xref: /freebsd/sys/vm/vnode_pager.c (revision daceb336172a6b0572de864b97e70b28451ca636)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
43  */
44 
45 /*
46  * Page to/from files (vnodes).
47  */
48 
49 /*
50  * TODO:
51  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52  *	greatly re-simplify the vnode_pager.
53  */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include "opt_vm.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/systm.h>
63 #include <sys/sysctl.h>
64 #include <sys/proc.h>
65 #include <sys/vnode.h>
66 #include <sys/mount.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/vmmeter.h>
70 #include <sys/limits.h>
71 #include <sys/conf.h>
72 #include <sys/rwlock.h>
73 #include <sys/sf_buf.h>
74 #include <sys/domainset.h>
75 
76 #include <machine/atomic.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_map.h>
84 #include <vm/vnode_pager.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
89     daddr_t *rtaddress, int *run);
90 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
91 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
92 static void vnode_pager_dealloc(vm_object_t);
93 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
94 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
95     int *, vop_getpages_iodone_t, void *);
96 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
97 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
98 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
99     vm_ooffset_t, struct ucred *cred);
100 static int vnode_pager_generic_getpages_done(struct buf *);
101 static void vnode_pager_generic_getpages_done_async(struct buf *);
102 
103 struct pagerops vnodepagerops = {
104 	.pgo_alloc =	vnode_pager_alloc,
105 	.pgo_dealloc =	vnode_pager_dealloc,
106 	.pgo_getpages =	vnode_pager_getpages,
107 	.pgo_getpages_async = vnode_pager_getpages_async,
108 	.pgo_putpages =	vnode_pager_putpages,
109 	.pgo_haspage =	vnode_pager_haspage,
110 };
111 
112 static struct domainset *vnode_domainset = NULL;
113 
114 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW,
115     &vnode_domainset, 0, sysctl_handle_domainset, "A",
116     "Default vnode NUMA policy");
117 
118 static int nvnpbufs;
119 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
120     &nvnpbufs, 0, "number of physical buffers allocated for vnode pager");
121 
122 static uma_zone_t vnode_pbuf_zone;
123 
124 static void
125 vnode_pager_init(void *dummy)
126 {
127 
128 #ifdef __LP64__
129 	nvnpbufs = nswbuf * 2;
130 #else
131 	nvnpbufs = nswbuf / 2;
132 #endif
133 	TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs);
134 	vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs);
135 }
136 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL);
137 
138 /* Create the VM system backing object for this vnode */
139 int
140 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
141 {
142 	vm_object_t object;
143 	vm_ooffset_t size = isize;
144 	struct vattr va;
145 
146 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
147 		return (0);
148 
149 	while ((object = vp->v_object) != NULL) {
150 		VM_OBJECT_WLOCK(object);
151 		if (!(object->flags & OBJ_DEAD)) {
152 			VM_OBJECT_WUNLOCK(object);
153 			return (0);
154 		}
155 		VOP_UNLOCK(vp, 0);
156 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
157 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
158 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
159 	}
160 
161 	if (size == 0) {
162 		if (vn_isdisk(vp, NULL)) {
163 			size = IDX_TO_OFF(INT_MAX);
164 		} else {
165 			if (VOP_GETATTR(vp, &va, td->td_ucred))
166 				return (0);
167 			size = va.va_size;
168 		}
169 	}
170 
171 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
172 	/*
173 	 * Dereference the reference we just created.  This assumes
174 	 * that the object is associated with the vp.
175 	 */
176 	VM_OBJECT_WLOCK(object);
177 	object->ref_count--;
178 	VM_OBJECT_WUNLOCK(object);
179 	vrele(vp);
180 
181 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
182 
183 	return (0);
184 }
185 
186 void
187 vnode_destroy_vobject(struct vnode *vp)
188 {
189 	struct vm_object *obj;
190 
191 	obj = vp->v_object;
192 	if (obj == NULL)
193 		return;
194 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
195 	VM_OBJECT_WLOCK(obj);
196 	umtx_shm_object_terminated(obj);
197 	if (obj->ref_count == 0) {
198 		/*
199 		 * don't double-terminate the object
200 		 */
201 		if ((obj->flags & OBJ_DEAD) == 0) {
202 			vm_object_terminate(obj);
203 		} else {
204 			/*
205 			 * Waiters were already handled during object
206 			 * termination.  The exclusive vnode lock hopefully
207 			 * prevented new waiters from referencing the dying
208 			 * object.
209 			 */
210 			KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
211 			    ("OBJ_DISCONNECTWNT set obj %p flags %x",
212 			    obj, obj->flags));
213 			vp->v_object = NULL;
214 			VM_OBJECT_WUNLOCK(obj);
215 		}
216 	} else {
217 		/*
218 		 * Woe to the process that tries to page now :-).
219 		 */
220 		vm_pager_deallocate(obj);
221 		VM_OBJECT_WUNLOCK(obj);
222 	}
223 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
224 }
225 
226 
227 /*
228  * Allocate (or lookup) pager for a vnode.
229  * Handle is a vnode pointer.
230  *
231  * MPSAFE
232  */
233 vm_object_t
234 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
235     vm_ooffset_t offset, struct ucred *cred)
236 {
237 	vm_object_t object;
238 	struct vnode *vp;
239 
240 	/*
241 	 * Pageout to vnode, no can do yet.
242 	 */
243 	if (handle == NULL)
244 		return (NULL);
245 
246 	vp = (struct vnode *) handle;
247 
248 	/*
249 	 * If the object is being terminated, wait for it to
250 	 * go away.
251 	 */
252 retry:
253 	while ((object = vp->v_object) != NULL) {
254 		VM_OBJECT_WLOCK(object);
255 		if ((object->flags & OBJ_DEAD) == 0)
256 			break;
257 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
258 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
259 	}
260 
261 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
262 
263 	if (object == NULL) {
264 		/*
265 		 * Add an object of the appropriate size
266 		 */
267 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
268 
269 		object->un_pager.vnp.vnp_size = size;
270 		object->un_pager.vnp.writemappings = 0;
271 		object->domain.dr_policy = vnode_domainset;
272 
273 		object->handle = handle;
274 		VI_LOCK(vp);
275 		if (vp->v_object != NULL) {
276 			/*
277 			 * Object has been created while we were sleeping
278 			 */
279 			VI_UNLOCK(vp);
280 			VM_OBJECT_WLOCK(object);
281 			KASSERT(object->ref_count == 1,
282 			    ("leaked ref %p %d", object, object->ref_count));
283 			object->type = OBJT_DEAD;
284 			object->ref_count = 0;
285 			VM_OBJECT_WUNLOCK(object);
286 			vm_object_destroy(object);
287 			goto retry;
288 		}
289 		vp->v_object = object;
290 		VI_UNLOCK(vp);
291 	} else {
292 		object->ref_count++;
293 #if VM_NRESERVLEVEL > 0
294 		vm_object_color(object, 0);
295 #endif
296 		VM_OBJECT_WUNLOCK(object);
297 	}
298 	vrefact(vp);
299 	return (object);
300 }
301 
302 /*
303  *	The object must be locked.
304  */
305 static void
306 vnode_pager_dealloc(vm_object_t object)
307 {
308 	struct vnode *vp;
309 	int refs;
310 
311 	vp = object->handle;
312 	if (vp == NULL)
313 		panic("vnode_pager_dealloc: pager already dealloced");
314 
315 	VM_OBJECT_ASSERT_WLOCKED(object);
316 	vm_object_pip_wait(object, "vnpdea");
317 	refs = object->ref_count;
318 
319 	object->handle = NULL;
320 	object->type = OBJT_DEAD;
321 	if (object->flags & OBJ_DISCONNECTWNT) {
322 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
323 		wakeup(object);
324 	}
325 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
326 	if (object->un_pager.vnp.writemappings > 0) {
327 		object->un_pager.vnp.writemappings = 0;
328 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
329 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
330 		    __func__, vp, vp->v_writecount);
331 	}
332 	vp->v_object = NULL;
333 	VI_LOCK(vp);
334 
335 	/*
336 	 * vm_map_entry_set_vnode_text() cannot reach this vnode by
337 	 * following object->handle.  Clear all text references now.
338 	 * This also clears the transient references from
339 	 * kern_execve(), which is fine because dead_vnodeops uses nop
340 	 * for VOP_UNSET_TEXT().
341 	 */
342 	if (vp->v_writecount < 0)
343 		vp->v_writecount = 0;
344 	VI_UNLOCK(vp);
345 	VM_OBJECT_WUNLOCK(object);
346 	while (refs-- > 0)
347 		vunref(vp);
348 	VM_OBJECT_WLOCK(object);
349 }
350 
351 static boolean_t
352 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
353     int *after)
354 {
355 	struct vnode *vp = object->handle;
356 	daddr_t bn;
357 	int err;
358 	daddr_t reqblock;
359 	int poff;
360 	int bsize;
361 	int pagesperblock, blocksperpage;
362 
363 	VM_OBJECT_ASSERT_WLOCKED(object);
364 	/*
365 	 * If no vp or vp is doomed or marked transparent to VM, we do not
366 	 * have the page.
367 	 */
368 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
369 		return FALSE;
370 	/*
371 	 * If the offset is beyond end of file we do
372 	 * not have the page.
373 	 */
374 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
375 		return FALSE;
376 
377 	bsize = vp->v_mount->mnt_stat.f_iosize;
378 	pagesperblock = bsize / PAGE_SIZE;
379 	blocksperpage = 0;
380 	if (pagesperblock > 0) {
381 		reqblock = pindex / pagesperblock;
382 	} else {
383 		blocksperpage = (PAGE_SIZE / bsize);
384 		reqblock = pindex * blocksperpage;
385 	}
386 	VM_OBJECT_WUNLOCK(object);
387 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
388 	VM_OBJECT_WLOCK(object);
389 	if (err)
390 		return TRUE;
391 	if (bn == -1)
392 		return FALSE;
393 	if (pagesperblock > 0) {
394 		poff = pindex - (reqblock * pagesperblock);
395 		if (before) {
396 			*before *= pagesperblock;
397 			*before += poff;
398 		}
399 		if (after) {
400 			/*
401 			 * The BMAP vop can report a partial block in the
402 			 * 'after', but must not report blocks after EOF.
403 			 * Assert the latter, and truncate 'after' in case
404 			 * of the former.
405 			 */
406 			KASSERT((reqblock + *after) * pagesperblock <
407 			    roundup2(object->size, pagesperblock),
408 			    ("%s: reqblock %jd after %d size %ju", __func__,
409 			    (intmax_t )reqblock, *after,
410 			    (uintmax_t )object->size));
411 			*after *= pagesperblock;
412 			*after += pagesperblock - (poff + 1);
413 			if (pindex + *after >= object->size)
414 				*after = object->size - 1 - pindex;
415 		}
416 	} else {
417 		if (before) {
418 			*before /= blocksperpage;
419 		}
420 
421 		if (after) {
422 			*after /= blocksperpage;
423 		}
424 	}
425 	return TRUE;
426 }
427 
428 /*
429  * Lets the VM system know about a change in size for a file.
430  * We adjust our own internal size and flush any cached pages in
431  * the associated object that are affected by the size change.
432  *
433  * Note: this routine may be invoked as a result of a pager put
434  * operation (possibly at object termination time), so we must be careful.
435  */
436 void
437 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
438 {
439 	vm_object_t object;
440 	vm_page_t m;
441 	vm_pindex_t nobjsize;
442 
443 	if ((object = vp->v_object) == NULL)
444 		return;
445 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
446 	VM_OBJECT_WLOCK(object);
447 	if (object->type == OBJT_DEAD) {
448 		VM_OBJECT_WUNLOCK(object);
449 		return;
450 	}
451 	KASSERT(object->type == OBJT_VNODE,
452 	    ("not vnode-backed object %p", object));
453 	if (nsize == object->un_pager.vnp.vnp_size) {
454 		/*
455 		 * Hasn't changed size
456 		 */
457 		VM_OBJECT_WUNLOCK(object);
458 		return;
459 	}
460 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
461 	if (nsize < object->un_pager.vnp.vnp_size) {
462 		/*
463 		 * File has shrunk. Toss any cached pages beyond the new EOF.
464 		 */
465 		if (nobjsize < object->size)
466 			vm_object_page_remove(object, nobjsize, object->size,
467 			    0);
468 		/*
469 		 * this gets rid of garbage at the end of a page that is now
470 		 * only partially backed by the vnode.
471 		 *
472 		 * XXX for some reason (I don't know yet), if we take a
473 		 * completely invalid page and mark it partially valid
474 		 * it can screw up NFS reads, so we don't allow the case.
475 		 */
476 		if ((nsize & PAGE_MASK) &&
477 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
478 		    m->valid != 0) {
479 			int base = (int)nsize & PAGE_MASK;
480 			int size = PAGE_SIZE - base;
481 
482 			/*
483 			 * Clear out partial-page garbage in case
484 			 * the page has been mapped.
485 			 */
486 			pmap_zero_page_area(m, base, size);
487 
488 			/*
489 			 * Update the valid bits to reflect the blocks that
490 			 * have been zeroed.  Some of these valid bits may
491 			 * have already been set.
492 			 */
493 			vm_page_set_valid_range(m, base, size);
494 
495 			/*
496 			 * Round "base" to the next block boundary so that the
497 			 * dirty bit for a partially zeroed block is not
498 			 * cleared.
499 			 */
500 			base = roundup2(base, DEV_BSIZE);
501 
502 			/*
503 			 * Clear out partial-page dirty bits.
504 			 *
505 			 * note that we do not clear out the valid
506 			 * bits.  This would prevent bogus_page
507 			 * replacement from working properly.
508 			 */
509 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
510 		}
511 	}
512 	object->un_pager.vnp.vnp_size = nsize;
513 	object->size = nobjsize;
514 	VM_OBJECT_WUNLOCK(object);
515 }
516 
517 /*
518  * calculate the linear (byte) disk address of specified virtual
519  * file address
520  */
521 static int
522 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
523     int *run)
524 {
525 	int bsize;
526 	int err;
527 	daddr_t vblock;
528 	daddr_t voffset;
529 
530 	if (address < 0)
531 		return -1;
532 
533 	if (vp->v_iflag & VI_DOOMED)
534 		return -1;
535 
536 	bsize = vp->v_mount->mnt_stat.f_iosize;
537 	vblock = address / bsize;
538 	voffset = address % bsize;
539 
540 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
541 	if (err == 0) {
542 		if (*rtaddress != -1)
543 			*rtaddress += voffset / DEV_BSIZE;
544 		if (run) {
545 			*run += 1;
546 			*run *= bsize/PAGE_SIZE;
547 			*run -= voffset/PAGE_SIZE;
548 		}
549 	}
550 
551 	return (err);
552 }
553 
554 /*
555  * small block filesystem vnode pager input
556  */
557 static int
558 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
559 {
560 	struct vnode *vp;
561 	struct bufobj *bo;
562 	struct buf *bp;
563 	struct sf_buf *sf;
564 	daddr_t fileaddr;
565 	vm_offset_t bsize;
566 	vm_page_bits_t bits;
567 	int error, i;
568 
569 	error = 0;
570 	vp = object->handle;
571 	if (vp->v_iflag & VI_DOOMED)
572 		return VM_PAGER_BAD;
573 
574 	bsize = vp->v_mount->mnt_stat.f_iosize;
575 
576 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
577 
578 	sf = sf_buf_alloc(m, 0);
579 
580 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
581 		vm_ooffset_t address;
582 
583 		bits = vm_page_bits(i * bsize, bsize);
584 		if (m->valid & bits)
585 			continue;
586 
587 		address = IDX_TO_OFF(m->pindex) + i * bsize;
588 		if (address >= object->un_pager.vnp.vnp_size) {
589 			fileaddr = -1;
590 		} else {
591 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
592 			if (error)
593 				break;
594 		}
595 		if (fileaddr != -1) {
596 			bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
597 
598 			/* build a minimal buffer header */
599 			bp->b_iocmd = BIO_READ;
600 			bp->b_iodone = bdone;
601 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
602 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
603 			bp->b_rcred = crhold(curthread->td_ucred);
604 			bp->b_wcred = crhold(curthread->td_ucred);
605 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
606 			bp->b_blkno = fileaddr;
607 			pbgetbo(bo, bp);
608 			bp->b_vp = vp;
609 			bp->b_bcount = bsize;
610 			bp->b_bufsize = bsize;
611 			bp->b_runningbufspace = bp->b_bufsize;
612 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
613 
614 			/* do the input */
615 			bp->b_iooffset = dbtob(bp->b_blkno);
616 			bstrategy(bp);
617 
618 			bwait(bp, PVM, "vnsrd");
619 
620 			if ((bp->b_ioflags & BIO_ERROR) != 0)
621 				error = EIO;
622 
623 			/*
624 			 * free the buffer header back to the swap buffer pool
625 			 */
626 			bp->b_vp = NULL;
627 			pbrelbo(bp);
628 			uma_zfree(vnode_pbuf_zone, bp);
629 			if (error)
630 				break;
631 		} else
632 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
633 		KASSERT((m->dirty & bits) == 0,
634 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
635 		VM_OBJECT_WLOCK(object);
636 		m->valid |= bits;
637 		VM_OBJECT_WUNLOCK(object);
638 	}
639 	sf_buf_free(sf);
640 	if (error) {
641 		return VM_PAGER_ERROR;
642 	}
643 	return VM_PAGER_OK;
644 }
645 
646 /*
647  * old style vnode pager input routine
648  */
649 static int
650 vnode_pager_input_old(vm_object_t object, vm_page_t m)
651 {
652 	struct uio auio;
653 	struct iovec aiov;
654 	int error;
655 	int size;
656 	struct sf_buf *sf;
657 	struct vnode *vp;
658 
659 	VM_OBJECT_ASSERT_WLOCKED(object);
660 	error = 0;
661 
662 	/*
663 	 * Return failure if beyond current EOF
664 	 */
665 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
666 		return VM_PAGER_BAD;
667 	} else {
668 		size = PAGE_SIZE;
669 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
670 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
671 		vp = object->handle;
672 		VM_OBJECT_WUNLOCK(object);
673 
674 		/*
675 		 * Allocate a kernel virtual address and initialize so that
676 		 * we can use VOP_READ/WRITE routines.
677 		 */
678 		sf = sf_buf_alloc(m, 0);
679 
680 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
681 		aiov.iov_len = size;
682 		auio.uio_iov = &aiov;
683 		auio.uio_iovcnt = 1;
684 		auio.uio_offset = IDX_TO_OFF(m->pindex);
685 		auio.uio_segflg = UIO_SYSSPACE;
686 		auio.uio_rw = UIO_READ;
687 		auio.uio_resid = size;
688 		auio.uio_td = curthread;
689 
690 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
691 		if (!error) {
692 			int count = size - auio.uio_resid;
693 
694 			if (count == 0)
695 				error = EINVAL;
696 			else if (count != PAGE_SIZE)
697 				bzero((caddr_t)sf_buf_kva(sf) + count,
698 				    PAGE_SIZE - count);
699 		}
700 		sf_buf_free(sf);
701 
702 		VM_OBJECT_WLOCK(object);
703 	}
704 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
705 	if (!error)
706 		m->valid = VM_PAGE_BITS_ALL;
707 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
708 }
709 
710 /*
711  * generic vnode pager input routine
712  */
713 
714 /*
715  * Local media VFS's that do not implement their own VOP_GETPAGES
716  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
717  * to implement the previous behaviour.
718  *
719  * All other FS's should use the bypass to get to the local media
720  * backing vp's VOP_GETPAGES.
721  */
722 static int
723 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
724     int *rahead)
725 {
726 	struct vnode *vp;
727 	int rtval;
728 
729 	vp = object->handle;
730 	VM_OBJECT_WUNLOCK(object);
731 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
732 	KASSERT(rtval != EOPNOTSUPP,
733 	    ("vnode_pager: FS getpages not implemented\n"));
734 	VM_OBJECT_WLOCK(object);
735 	return rtval;
736 }
737 
738 static int
739 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
740     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
741 {
742 	struct vnode *vp;
743 	int rtval;
744 
745 	vp = object->handle;
746 	VM_OBJECT_WUNLOCK(object);
747 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
748 	KASSERT(rtval != EOPNOTSUPP,
749 	    ("vnode_pager: FS getpages_async not implemented\n"));
750 	VM_OBJECT_WLOCK(object);
751 	return (rtval);
752 }
753 
754 /*
755  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
756  * local filesystems, where partially valid pages can only occur at
757  * the end of file.
758  */
759 int
760 vnode_pager_local_getpages(struct vop_getpages_args *ap)
761 {
762 
763 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
764 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
765 }
766 
767 int
768 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
769 {
770 
771 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
772 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
773 }
774 
775 /*
776  * This is now called from local media FS's to operate against their
777  * own vnodes if they fail to implement VOP_GETPAGES.
778  */
779 int
780 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
781     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
782 {
783 	vm_object_t object;
784 	struct bufobj *bo;
785 	struct buf *bp;
786 	off_t foff;
787 #ifdef INVARIANTS
788 	off_t blkno0;
789 #endif
790 	int bsize, pagesperblock;
791 	int error, before, after, rbehind, rahead, poff, i;
792 	int bytecount, secmask;
793 
794 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
795 	    ("%s does not support devices", __func__));
796 
797 	if (vp->v_iflag & VI_DOOMED)
798 		return (VM_PAGER_BAD);
799 
800 	object = vp->v_object;
801 	foff = IDX_TO_OFF(m[0]->pindex);
802 	bsize = vp->v_mount->mnt_stat.f_iosize;
803 	pagesperblock = bsize / PAGE_SIZE;
804 
805 	KASSERT(foff < object->un_pager.vnp.vnp_size,
806 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
807 	KASSERT(count <= nitems(bp->b_pages),
808 	    ("%s: requested %d pages", __func__, count));
809 
810 	/*
811 	 * The last page has valid blocks.  Invalid part can only
812 	 * exist at the end of file, and the page is made fully valid
813 	 * by zeroing in vm_pager_get_pages().
814 	 */
815 	if (m[count - 1]->valid != 0 && --count == 0) {
816 		if (iodone != NULL)
817 			iodone(arg, m, 1, 0);
818 		return (VM_PAGER_OK);
819 	}
820 
821 	bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
822 
823 	/*
824 	 * Get the underlying device blocks for the file with VOP_BMAP().
825 	 * If the file system doesn't support VOP_BMAP, use old way of
826 	 * getting pages via VOP_READ.
827 	 */
828 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
829 	if (error == EOPNOTSUPP) {
830 		uma_zfree(vnode_pbuf_zone, bp);
831 		VM_OBJECT_WLOCK(object);
832 		for (i = 0; i < count; i++) {
833 			VM_CNT_INC(v_vnodein);
834 			VM_CNT_INC(v_vnodepgsin);
835 			error = vnode_pager_input_old(object, m[i]);
836 			if (error)
837 				break;
838 		}
839 		VM_OBJECT_WUNLOCK(object);
840 		return (error);
841 	} else if (error != 0) {
842 		uma_zfree(vnode_pbuf_zone, bp);
843 		return (VM_PAGER_ERROR);
844 	}
845 
846 	/*
847 	 * If the file system supports BMAP, but blocksize is smaller
848 	 * than a page size, then use special small filesystem code.
849 	 */
850 	if (pagesperblock == 0) {
851 		uma_zfree(vnode_pbuf_zone, bp);
852 		for (i = 0; i < count; i++) {
853 			VM_CNT_INC(v_vnodein);
854 			VM_CNT_INC(v_vnodepgsin);
855 			error = vnode_pager_input_smlfs(object, m[i]);
856 			if (error)
857 				break;
858 		}
859 		return (error);
860 	}
861 
862 	/*
863 	 * A sparse file can be encountered only for a single page request,
864 	 * which may not be preceded by call to vm_pager_haspage().
865 	 */
866 	if (bp->b_blkno == -1) {
867 		KASSERT(count == 1,
868 		    ("%s: array[%d] request to a sparse file %p", __func__,
869 		    count, vp));
870 		uma_zfree(vnode_pbuf_zone, bp);
871 		pmap_zero_page(m[0]);
872 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
873 		    __func__, m[0]));
874 		VM_OBJECT_WLOCK(object);
875 		m[0]->valid = VM_PAGE_BITS_ALL;
876 		VM_OBJECT_WUNLOCK(object);
877 		return (VM_PAGER_OK);
878 	}
879 
880 #ifdef INVARIANTS
881 	blkno0 = bp->b_blkno;
882 #endif
883 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
884 
885 	/* Recalculate blocks available after/before to pages. */
886 	poff = (foff % bsize) / PAGE_SIZE;
887 	before *= pagesperblock;
888 	before += poff;
889 	after *= pagesperblock;
890 	after += pagesperblock - (poff + 1);
891 	if (m[0]->pindex + after >= object->size)
892 		after = object->size - 1 - m[0]->pindex;
893 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
894 	    __func__, count, after + 1));
895 	after -= count - 1;
896 
897 	/* Trim requested rbehind/rahead to possible values. */
898 	rbehind = a_rbehind ? *a_rbehind : 0;
899 	rahead = a_rahead ? *a_rahead : 0;
900 	rbehind = min(rbehind, before);
901 	rbehind = min(rbehind, m[0]->pindex);
902 	rahead = min(rahead, after);
903 	rahead = min(rahead, object->size - m[count - 1]->pindex);
904 	/*
905 	 * Check that total amount of pages fit into buf.  Trim rbehind and
906 	 * rahead evenly if not.
907 	 */
908 	if (rbehind + rahead + count > nitems(bp->b_pages)) {
909 		int trim, sum;
910 
911 		trim = rbehind + rahead + count - nitems(bp->b_pages) + 1;
912 		sum = rbehind + rahead;
913 		if (rbehind == before) {
914 			/* Roundup rbehind trim to block size. */
915 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
916 			if (rbehind < 0)
917 				rbehind = 0;
918 		} else
919 			rbehind -= trim * rbehind / sum;
920 		rahead -= trim * rahead / sum;
921 	}
922 	KASSERT(rbehind + rahead + count <= nitems(bp->b_pages),
923 	    ("%s: behind %d ahead %d count %d", __func__,
924 	    rbehind, rahead, count));
925 
926 	/*
927 	 * Fill in the bp->b_pages[] array with requested and optional
928 	 * read behind or read ahead pages.  Read behind pages are looked
929 	 * up in a backward direction, down to a first cached page.  Same
930 	 * for read ahead pages, but there is no need to shift the array
931 	 * in case of encountering a cached page.
932 	 */
933 	i = bp->b_npages = 0;
934 	if (rbehind) {
935 		vm_pindex_t startpindex, tpindex;
936 		vm_page_t p;
937 
938 		VM_OBJECT_WLOCK(object);
939 		startpindex = m[0]->pindex - rbehind;
940 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
941 		    p->pindex >= startpindex)
942 			startpindex = p->pindex + 1;
943 
944 		/* tpindex is unsigned; beware of numeric underflow. */
945 		for (tpindex = m[0]->pindex - 1;
946 		    tpindex >= startpindex && tpindex < m[0]->pindex;
947 		    tpindex--, i++) {
948 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
949 			if (p == NULL) {
950 				/* Shift the array. */
951 				for (int j = 0; j < i; j++)
952 					bp->b_pages[j] = bp->b_pages[j +
953 					    tpindex + 1 - startpindex];
954 				break;
955 			}
956 			bp->b_pages[tpindex - startpindex] = p;
957 		}
958 
959 		bp->b_pgbefore = i;
960 		bp->b_npages += i;
961 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
962 	} else
963 		bp->b_pgbefore = 0;
964 
965 	/* Requested pages. */
966 	for (int j = 0; j < count; j++, i++)
967 		bp->b_pages[i] = m[j];
968 	bp->b_npages += count;
969 
970 	if (rahead) {
971 		vm_pindex_t endpindex, tpindex;
972 		vm_page_t p;
973 
974 		if (!VM_OBJECT_WOWNED(object))
975 			VM_OBJECT_WLOCK(object);
976 		endpindex = m[count - 1]->pindex + rahead + 1;
977 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
978 		    p->pindex < endpindex)
979 			endpindex = p->pindex;
980 		if (endpindex > object->size)
981 			endpindex = object->size;
982 
983 		for (tpindex = m[count - 1]->pindex + 1;
984 		    tpindex < endpindex; i++, tpindex++) {
985 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
986 			if (p == NULL)
987 				break;
988 			bp->b_pages[i] = p;
989 		}
990 
991 		bp->b_pgafter = i - bp->b_npages;
992 		bp->b_npages = i;
993 	} else
994 		bp->b_pgafter = 0;
995 
996 	if (VM_OBJECT_WOWNED(object))
997 		VM_OBJECT_WUNLOCK(object);
998 
999 	/* Report back actual behind/ahead read. */
1000 	if (a_rbehind)
1001 		*a_rbehind = bp->b_pgbefore;
1002 	if (a_rahead)
1003 		*a_rahead = bp->b_pgafter;
1004 
1005 #ifdef INVARIANTS
1006 	KASSERT(bp->b_npages <= nitems(bp->b_pages),
1007 	    ("%s: buf %p overflowed", __func__, bp));
1008 	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
1009 		if (bp->b_pages[j] == bogus_page)
1010 			continue;
1011 		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1012 		    j - prev, ("%s: pages array not consecutive, bp %p",
1013 		     __func__, bp));
1014 		prev = j;
1015 	}
1016 #endif
1017 
1018 	/*
1019 	 * Recalculate first offset and bytecount with regards to read behind.
1020 	 * Truncate bytecount to vnode real size and round up physical size
1021 	 * for real devices.
1022 	 */
1023 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1024 	bytecount = bp->b_npages << PAGE_SHIFT;
1025 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1026 		bytecount = object->un_pager.vnp.vnp_size - foff;
1027 	secmask = bo->bo_bsize - 1;
1028 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1029 	    ("%s: sector size %d too large", __func__, secmask + 1));
1030 	bytecount = (bytecount + secmask) & ~secmask;
1031 
1032 	/*
1033 	 * And map the pages to be read into the kva, if the filesystem
1034 	 * requires mapped buffers.
1035 	 */
1036 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1037 	    unmapped_buf_allowed) {
1038 		bp->b_data = unmapped_buf;
1039 		bp->b_offset = 0;
1040 	} else {
1041 		bp->b_data = bp->b_kvabase;
1042 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1043 	}
1044 
1045 	/* Build a minimal buffer header. */
1046 	bp->b_iocmd = BIO_READ;
1047 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1048 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1049 	bp->b_rcred = crhold(curthread->td_ucred);
1050 	bp->b_wcred = crhold(curthread->td_ucred);
1051 	pbgetbo(bo, bp);
1052 	bp->b_vp = vp;
1053 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1054 	bp->b_iooffset = dbtob(bp->b_blkno);
1055 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1056 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1057 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1058 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1059 	    "blkno0 %ju b_blkno %ju", bsize,
1060 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1061 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1062 
1063 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1064 	VM_CNT_INC(v_vnodein);
1065 	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1066 
1067 	if (iodone != NULL) { /* async */
1068 		bp->b_pgiodone = iodone;
1069 		bp->b_caller1 = arg;
1070 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1071 		bp->b_flags |= B_ASYNC;
1072 		BUF_KERNPROC(bp);
1073 		bstrategy(bp);
1074 		return (VM_PAGER_OK);
1075 	} else {
1076 		bp->b_iodone = bdone;
1077 		bstrategy(bp);
1078 		bwait(bp, PVM, "vnread");
1079 		error = vnode_pager_generic_getpages_done(bp);
1080 		for (i = 0; i < bp->b_npages; i++)
1081 			bp->b_pages[i] = NULL;
1082 		bp->b_vp = NULL;
1083 		pbrelbo(bp);
1084 		uma_zfree(vnode_pbuf_zone, bp);
1085 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1086 	}
1087 }
1088 
1089 static void
1090 vnode_pager_generic_getpages_done_async(struct buf *bp)
1091 {
1092 	int error;
1093 
1094 	error = vnode_pager_generic_getpages_done(bp);
1095 	/* Run the iodone upon the requested range. */
1096 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1097 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1098 	for (int i = 0; i < bp->b_npages; i++)
1099 		bp->b_pages[i] = NULL;
1100 	bp->b_vp = NULL;
1101 	pbrelbo(bp);
1102 	uma_zfree(vnode_pbuf_zone, bp);
1103 }
1104 
1105 static int
1106 vnode_pager_generic_getpages_done(struct buf *bp)
1107 {
1108 	vm_object_t object;
1109 	off_t tfoff, nextoff;
1110 	int i, error;
1111 
1112 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1113 	object = bp->b_vp->v_object;
1114 
1115 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1116 		if (!buf_mapped(bp)) {
1117 			bp->b_data = bp->b_kvabase;
1118 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1119 			    bp->b_npages);
1120 		}
1121 		bzero(bp->b_data + bp->b_bcount,
1122 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1123 	}
1124 	if (buf_mapped(bp)) {
1125 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1126 		bp->b_data = unmapped_buf;
1127 	}
1128 
1129 	VM_OBJECT_WLOCK(object);
1130 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1131 	    i < bp->b_npages; i++, tfoff = nextoff) {
1132 		vm_page_t mt;
1133 
1134 		nextoff = tfoff + PAGE_SIZE;
1135 		mt = bp->b_pages[i];
1136 
1137 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1138 			/*
1139 			 * Read filled up entire page.
1140 			 */
1141 			mt->valid = VM_PAGE_BITS_ALL;
1142 			KASSERT(mt->dirty == 0,
1143 			    ("%s: page %p is dirty", __func__, mt));
1144 			KASSERT(!pmap_page_is_mapped(mt),
1145 			    ("%s: page %p is mapped", __func__, mt));
1146 		} else {
1147 			/*
1148 			 * Read did not fill up entire page.
1149 			 *
1150 			 * Currently we do not set the entire page valid,
1151 			 * we just try to clear the piece that we couldn't
1152 			 * read.
1153 			 */
1154 			vm_page_set_valid_range(mt, 0,
1155 			    object->un_pager.vnp.vnp_size - tfoff);
1156 			KASSERT((mt->dirty & vm_page_bits(0,
1157 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1158 			    ("%s: page %p is dirty", __func__, mt));
1159 		}
1160 
1161 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1162 			vm_page_readahead_finish(mt);
1163 	}
1164 	VM_OBJECT_WUNLOCK(object);
1165 	if (error != 0)
1166 		printf("%s: I/O read error %d\n", __func__, error);
1167 
1168 	return (error);
1169 }
1170 
1171 /*
1172  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1173  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1174  * vnode_pager_generic_putpages() to implement the previous behaviour.
1175  *
1176  * All other FS's should use the bypass to get to the local media
1177  * backing vp's VOP_PUTPAGES.
1178  */
1179 static void
1180 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1181     int flags, int *rtvals)
1182 {
1183 	int rtval;
1184 	struct vnode *vp;
1185 	int bytes = count * PAGE_SIZE;
1186 
1187 	/*
1188 	 * Force synchronous operation if we are extremely low on memory
1189 	 * to prevent a low-memory deadlock.  VOP operations often need to
1190 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1191 	 * operation ).  The swapper handles the case by limiting the amount
1192 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1193 	 * for the vnode pager without a lot of work.
1194 	 *
1195 	 * Also, the backing vnode's iodone routine may not wake the pageout
1196 	 * daemon up.  This should be probably be addressed XXX.
1197 	 */
1198 
1199 	if (vm_page_count_min())
1200 		flags |= VM_PAGER_PUT_SYNC;
1201 
1202 	/*
1203 	 * Call device-specific putpages function
1204 	 */
1205 	vp = object->handle;
1206 	VM_OBJECT_WUNLOCK(object);
1207 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1208 	KASSERT(rtval != EOPNOTSUPP,
1209 	    ("vnode_pager: stale FS putpages\n"));
1210 	VM_OBJECT_WLOCK(object);
1211 }
1212 
1213 static int
1214 vn_off2bidx(vm_ooffset_t offset)
1215 {
1216 
1217 	return ((offset & PAGE_MASK) / DEV_BSIZE);
1218 }
1219 
1220 static bool
1221 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1222 {
1223 
1224 	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1225 	    offset < IDX_TO_OFF(m->pindex + 1),
1226 	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1227 	    (uintmax_t)offset));
1228 	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1229 }
1230 
1231 /*
1232  * This is now called from local media FS's to operate against their
1233  * own vnodes if they fail to implement VOP_PUTPAGES.
1234  *
1235  * This is typically called indirectly via the pageout daemon and
1236  * clustering has already typically occurred, so in general we ask the
1237  * underlying filesystem to write the data out asynchronously rather
1238  * then delayed.
1239  */
1240 int
1241 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1242     int flags, int *rtvals)
1243 {
1244 	vm_object_t object;
1245 	vm_page_t m;
1246 	vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1247 	struct uio auio;
1248 	struct iovec aiov;
1249 	off_t prev_resid, wrsz;
1250 	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1251 	bool in_hole;
1252 	static struct timeval lastfail;
1253 	static int curfail;
1254 
1255 	object = vp->v_object;
1256 	count = bytecount / PAGE_SIZE;
1257 
1258 	for (i = 0; i < count; i++)
1259 		rtvals[i] = VM_PAGER_ERROR;
1260 
1261 	if ((int64_t)ma[0]->pindex < 0) {
1262 		printf("vnode_pager_generic_putpages: "
1263 		    "attempt to write meta-data 0x%jx(%lx)\n",
1264 		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1265 		rtvals[0] = VM_PAGER_BAD;
1266 		return (VM_PAGER_BAD);
1267 	}
1268 
1269 	maxsize = count * PAGE_SIZE;
1270 	ncount = count;
1271 
1272 	poffset = IDX_TO_OFF(ma[0]->pindex);
1273 
1274 	/*
1275 	 * If the page-aligned write is larger then the actual file we
1276 	 * have to invalidate pages occurring beyond the file EOF.  However,
1277 	 * there is an edge case where a file may not be page-aligned where
1278 	 * the last page is partially invalid.  In this case the filesystem
1279 	 * may not properly clear the dirty bits for the entire page (which
1280 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1281 	 * With the page locked we are free to fix-up the dirty bits here.
1282 	 *
1283 	 * We do not under any circumstances truncate the valid bits, as
1284 	 * this will screw up bogus page replacement.
1285 	 */
1286 	VM_OBJECT_RLOCK(object);
1287 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1288 		if (!VM_OBJECT_TRYUPGRADE(object)) {
1289 			VM_OBJECT_RUNLOCK(object);
1290 			VM_OBJECT_WLOCK(object);
1291 			if (maxsize + poffset <= object->un_pager.vnp.vnp_size)
1292 				goto downgrade;
1293 		}
1294 		if (object->un_pager.vnp.vnp_size > poffset) {
1295 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1296 			ncount = btoc(maxsize);
1297 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1298 				pgoff = roundup2(pgoff, DEV_BSIZE);
1299 
1300 				/*
1301 				 * If the object is locked and the following
1302 				 * conditions hold, then the page's dirty
1303 				 * field cannot be concurrently changed by a
1304 				 * pmap operation.
1305 				 */
1306 				m = ma[ncount - 1];
1307 				vm_page_assert_sbusied(m);
1308 				KASSERT(!pmap_page_is_write_mapped(m),
1309 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1310 				MPASS(m->dirty != 0);
1311 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1312 				    pgoff);
1313 			}
1314 		} else {
1315 			maxsize = 0;
1316 			ncount = 0;
1317 		}
1318 		for (i = ncount; i < count; i++)
1319 			rtvals[i] = VM_PAGER_BAD;
1320 downgrade:
1321 		VM_OBJECT_LOCK_DOWNGRADE(object);
1322 	}
1323 
1324 	auio.uio_iov = &aiov;
1325 	auio.uio_segflg = UIO_NOCOPY;
1326 	auio.uio_rw = UIO_WRITE;
1327 	auio.uio_td = NULL;
1328 	maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1329 
1330 	for (prev_offset = poffset; prev_offset < maxblksz;) {
1331 		/* Skip clean blocks. */
1332 		for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1333 			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1334 			for (i = vn_off2bidx(prev_offset);
1335 			    i < sizeof(vm_page_bits_t) * NBBY &&
1336 			    prev_offset < maxblksz; i++) {
1337 				if (vn_dirty_blk(m, prev_offset)) {
1338 					in_hole = false;
1339 					break;
1340 				}
1341 				prev_offset += DEV_BSIZE;
1342 			}
1343 		}
1344 		if (in_hole)
1345 			goto write_done;
1346 
1347 		/* Find longest run of dirty blocks. */
1348 		for (next_offset = prev_offset; next_offset < maxblksz;) {
1349 			m = ma[OFF_TO_IDX(next_offset - poffset)];
1350 			for (i = vn_off2bidx(next_offset);
1351 			    i < sizeof(vm_page_bits_t) * NBBY &&
1352 			    next_offset < maxblksz; i++) {
1353 				if (!vn_dirty_blk(m, next_offset))
1354 					goto start_write;
1355 				next_offset += DEV_BSIZE;
1356 			}
1357 		}
1358 start_write:
1359 		if (next_offset > poffset + maxsize)
1360 			next_offset = poffset + maxsize;
1361 
1362 		/*
1363 		 * Getting here requires finding a dirty block in the
1364 		 * 'skip clean blocks' loop.
1365 		 */
1366 		MPASS(prev_offset < next_offset);
1367 
1368 		VM_OBJECT_RUNLOCK(object);
1369 		aiov.iov_base = NULL;
1370 		auio.uio_iovcnt = 1;
1371 		auio.uio_offset = prev_offset;
1372 		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1373 		    prev_offset;
1374 		error = VOP_WRITE(vp, &auio,
1375 		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1376 
1377 		wrsz = prev_resid - auio.uio_resid;
1378 		if (wrsz == 0) {
1379 			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1380 				vn_printf(vp, "vnode_pager_putpages: "
1381 				    "zero-length write at %ju resid %zd\n",
1382 				    auio.uio_offset, auio.uio_resid);
1383 			}
1384 			VM_OBJECT_RLOCK(object);
1385 			break;
1386 		}
1387 
1388 		/* Adjust the starting offset for next iteration. */
1389 		prev_offset += wrsz;
1390 		MPASS(auio.uio_offset == prev_offset);
1391 
1392 		ppscheck = 0;
1393 		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1394 		    &curfail, 1)) != 0)
1395 			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1396 			    error);
1397 		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1398 		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1399 			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1400 			    "at %ju\n", auio.uio_resid,
1401 			    (uintmax_t)ma[0]->pindex);
1402 		VM_OBJECT_RLOCK(object);
1403 		if (error != 0 || auio.uio_resid != 0)
1404 			break;
1405 	}
1406 write_done:
1407 	/* Mark completely processed pages. */
1408 	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1409 		rtvals[i] = VM_PAGER_OK;
1410 	/* Mark partial EOF page. */
1411 	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1412 		rtvals[i++] = VM_PAGER_OK;
1413 	/* Unwritten pages in range, free bonus if the page is clean. */
1414 	for (; i < ncount; i++)
1415 		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1416 	VM_OBJECT_RUNLOCK(object);
1417 	VM_CNT_ADD(v_vnodepgsout, i);
1418 	VM_CNT_INC(v_vnodeout);
1419 	return (rtvals[0]);
1420 }
1421 
1422 int
1423 vnode_pager_putpages_ioflags(int pager_flags)
1424 {
1425 	int ioflags;
1426 
1427 	/*
1428 	 * Pageouts are already clustered, use IO_ASYNC to force a
1429 	 * bawrite() rather then a bdwrite() to prevent paging I/O
1430 	 * from saturating the buffer cache.  Dummy-up the sequential
1431 	 * heuristic to cause large ranges to cluster.  If neither
1432 	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1433 	 * cluster.
1434 	 */
1435 	ioflags = IO_VMIO;
1436 	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1437 		ioflags |= IO_SYNC;
1438 	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1439 		ioflags |= IO_ASYNC;
1440 	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1441 	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1442 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1443 	return (ioflags);
1444 }
1445 
1446 /*
1447  * vnode_pager_undirty_pages().
1448  *
1449  * A helper to mark pages as clean after pageout that was possibly
1450  * done with a short write.  The lpos argument specifies the page run
1451  * length in bytes, and the written argument specifies how many bytes
1452  * were actually written.  eof is the offset past the last valid byte
1453  * in the vnode using the absolute file position of the first byte in
1454  * the run as the base from which it is computed.
1455  */
1456 void
1457 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1458     int lpos)
1459 {
1460 	vm_object_t obj;
1461 	int i, pos, pos_devb;
1462 
1463 	if (written == 0 && eof >= lpos)
1464 		return;
1465 	obj = ma[0]->object;
1466 	VM_OBJECT_WLOCK(obj);
1467 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1468 		if (pos < trunc_page(written)) {
1469 			rtvals[i] = VM_PAGER_OK;
1470 			vm_page_undirty(ma[i]);
1471 		} else {
1472 			/* Partially written page. */
1473 			rtvals[i] = VM_PAGER_AGAIN;
1474 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1475 		}
1476 	}
1477 	if (eof >= lpos) /* avoid truncation */
1478 		goto done;
1479 	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1480 		if (pos != trunc_page(pos)) {
1481 			/*
1482 			 * The page contains the last valid byte in
1483 			 * the vnode, mark the rest of the page as
1484 			 * clean, potentially making the whole page
1485 			 * clean.
1486 			 */
1487 			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1488 			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1489 			    pos_devb);
1490 
1491 			/*
1492 			 * If the page was cleaned, report the pageout
1493 			 * on it as successful.  msync() no longer
1494 			 * needs to write out the page, endlessly
1495 			 * creating write requests and dirty buffers.
1496 			 */
1497 			if (ma[i]->dirty == 0)
1498 				rtvals[i] = VM_PAGER_OK;
1499 
1500 			pos = round_page(pos);
1501 		} else {
1502 			/* vm_pageout_flush() clears dirty */
1503 			rtvals[i] = VM_PAGER_BAD;
1504 			pos += PAGE_SIZE;
1505 		}
1506 	}
1507 done:
1508 	VM_OBJECT_WUNLOCK(obj);
1509 }
1510 
1511 void
1512 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1513     vm_offset_t end)
1514 {
1515 	struct vnode *vp;
1516 	vm_ooffset_t old_wm;
1517 
1518 	VM_OBJECT_WLOCK(object);
1519 	if (object->type != OBJT_VNODE) {
1520 		VM_OBJECT_WUNLOCK(object);
1521 		return;
1522 	}
1523 	old_wm = object->un_pager.vnp.writemappings;
1524 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1525 	vp = object->handle;
1526 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1527 		ASSERT_VOP_LOCKED(vp, "v_writecount inc");
1528 		VOP_ADD_WRITECOUNT_CHECKED(vp, 1);
1529 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1530 		    __func__, vp, vp->v_writecount);
1531 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1532 		ASSERT_VOP_LOCKED(vp, "v_writecount dec");
1533 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1534 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1535 		    __func__, vp, vp->v_writecount);
1536 	}
1537 	VM_OBJECT_WUNLOCK(object);
1538 }
1539 
1540 void
1541 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1542     vm_offset_t end)
1543 {
1544 	struct vnode *vp;
1545 	struct mount *mp;
1546 	vm_offset_t inc;
1547 
1548 	VM_OBJECT_WLOCK(object);
1549 
1550 	/*
1551 	 * First, recheck the object type to account for the race when
1552 	 * the vnode is reclaimed.
1553 	 */
1554 	if (object->type != OBJT_VNODE) {
1555 		VM_OBJECT_WUNLOCK(object);
1556 		return;
1557 	}
1558 
1559 	/*
1560 	 * Optimize for the case when writemappings is not going to
1561 	 * zero.
1562 	 */
1563 	inc = end - start;
1564 	if (object->un_pager.vnp.writemappings != inc) {
1565 		object->un_pager.vnp.writemappings -= inc;
1566 		VM_OBJECT_WUNLOCK(object);
1567 		return;
1568 	}
1569 
1570 	vp = object->handle;
1571 	vhold(vp);
1572 	VM_OBJECT_WUNLOCK(object);
1573 	mp = NULL;
1574 	vn_start_write(vp, &mp, V_WAIT);
1575 	vn_lock(vp, LK_SHARED | LK_RETRY);
1576 
1577 	/*
1578 	 * Decrement the object's writemappings, by swapping the start
1579 	 * and end arguments for vnode_pager_update_writecount().  If
1580 	 * there was not a race with vnode reclaimation, then the
1581 	 * vnode's v_writecount is decremented.
1582 	 */
1583 	vnode_pager_update_writecount(object, end, start);
1584 	VOP_UNLOCK(vp, 0);
1585 	vdrop(vp);
1586 	if (mp != NULL)
1587 		vn_finished_write(mp);
1588 }
1589