 error = EIO; 622 623 /* 624 * free the buffer header back to the swap buffer pool 625 */ 626 bp->b_vp = NULL; 627 pbrelbo(bp); 628 uma_zfree(vnode_pbuf_zone, bp); 629 if (error) 630 break; 631 } else 632 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 633 KASSERT((m->dirty & bits) == 0, 634 ("vnode_pager_input_smlfs: page %p is dirty", m)); 635 VM_OBJECT_WLOCK(object); 636 m->valid |= bits; 637 VM_OBJECT_WUNLOCK(object); 638 } 639 sf_buf_free(sf); 640 if (error) { 641 return VM_PAGER_ERROR; 642 } 643 return VM_PAGER_OK; 644 } 645 646 /* 647 * old style vnode pager input routine 648 */ 649 static int 650 vnode_pager_input_old(vm_object_t object, vm_page_t m) 651 { 652 struct uio auio; 653 struct iovec aiov; 654 int error; 655 int size; 656 struct sf_buf *sf; 657 struct vnode *vp; 658 659 VM_OBJECT_ASSERT_WLOCKED(object); 660 error = 0; 661 662 /* 663 * Return failure if beyond current EOF 664 */ 665 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 666 return VM_PAGER_BAD; 667 } else { 668 size = PAGE_SIZE; 669 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 670 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 671 vp = object->handle; 672 VM_OBJECT_WUNLOCK(object); 673 674 /* 675 * Allocate a kernel virtual address and initialize so that 676 * we can use VOP_READ/WRITE routines. 677 */ 678 sf = sf_buf_alloc(m, 0); 679 680 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 681 aiov.iov_len = size; 682 auio.uio_iov = &aiov; 683 auio.uio_iovcnt = 1; 684 auio.uio_offset = IDX_TO_OFF(m->pindex); 685 auio.uio_segflg = UIO_SYSSPACE; 686 auio.uio_rw = UIO_READ; 687 auio.uio_resid = size; 688 auio.uio_td = curthread; 689 690 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 691 if (!error) { 692 int count = size - auio.uio_resid; 693 694 if (count == 0) 695 error = EINVAL; 696 else if (count != PAGE_SIZE) 697 bzero((caddr_t)sf_buf_kva(sf) + count, 698 PAGE_SIZE - count); 699 } 700 sf_buf_free(sf); 701 702 VM_OBJECT_WLOCK(object); 703 } 704 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 705 if (!error) 706 m->valid = VM_PAGE_BITS_ALL; 707 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 708 } 709 710 /* 711 * generic vnode pager input routine 712 */ 713 714 /* 715 * Local media VFS's that do not implement their own VOP_GETPAGES 716 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 717 * to implement the previous behaviour. 718 * 719 * All other FS's should use the bypass to get to the local media 720 * backing vp's VOP_GETPAGES. 721 */ 722 static int 723 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 724 int *rahead) 725 { 726 struct vnode *vp; 727 int rtval; 728 729 vp = object->handle; 730 VM_OBJECT_WUNLOCK(object); 731 rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead); 732 KASSERT(rtval != EOPNOTSUPP, 733 ("vnode_pager: FS getpages not implemented\n")); 734 VM_OBJECT_WLOCK(object); 735 return rtval; 736 } 737 738 static int 739 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 740 int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg) 741 { 742 struct vnode *vp; 743 int rtval; 744 745 vp = object->handle; 746 VM_OBJECT_WUNLOCK(object); 747 rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg); 748 KASSERT(rtval != EOPNOTSUPP, 749 ("vnode_pager: FS getpages_async not implemented\n")); 750 VM_OBJECT_WLOCK(object); 751 return (rtval); 752 } 753 754 /* 755 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for 756 * local filesystems, where partially valid pages can only occur at 757 * the end of file. 758 */ 759 int 760 vnode_pager_local_getpages(struct vop_getpages_args *ap) 761 { 762 763 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 764 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 765 } 766 767 int 768 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap) 769 { 770 771 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 772 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg)); 773 } 774 775 /* 776 * This is now called from local media FS's to operate against their 777 * own vnodes if they fail to implement VOP_GETPAGES. 778 */ 779 int 780 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count, 781 int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg) 782 { 783 vm_object_t object; 784 struct bufobj *bo; 785 struct buf *bp; 786 off_t foff; 787 #ifdef INVARIANTS 788 off_t blkno0; 789 #endif 790 int bsize, pagesperblock; 791 int error, before, after, rbehind, rahead, poff, i; 792 int bytecount, secmask; 793 794 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 795 ("%s does not support devices", __func__)); 796 797 if (vp->v_iflag & VI_DOOMED) 798 return (VM_PAGER_BAD); 799 800 object = vp->v_object; 801 foff = IDX_TO_OFF(m[0]->pindex); 802 bsize = vp->v_mount->mnt_stat.f_iosize; 803 pagesperblock = bsize / PAGE_SIZE; 804 805 KASSERT(foff < object->un_pager.vnp.vnp_size, 806 ("%s: page %p offset beyond vp %p size", __func__, m[0], vp)); 807 KASSERT(count <= nitems(bp->b_pages), 808 ("%s: requested %d pages", __func__, count)); 809 810 /* 811 * The last page has valid blocks. Invalid part can only 812 * exist at the end of file, and the page is made fully valid 813 * by zeroing in vm_pager_get_pages(). 814 */ 815 if (m[count - 1]->valid != 0 && --count == 0) { 816 if (iodone != NULL) 817 iodone(arg, m, 1, 0); 818 return (VM_PAGER_OK); 819 } 820 821 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 822 823 /* 824 * Get the underlying device blocks for the file with VOP_BMAP(). 825 * If the file system doesn't support VOP_BMAP, use old way of 826 * getting pages via VOP_READ. 827 */ 828 error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before); 829 if (error == EOPNOTSUPP) { 830 uma_zfree(vnode_pbuf_zone, bp); 831 VM_OBJECT_WLOCK(object); 832 for (i = 0; i < count; i++) { 833 VM_CNT_INC(v_vnodein); 834 VM_CNT_INC(v_vnodepgsin); 835 error = vnode_pager_input_old(object, m[i]); 836 if (error) 837 break; 838 } 839 VM_OBJECT_WUNLOCK(object); 840 return (error); 841 } else if (error != 0) { 842 uma_zfree(vnode_pbuf_zone, bp); 843 return (VM_PAGER_ERROR); 844 } 845 846 /* 847 * If the file system supports BMAP, but blocksize is smaller 848 * than a page size, then use special small filesystem code. 849 */ 850 if (pagesperblock == 0) { 851 uma_zfree(vnode_pbuf_zone, bp); 852 for (i = 0; i < count; i++) { 853 VM_CNT_INC(v_vnodein); 854 VM_CNT_INC(v_vnodepgsin); 855 error = vnode_pager_input_smlfs(object, m[i]); 856 if (error) 857 break; 858 } 859 return (error); 860 } 861 862 /* 863 * A sparse file can be encountered only for a single page request, 864 * which may not be preceded by call to vm_pager_haspage(). 865 */ 866 if (bp->b_blkno == -1) { 867 KASSERT(count == 1, 868 ("%s: array[%d] request to a sparse file %p", __func__, 869 count, vp)); 870 uma_zfree(vnode_pbuf_zone, bp); 871 pmap_zero_page(m[0]); 872 KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty", 873 __func__, m[0])); 874 VM_OBJECT_WLOCK(object); 875 m[0]->valid = VM_PAGE_BITS_ALL; 876 VM_OBJECT_WUNLOCK(object); 877 return (VM_PAGER_OK); 878 } 879 880 #ifdef INVARIANTS 881 blkno0 = bp->b_blkno; 882 #endif 883 bp->b_blkno += (foff % bsize) / DEV_BSIZE; 884 885 /* Recalculate blocks available after/before to pages. */ 886 poff = (foff % bsize) / PAGE_SIZE; 887 before *= pagesperblock; 888 before += poff; 889 after *= pagesperblock; 890 after += pagesperblock - (poff + 1); 891 if (m[0]->pindex + after >= object->size) 892 after = object->size - 1 - m[0]->pindex; 893 KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d", 894 __func__, count, after + 1)); 895 after -= count - 1; 896 897 /* Trim requested rbehind/rahead to possible values. */ 898 rbehind = a_rbehind ? *a_rbehind : 0; 899 rahead = a_rahead ? *a_rahead : 0; 900 rbehind = min(rbehind, before); 901 rbehind = min(rbehind, m[0]->pindex); 902 rahead = min(rahead, after); 903 rahead = min(rahead, object->size - m[count - 1]->pindex); 904 /* 905 * Check that total amount of pages fit into buf. Trim rbehind and 906 * rahead evenly if not. 907 */ 908 if (rbehind + rahead + count > nitems(bp->b_pages)) { 909 int trim, sum; 910 911 trim = rbehind + rahead + count - nitems(bp->b_pages) + 1; 912 sum = rbehind + rahead; 913 if (rbehind == before) { 914 /* Roundup rbehind trim to block size. */ 915 rbehind -= roundup(trim * rbehind / sum, pagesperblock); 916 if (rbehind < 0) 917 rbehind = 0; 918 } else 919 rbehind -= trim * rbehind / sum; 920 rahead -= trim * rahead / sum; 921 } 922 KASSERT(rbehind + rahead + count <= nitems(bp->b_pages), 923 ("%s: behind %d ahead %d count %d", __func__, 924 rbehind, rahead, count)); 925 926 /* 927 * Fill in the bp->b_pages[] array with requested and optional 928 * read behind or read ahead pages. Read behind pages are looked 929 * up in a backward direction, down to a first cached page. Same 930 * for read ahead pages, but there is no need to shift the array 931 * in case of encountering a cached page. 932 */ 933 i = bp->b_npages = 0; 934 if (rbehind) { 935 vm_pindex_t startpindex, tpindex; 936 vm_page_t p; 937 938 VM_OBJECT_WLOCK(object); 939 startpindex = m[0]->pindex - rbehind; 940 if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL && 941 p->pindex >= startpindex) 942 startpindex = p->pindex + 1; 943 944 /* tpindex is unsigned; beware of numeric underflow. */ 945 for (tpindex = m[0]->pindex - 1; 946 tpindex >= startpindex && tpindex < m[0]->pindex; 947 tpindex--, i++) { 948 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 949 if (p == NULL) { 950 /* Shift the array. */ 951 for (int j = 0; j < i; j++) 952 bp->b_pages[j] = bp->b_pages[j + 953 tpindex + 1 - startpindex]; 954 break; 955 } 956 bp->b_pages[tpindex - startpindex] = p; 957 } 958 959 bp->b_pgbefore = i; 960 bp->b_npages += i; 961 bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE; 962 } else 963 bp->b_pgbefore = 0; 964 965 /* Requested pages. */ 966 for (int j = 0; j < count; j++, i++) 967 bp->b_pages[i] = m[j]; 968 bp->b_npages += count; 969 970 if (rahead) { 971 vm_pindex_t endpindex, tpindex; 972 vm_page_t p; 973 974 if (!VM_OBJECT_WOWNED(object)) 975 VM_OBJECT_WLOCK(object); 976 endpindex = m[count - 1]->pindex + rahead + 1; 977 if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL && 978 p->pindex < endpindex) 979 endpindex = p->pindex; 980 if (endpindex > object->size) 981 endpindex = object->size; 982 983 for (tpindex = m[count - 1]->pindex + 1; 984 tpindex < endpindex; i++, tpindex++) { 985 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 986 if (p == NULL) 987 break; 988 bp->b_pages[i] = p; 989 } 990 991 bp->b_pgafter = i - bp->b_npages; 992 bp->b_npages = i; 993 } else 994 bp->b_pgafter = 0; 995 996 if (VM_OBJECT_WOWNED(object)) 997 VM_OBJECT_WUNLOCK(object); 998 999 /* Report back actual behind/ahead read. */ 1000 if (a_rbehind) 1001 *a_rbehind = bp->b_pgbefore; 1002 if (a_rahead) 1003 *a_rahead = bp->b_pgafter; 1004 1005 #ifdef INVARIANTS 1006 KASSERT(bp->b_npages <= nitems(bp->b_pages), 1007 ("%s: buf %p overflowed", __func__, bp)); 1008 for (int j = 1, prev = 0; j < bp->b_npages; j++) { 1009 if (bp->b_pages[j] == bogus_page) 1010 continue; 1011 KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex == 1012 j - prev, ("%s: pages array not consecutive, bp %p", 1013 __func__, bp)); 1014 prev = j; 1015 } 1016 #endif 1017 1018 /* 1019 * Recalculate first offset and bytecount with regards to read behind. 1020 * Truncate bytecount to vnode real size and round up physical size 1021 * for real devices. 1022 */ 1023 foff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1024 bytecount = bp->b_npages << PAGE_SHIFT; 1025 if ((foff + bytecount) > object->un_pager.vnp.vnp_size) 1026 bytecount = object->un_pager.vnp.vnp_size - foff; 1027 secmask = bo->bo_bsize - 1; 1028 KASSERT(secmask < PAGE_SIZE && secmask > 0, 1029 ("%s: sector size %d too large", __func__, secmask + 1)); 1030 bytecount = (bytecount + secmask) & ~secmask; 1031 1032 /* 1033 * And map the pages to be read into the kva, if the filesystem 1034 * requires mapped buffers. 1035 */ 1036 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && 1037 unmapped_buf_allowed) { 1038 bp->b_data = unmapped_buf; 1039 bp->b_offset = 0; 1040 } else { 1041 bp->b_data = bp->b_kvabase; 1042 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 1043 } 1044 1045 /* Build a minimal buffer header. */ 1046 bp->b_iocmd = BIO_READ; 1047 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 1048 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 1049 bp->b_rcred = crhold(curthread->td_ucred); 1050 bp->b_wcred = crhold(curthread->td_ucred); 1051 pbgetbo(bo, bp); 1052 bp->b_vp = vp; 1053 bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount; 1054 bp->b_iooffset = dbtob(bp->b_blkno); 1055 KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) == 1056 (blkno0 - bp->b_blkno) * DEV_BSIZE + 1057 IDX_TO_OFF(m[0]->pindex) % bsize, 1058 ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju " 1059 "blkno0 %ju b_blkno %ju", bsize, 1060 (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex, 1061 (uintmax_t)blkno0, (uintmax_t)bp->b_blkno)); 1062 1063 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 1064 VM_CNT_INC(v_vnodein); 1065 VM_CNT_ADD(v_vnodepgsin, bp->b_npages); 1066 1067 if (iodone != NULL) { /* async */ 1068 bp->b_pgiodone = iodone; 1069 bp->b_caller1 = arg; 1070 bp->b_iodone = vnode_pager_generic_getpages_done_async; 1071 bp->b_flags |= B_ASYNC; 1072 BUF_KERNPROC(bp); 1073 bstrategy(bp); 1074 return (VM_PAGER_OK); 1075 } else { 1076 bp->b_iodone = bdone; 1077 bstrategy(bp); 1078 bwait(bp, PVM, "vnread"); 1079 error = vnode_pager_generic_getpages_done(bp); 1080 for (i = 0; i < bp->b_npages; i++) 1081 bp->b_pages[i] = NULL; 1082 bp->b_vp = NULL; 1083 pbrelbo(bp); 1084 uma_zfree(vnode_pbuf_zone, bp); 1085 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); 1086 } 1087 } 1088 1089 static void 1090 vnode_pager_generic_getpages_done_async(struct buf *bp) 1091 { 1092 int error; 1093 1094 error = vnode_pager_generic_getpages_done(bp); 1095 /* Run the iodone upon the requested range. */ 1096 bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore, 1097 bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error); 1098 for (int i = 0; i < bp->b_npages; i++) 1099 bp->b_pages[i] = NULL; 1100 bp->b_vp = NULL; 1101 pbrelbo(bp); 1102 uma_zfree(vnode_pbuf_zone, bp); 1103 } 1104 1105 static int 1106 vnode_pager_generic_getpages_done(struct buf *bp) 1107 { 1108 vm_object_t object; 1109 off_t tfoff, nextoff; 1110 int i, error; 1111 1112 error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0; 1113 object = bp->b_vp->v_object; 1114 1115 if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) { 1116 if (!buf_mapped(bp)) { 1117 bp->b_data = bp->b_kvabase; 1118 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, 1119 bp->b_npages); 1120 } 1121 bzero(bp->b_data + bp->b_bcount, 1122 PAGE_SIZE * bp->b_npages - bp->b_bcount); 1123 } 1124 if (buf_mapped(bp)) { 1125 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1126 bp->b_data = unmapped_buf; 1127 } 1128 1129 VM_OBJECT_WLOCK(object); 1130 for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1131 i < bp->b_npages; i++, tfoff = nextoff) { 1132 vm_page_t mt; 1133 1134 nextoff = tfoff + PAGE_SIZE; 1135 mt = bp->b_pages[i]; 1136 1137 if (nextoff <= object->un_pager.vnp.vnp_size) { 1138 /* 1139 * Read filled up entire page. 1140 */ 1141 mt->valid = VM_PAGE_BITS_ALL; 1142 KASSERT(mt->dirty == 0, 1143 ("%s: page %p is dirty", __func__, mt)); 1144 KASSERT(!pmap_page_is_mapped(mt), 1145 ("%s: page %p is mapped", __func__, mt)); 1146 } else { 1147 /* 1148 * Read did not fill up entire page. 1149 * 1150 * Currently we do not set the entire page valid, 1151 * we just try to clear the piece that we couldn't 1152 * read. 1153 */ 1154 vm_page_set_valid_range(mt, 0, 1155 object->un_pager.vnp.vnp_size - tfoff); 1156 KASSERT((mt->dirty & vm_page_bits(0, 1157 object->un_pager.vnp.vnp_size - tfoff)) == 0, 1158 ("%s: page %p is dirty", __func__, mt)); 1159 } 1160 1161 if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter) 1162 vm_page_readahead_finish(mt); 1163 } 1164 VM_OBJECT_WUNLOCK(object); 1165 if (error != 0) 1166 printf("%s: I/O read error %d\n", __func__, error); 1167 1168 return (error); 1169 } 1170 1171 /* 1172 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 1173 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 1174 * vnode_pager_generic_putpages() to implement the previous behaviour. 1175 * 1176 * All other FS's should use the bypass to get to the local media 1177 * backing vp's VOP_PUTPAGES. 1178 */ 1179 static void 1180 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1181 int flags, int *rtvals) 1182 { 1183 int rtval; 1184 struct vnode *vp; 1185 int bytes = count * PAGE_SIZE; 1186 1187 /* 1188 * Force synchronous operation if we are extremely low on memory 1189 * to prevent a low-memory deadlock. VOP operations often need to 1190 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1191 * operation ). The swapper handles the case by limiting the amount 1192 * of asynchronous I/O, but that sort of solution doesn't scale well 1193 * for the vnode pager without a lot of work. 1194 * 1195 * Also, the backing vnode's iodone routine may not wake the pageout 1196 * daemon up. This should be probably be addressed XXX. 1197 */ 1198 1199 if (vm_page_count_min()) 1200 flags |= VM_PAGER_PUT_SYNC; 1201 1202 /* 1203 * Call device-specific putpages function 1204 */ 1205 vp = object->handle; 1206 VM_OBJECT_WUNLOCK(object); 1207 rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals); 1208 KASSERT(rtval != EOPNOTSUPP, 1209 ("vnode_pager: stale FS putpages\n")); 1210 VM_OBJECT_WLOCK(object); 1211 } 1212 1213 static int 1214 vn_off2bidx(vm_ooffset_t offset) 1215 { 1216 1217 return ((offset & PAGE_MASK) / DEV_BSIZE); 1218 } 1219 1220 static bool 1221 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset) 1222 { 1223 1224 KASSERT(IDX_TO_OFF(m->pindex) <= offset && 1225 offset < IDX_TO_OFF(m->pindex + 1), 1226 ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex, 1227 (uintmax_t)offset)); 1228 return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0); 1229 } 1230 1231 /* 1232 * This is now called from local media FS's to operate against their 1233 * own vnodes if they fail to implement VOP_PUTPAGES. 1234 * 1235 * This is typically called indirectly via the pageout daemon and 1236 * clustering has already typically occurred, so in general we ask the 1237 * underlying filesystem to write the data out asynchronously rather 1238 * then delayed. 1239 */ 1240 int 1241 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, 1242 int flags, int *rtvals) 1243 { 1244 vm_object_t object; 1245 vm_page_t m; 1246 vm_ooffset_t maxblksz, next_offset, poffset, prev_offset; 1247 struct uio auio; 1248 struct iovec aiov; 1249 off_t prev_resid, wrsz; 1250 int count, error, i, maxsize, ncount, pgoff, ppscheck; 1251 bool in_hole; 1252 static struct timeval lastfail; 1253 static int curfail; 1254 1255 object = vp->v_object; 1256 count = bytecount / PAGE_SIZE; 1257 1258 for (i = 0; i < count; i++) 1259 rtvals[i] = VM_PAGER_ERROR; 1260 1261 if ((int64_t)ma[0]->pindex < 0) { 1262 printf("vnode_pager_generic_putpages: " 1263 "attempt to write meta-data 0x%jx(%lx)\n", 1264 (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty); 1265 rtvals[0] = VM_PAGER_BAD; 1266 return (VM_PAGER_BAD); 1267 } 1268 1269 maxsize = count * PAGE_SIZE; 1270 ncount = count; 1271 1272 poffset = IDX_TO_OFF(ma[0]->pindex); 1273 1274 /* 1275 * If the page-aligned write is larger then the actual file we 1276 * have to invalidate pages occurring beyond the file EOF. However, 1277 * there is an edge case where a file may not be page-aligned where 1278 * the last page is partially invalid. In this case the filesystem 1279 * may not properly clear the dirty bits for the entire page (which 1280 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1281 * With the page locked we are free to fix-up the dirty bits here. 1282 * 1283 * We do not under any circumstances truncate the valid bits, as 1284 * this will screw up bogus page replacement. 1285 */ 1286 VM_OBJECT_RLOCK(object); 1287 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1288 if (!VM_OBJECT_TRYUPGRADE(object)) { 1289 VM_OBJECT_RUNLOCK(object); 1290 VM_OBJECT_WLOCK(object); 1291 if (maxsize + poffset <= object->un_pager.vnp.vnp_size) 1292 goto downgrade; 1293 } 1294 if (object->un_pager.vnp.vnp_size > poffset) { 1295 maxsize = object->un_pager.vnp.vnp_size - poffset; 1296 ncount = btoc(maxsize); 1297 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1298 pgoff = roundup2(pgoff, DEV_BSIZE); 1299 1300 /* 1301 * If the object is locked and the following 1302 * conditions hold, then the page's dirty 1303 * field cannot be concurrently changed by a 1304 * pmap operation. 1305 */ 1306 m = ma[ncount - 1]; 1307 vm_page_assert_sbusied(m); 1308 KASSERT(!pmap_page_is_write_mapped(m), 1309 ("vnode_pager_generic_putpages: page %p is not read-only", m)); 1310 MPASS(m->dirty != 0); 1311 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 1312 pgoff); 1313 } 1314 } else { 1315 maxsize = 0; 1316 ncount = 0; 1317 } 1318 for (i = ncount; i < count; i++) 1319 rtvals[i] = VM_PAGER_BAD; 1320 downgrade: 1321 VM_OBJECT_LOCK_DOWNGRADE(object); 1322 } 1323 1324 auio.uio_iov = &aiov; 1325 auio.uio_segflg = UIO_NOCOPY; 1326 auio.uio_rw = UIO_WRITE; 1327 auio.uio_td = NULL; 1328 maxblksz = roundup2(poffset + maxsize, DEV_BSIZE); 1329 1330 for (prev_offset = poffset; prev_offset < maxblksz;) { 1331 /* Skip clean blocks. */ 1332 for (in_hole = true; in_hole && prev_offset < maxblksz;) { 1333 m = ma[OFF_TO_IDX(prev_offset - poffset)]; 1334 for (i = vn_off2bidx(prev_offset); 1335 i < sizeof(vm_page_bits_t) * NBBY && 1336 prev_offset < maxblksz; i++) { 1337 if (vn_dirty_blk(m, prev_offset)) { 1338 in_hole = false; 1339 break; 1340 } 1341 prev_offset += DEV_BSIZE; 1342 } 1343 } 1344 if (in_hole) 1345 goto write_done; 1346 1347 /* Find longest run of dirty blocks. */ 1348 for (next_offset = prev_offset; next_offset < maxblksz;) { 1349 m = ma[OFF_TO_IDX(next_offset - poffset)]; 1350 for (i = vn_off2bidx(next_offset); 1351 i < sizeof(vm_page_bits_t) * NBBY && 1352 next_offset < maxblksz; i++) { 1353 if (!vn_dirty_blk(m, next_offset)) 1354 goto start_write; 1355 next_offset += DEV_BSIZE; 1356 } 1357 } 1358 start_write: 1359 if (next_offset > poffset + maxsize) 1360 next_offset = poffset + maxsize; 1361 1362 /* 1363 * Getting here requires finding a dirty block in the 1364 * 'skip clean blocks' loop. 1365 */ 1366 MPASS(prev_offset < next_offset); 1367 1368 VM_OBJECT_RUNLOCK(object); 1369 aiov.iov_base = NULL; 1370 auio.uio_iovcnt = 1; 1371 auio.uio_offset = prev_offset; 1372 prev_resid = auio.uio_resid = aiov.iov_len = next_offset - 1373 prev_offset; 1374 error = VOP_WRITE(vp, &auio, 1375 vnode_pager_putpages_ioflags(flags), curthread->td_ucred); 1376 1377 wrsz = prev_resid - auio.uio_resid; 1378 if (wrsz == 0) { 1379 if (ppsratecheck(&lastfail, &curfail, 1) != 0) { 1380 vn_printf(vp, "vnode_pager_putpages: " 1381 "zero-length write at %ju resid %zd\n", 1382 auio.uio_offset, auio.uio_resid); 1383 } 1384 VM_OBJECT_RLOCK(object); 1385 break; 1386 } 1387 1388 /* Adjust the starting offset for next iteration. */ 1389 prev_offset += wrsz; 1390 MPASS(auio.uio_offset == prev_offset); 1391 1392 ppscheck = 0; 1393 if (error != 0 && (ppscheck = ppsratecheck(&lastfail, 1394 &curfail, 1)) != 0) 1395 vn_printf(vp, "vnode_pager_putpages: I/O error %d\n", 1396 error); 1397 if (auio.uio_resid != 0 && (ppscheck != 0 || 1398 ppsratecheck(&lastfail, &curfail, 1) != 0)) 1399 vn_printf(vp, "vnode_pager_putpages: residual I/O %zd " 1400 "at %ju\n", auio.uio_resid, 1401 (uintmax_t)ma[0]->pindex); 1402 VM_OBJECT_RLOCK(object); 1403 if (error != 0 || auio.uio_resid != 0) 1404 break; 1405 } 1406 write_done: 1407 /* Mark completely processed pages. */ 1408 for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++) 1409 rtvals[i] = VM_PAGER_OK; 1410 /* Mark partial EOF page. */ 1411 if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0) 1412 rtvals[i++] = VM_PAGER_OK; 1413 /* Unwritten pages in range, free bonus if the page is clean. */ 1414 for (; i < ncount; i++) 1415 rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR; 1416 VM_OBJECT_RUNLOCK(object); 1417 VM_CNT_ADD(v_vnodepgsout, i); 1418 VM_CNT_INC(v_vnodeout); 1419 return (rtvals[0]); 1420 } 1421 1422 int 1423 vnode_pager_putpages_ioflags(int pager_flags) 1424 { 1425 int ioflags; 1426 1427 /* 1428 * Pageouts are already clustered, use IO_ASYNC to force a 1429 * bawrite() rather then a bdwrite() to prevent paging I/O 1430 * from saturating the buffer cache. Dummy-up the sequential 1431 * heuristic to cause large ranges to cluster. If neither 1432 * IO_SYNC or IO_ASYNC is set, the system decides how to 1433 * cluster. 1434 */ 1435 ioflags = IO_VMIO; 1436 if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0) 1437 ioflags |= IO_SYNC; 1438 else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0) 1439 ioflags |= IO_ASYNC; 1440 ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0; 1441 ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0; 1442 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1443 return (ioflags); 1444 } 1445 1446 /* 1447 * vnode_pager_undirty_pages(). 1448 * 1449 * A helper to mark pages as clean after pageout that was possibly 1450 * done with a short write. The lpos argument specifies the page run 1451 * length in bytes, and the written argument specifies how many bytes 1452 * were actually written. eof is the offset past the last valid byte 1453 * in the vnode using the absolute file position of the first byte in 1454 * the run as the base from which it is computed. 1455 */ 1456 void 1457 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof, 1458 int lpos) 1459 { 1460 vm_object_t obj; 1461 int i, pos, pos_devb; 1462 1463 if (written == 0 && eof >= lpos) 1464 return; 1465 obj = ma[0]->object; 1466 VM_OBJECT_WLOCK(obj); 1467 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { 1468 if (pos < trunc_page(written)) { 1469 rtvals[i] = VM_PAGER_OK; 1470 vm_page_undirty(ma[i]); 1471 } else { 1472 /* Partially written page. */ 1473 rtvals[i] = VM_PAGER_AGAIN; 1474 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); 1475 } 1476 } 1477 if (eof >= lpos) /* avoid truncation */ 1478 goto done; 1479 for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) { 1480 if (pos != trunc_page(pos)) { 1481 /* 1482 * The page contains the last valid byte in 1483 * the vnode, mark the rest of the page as 1484 * clean, potentially making the whole page 1485 * clean. 1486 */ 1487 pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE); 1488 vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE - 1489 pos_devb); 1490 1491 /* 1492 * If the page was cleaned, report the pageout 1493 * on it as successful. msync() no longer 1494 * needs to write out the page, endlessly 1495 * creating write requests and dirty buffers. 1496 */ 1497 if (ma[i]->dirty == 0) 1498 rtvals[i] = VM_PAGER_OK; 1499 1500 pos = round_page(pos); 1501 } else { 1502 /* vm_pageout_flush() clears dirty */ 1503 rtvals[i] = VM_PAGER_BAD; 1504 pos += PAGE_SIZE; 1505 } 1506 } 1507 done: 1508 VM_OBJECT_WUNLOCK(obj); 1509 } 1510 1511 void 1512 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, 1513 vm_offset_t end) 1514 { 1515 struct vnode *vp; 1516 vm_ooffset_t old_wm; 1517 1518 VM_OBJECT_WLOCK(object); 1519 if (object->type != OBJT_VNODE) { 1520 VM_OBJECT_WUNLOCK(object); 1521 return; 1522 } 1523 old_wm = object->un_pager.vnp.writemappings; 1524 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; 1525 vp = object->handle; 1526 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { 1527 ASSERT_VOP_LOCKED(vp, "v_writecount inc"); 1528 VOP_ADD_WRITECOUNT_CHECKED(vp, 1); 1529 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 1530 __func__, vp, vp->v_writecount); 1531 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { 1532 ASSERT_VOP_LOCKED(vp, "v_writecount dec"); 1533 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 1534 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 1535 __func__, vp, vp->v_writecount); 1536 } 1537 VM_OBJECT_WUNLOCK(object); 1538 } 1539 1540 void 1541 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, 1542 vm_offset_t end) 1543 { 1544 struct vnode *vp; 1545 struct mount *mp; 1546 vm_offset_t inc; 1547 1548 VM_OBJECT_WLOCK(object); 1549 1550 /* 1551 * First, recheck the object type to account for the race when 1552 * the vnode is reclaimed. 1553 */ 1554 if (object->type != OBJT_VNODE) { 1555 VM_OBJECT_WUNLOCK(object); 1556 return; 1557 } 1558 1559 /* 1560 * Optimize for the case when writemappings is not going to 1561 * zero. 1562 */ 1563 inc = end - start; 1564 if (object->un_pager.vnp.writemappings != inc) { 1565 object->un_pager.vnp.writemappings -= inc; 1566 VM_OBJECT_WUNLOCK(object); 1567 return; 1568 } 1569 1570 vp = object->handle; 1571 vhold(vp); 1572 VM_OBJECT_WUNLOCK(object); 1573 mp = NULL; 1574 vn_start_write(vp, &mp, V_WAIT); 1575 vn_lock(vp, LK_SHARED | LK_RETRY); 1576 1577 /* 1578 * Decrement the object's writemappings, by swapping the start 1579 * and end arguments for vnode_pager_update_writecount(). If 1580 * there was not a race with vnode reclaimation, then the 1581 * vnode's v_writecount is decremented. 1582 */ 1583 vnode_pager_update_writecount(object, end, start); 1584 VOP_UNLOCK(vp, 0); 1585 vdrop(vp); 1586 if (mp != NULL) 1587 vn_finished_write(mp); 1588 } 1589