1 /*- 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/limits.h> 65 #include <sys/conf.h> 66 #include <sys/sf_buf.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_object.h> 70 #include <vm/vm_page.h> 71 #include <vm/vm_pager.h> 72 #include <vm/vm_map.h> 73 #include <vm/vnode_pager.h> 74 #include <vm/vm_extern.h> 75 76 static void vnode_pager_init(void); 77 static daddr_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 78 int *run); 79 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 80 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 81 static void vnode_pager_dealloc(vm_object_t); 82 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 83 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 84 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 85 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t); 86 87 struct pagerops vnodepagerops = { 88 .pgo_init = vnode_pager_init, 89 .pgo_alloc = vnode_pager_alloc, 90 .pgo_dealloc = vnode_pager_dealloc, 91 .pgo_getpages = vnode_pager_getpages, 92 .pgo_putpages = vnode_pager_putpages, 93 .pgo_haspage = vnode_pager_haspage, 94 }; 95 96 int vnode_pbuf_freecnt; 97 98 static void 99 vnode_pager_init(void) 100 { 101 102 vnode_pbuf_freecnt = nswbuf / 2 + 1; 103 } 104 105 /* Create the VM system backing object for this vnode */ 106 int 107 vnode_create_vobject(struct vnode *vp, size_t isize, struct thread *td) 108 { 109 vm_object_t object; 110 vm_ooffset_t size = isize; 111 struct vattr va; 112 113 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 114 return (0); 115 116 while ((object = vp->v_object) != NULL) { 117 VM_OBJECT_LOCK(object); 118 if (!(object->flags & OBJ_DEAD)) { 119 VM_OBJECT_UNLOCK(object); 120 return (0); 121 } 122 VOP_UNLOCK(vp, 0, td); 123 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 124 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0); 125 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 126 } 127 128 if (size == 0) { 129 if (vn_isdisk(vp, NULL)) { 130 size = IDX_TO_OFF(INT_MAX); 131 } else { 132 if (VOP_GETATTR(vp, &va, td->td_ucred, td) != 0) 133 return (0); 134 size = va.va_size; 135 } 136 } 137 138 object = vnode_pager_alloc(vp, size, 0, 0); 139 /* 140 * Dereference the reference we just created. This assumes 141 * that the object is associated with the vp. 142 */ 143 VM_OBJECT_LOCK(object); 144 object->ref_count--; 145 VM_OBJECT_UNLOCK(object); 146 vrele(vp); 147 148 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 149 150 return (0); 151 } 152 153 void 154 vnode_destroy_vobject(struct vnode *vp) 155 { 156 struct vm_object *obj; 157 158 obj = vp->v_object; 159 if (obj == NULL) 160 return; 161 ASSERT_VOP_LOCKED(vp, "vnode_destroy_vobject"); 162 VM_OBJECT_LOCK(obj); 163 if (obj->ref_count == 0) { 164 /* 165 * vclean() may be called twice. The first time 166 * removes the primary reference to the object, 167 * the second time goes one further and is a 168 * special-case to terminate the object. 169 * 170 * don't double-terminate the object 171 */ 172 if ((obj->flags & OBJ_DEAD) == 0) 173 vm_object_terminate(obj); 174 else 175 VM_OBJECT_UNLOCK(obj); 176 } else { 177 /* 178 * Woe to the process that tries to page now :-). 179 */ 180 vm_pager_deallocate(obj); 181 VM_OBJECT_UNLOCK(obj); 182 } 183 vp->v_object = NULL; 184 } 185 186 187 /* 188 * Allocate (or lookup) pager for a vnode. 189 * Handle is a vnode pointer. 190 * 191 * MPSAFE 192 */ 193 vm_object_t 194 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 195 vm_ooffset_t offset) 196 { 197 vm_object_t object; 198 struct vnode *vp; 199 200 /* 201 * Pageout to vnode, no can do yet. 202 */ 203 if (handle == NULL) 204 return (NULL); 205 206 vp = (struct vnode *) handle; 207 208 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 209 210 /* 211 * If the object is being terminated, wait for it to 212 * go away. 213 */ 214 while ((object = vp->v_object) != NULL) { 215 VM_OBJECT_LOCK(object); 216 if ((object->flags & OBJ_DEAD) == 0) 217 break; 218 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 219 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 220 } 221 222 if (vp->v_usecount == 0) 223 panic("vnode_pager_alloc: no vnode reference"); 224 225 if (object == NULL) { 226 /* 227 * And an object of the appropriate size 228 */ 229 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 230 231 object->un_pager.vnp.vnp_size = size; 232 233 object->handle = handle; 234 if (VFS_NEEDSGIANT(vp->v_mount)) 235 vm_object_set_flag(object, OBJ_NEEDGIANT); 236 vp->v_object = object; 237 } else { 238 object->ref_count++; 239 VM_OBJECT_UNLOCK(object); 240 } 241 vref(vp); 242 return (object); 243 } 244 245 /* 246 * The object must be locked. 247 */ 248 static void 249 vnode_pager_dealloc(object) 250 vm_object_t object; 251 { 252 struct vnode *vp = object->handle; 253 254 if (vp == NULL) 255 panic("vnode_pager_dealloc: pager already dealloced"); 256 257 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 258 vm_object_pip_wait(object, "vnpdea"); 259 260 object->handle = NULL; 261 object->type = OBJT_DEAD; 262 if (object->flags & OBJ_DISCONNECTWNT) { 263 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 264 wakeup(object); 265 } 266 ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc"); 267 vp->v_object = NULL; 268 vp->v_vflag &= ~VV_TEXT; 269 } 270 271 static boolean_t 272 vnode_pager_haspage(object, pindex, before, after) 273 vm_object_t object; 274 vm_pindex_t pindex; 275 int *before; 276 int *after; 277 { 278 struct vnode *vp = object->handle; 279 daddr_t bn; 280 int err; 281 daddr_t reqblock; 282 int poff; 283 int bsize; 284 int pagesperblock, blocksperpage; 285 int vfslocked; 286 287 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 288 /* 289 * If no vp or vp is doomed or marked transparent to VM, we do not 290 * have the page. 291 */ 292 if (vp == NULL) 293 return FALSE; 294 295 VI_LOCK(vp); 296 if (vp->v_iflag & VI_DOOMED) { 297 VI_UNLOCK(vp); 298 return FALSE; 299 } 300 VI_UNLOCK(vp); 301 /* 302 * If filesystem no longer mounted or offset beyond end of file we do 303 * not have the page. 304 */ 305 if ((vp->v_mount == NULL) || 306 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)) 307 return FALSE; 308 309 bsize = vp->v_mount->mnt_stat.f_iosize; 310 pagesperblock = bsize / PAGE_SIZE; 311 blocksperpage = 0; 312 if (pagesperblock > 0) { 313 reqblock = pindex / pagesperblock; 314 } else { 315 blocksperpage = (PAGE_SIZE / bsize); 316 reqblock = pindex * blocksperpage; 317 } 318 VM_OBJECT_UNLOCK(object); 319 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 320 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 321 VFS_UNLOCK_GIANT(vfslocked); 322 VM_OBJECT_LOCK(object); 323 if (err) 324 return TRUE; 325 if (bn == -1) 326 return FALSE; 327 if (pagesperblock > 0) { 328 poff = pindex - (reqblock * pagesperblock); 329 if (before) { 330 *before *= pagesperblock; 331 *before += poff; 332 } 333 if (after) { 334 int numafter; 335 *after *= pagesperblock; 336 numafter = pagesperblock - (poff + 1); 337 if (IDX_TO_OFF(pindex + numafter) > 338 object->un_pager.vnp.vnp_size) { 339 numafter = 340 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 341 pindex; 342 } 343 *after += numafter; 344 } 345 } else { 346 if (before) { 347 *before /= blocksperpage; 348 } 349 350 if (after) { 351 *after /= blocksperpage; 352 } 353 } 354 return TRUE; 355 } 356 357 /* 358 * Lets the VM system know about a change in size for a file. 359 * We adjust our own internal size and flush any cached pages in 360 * the associated object that are affected by the size change. 361 * 362 * Note: this routine may be invoked as a result of a pager put 363 * operation (possibly at object termination time), so we must be careful. 364 */ 365 void 366 vnode_pager_setsize(vp, nsize) 367 struct vnode *vp; 368 vm_ooffset_t nsize; 369 { 370 vm_object_t object; 371 vm_page_t m; 372 vm_pindex_t nobjsize; 373 374 if ((object = vp->v_object) == NULL) 375 return; 376 VM_OBJECT_LOCK(object); 377 if (nsize == object->un_pager.vnp.vnp_size) { 378 /* 379 * Hasn't changed size 380 */ 381 VM_OBJECT_UNLOCK(object); 382 return; 383 } 384 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 385 if (nsize < object->un_pager.vnp.vnp_size) { 386 /* 387 * File has shrunk. Toss any cached pages beyond the new EOF. 388 */ 389 if (nobjsize < object->size) 390 vm_object_page_remove(object, nobjsize, object->size, 391 FALSE); 392 /* 393 * this gets rid of garbage at the end of a page that is now 394 * only partially backed by the vnode. 395 * 396 * XXX for some reason (I don't know yet), if we take a 397 * completely invalid page and mark it partially valid 398 * it can screw up NFS reads, so we don't allow the case. 399 */ 400 if ((nsize & PAGE_MASK) && 401 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 402 m->valid != 0) { 403 int base = (int)nsize & PAGE_MASK; 404 int size = PAGE_SIZE - base; 405 406 /* 407 * Clear out partial-page garbage in case 408 * the page has been mapped. 409 */ 410 pmap_zero_page_area(m, base, size); 411 412 /* 413 * XXX work around SMP data integrity race 414 * by unmapping the page from user processes. 415 * The garbage we just cleared may be mapped 416 * to a user process running on another cpu 417 * and this code is not running through normal 418 * I/O channels which handle SMP issues for 419 * us, so unmap page to synchronize all cpus. 420 * 421 * XXX should vm_pager_unmap_page() have 422 * dealt with this? 423 */ 424 vm_page_lock_queues(); 425 pmap_remove_all(m); 426 427 /* 428 * Clear out partial-page dirty bits. This 429 * has the side effect of setting the valid 430 * bits, but that is ok. There are a bunch 431 * of places in the VM system where we expected 432 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 433 * case is one of them. If the page is still 434 * partially dirty, make it fully dirty. 435 * 436 * note that we do not clear out the valid 437 * bits. This would prevent bogus_page 438 * replacement from working properly. 439 */ 440 vm_page_set_validclean(m, base, size); 441 if (m->dirty != 0) 442 m->dirty = VM_PAGE_BITS_ALL; 443 vm_page_unlock_queues(); 444 } 445 } 446 object->un_pager.vnp.vnp_size = nsize; 447 object->size = nobjsize; 448 VM_OBJECT_UNLOCK(object); 449 } 450 451 /* 452 * calculate the linear (byte) disk address of specified virtual 453 * file address 454 */ 455 static daddr_t 456 vnode_pager_addr(vp, address, run) 457 struct vnode *vp; 458 vm_ooffset_t address; 459 int *run; 460 { 461 daddr_t rtaddress; 462 int bsize; 463 daddr_t block; 464 int err; 465 daddr_t vblock; 466 daddr_t voffset; 467 468 if (address < 0) 469 return -1; 470 471 if (vp->v_mount == NULL) 472 return -1; 473 474 bsize = vp->v_mount->mnt_stat.f_iosize; 475 vblock = address / bsize; 476 voffset = address % bsize; 477 478 err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL); 479 480 if (err || (block == -1)) 481 rtaddress = -1; 482 else { 483 rtaddress = block + voffset / DEV_BSIZE; 484 if (run) { 485 *run += 1; 486 *run *= bsize/PAGE_SIZE; 487 *run -= voffset/PAGE_SIZE; 488 } 489 } 490 491 return rtaddress; 492 } 493 494 /* 495 * small block filesystem vnode pager input 496 */ 497 static int 498 vnode_pager_input_smlfs(object, m) 499 vm_object_t object; 500 vm_page_t m; 501 { 502 int i; 503 struct vnode *vp; 504 struct bufobj *bo; 505 struct buf *bp; 506 struct sf_buf *sf; 507 daddr_t fileaddr; 508 vm_offset_t bsize; 509 int error = 0; 510 511 vp = object->handle; 512 if (vp->v_mount == NULL) 513 return VM_PAGER_BAD; 514 515 bsize = vp->v_mount->mnt_stat.f_iosize; 516 517 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 518 519 sf = sf_buf_alloc(m, 0); 520 521 for (i = 0; i < PAGE_SIZE / bsize; i++) { 522 vm_ooffset_t address; 523 524 if (vm_page_bits(i * bsize, bsize) & m->valid) 525 continue; 526 527 address = IDX_TO_OFF(m->pindex) + i * bsize; 528 if (address >= object->un_pager.vnp.vnp_size) { 529 fileaddr = -1; 530 } else { 531 fileaddr = vnode_pager_addr(vp, address, NULL); 532 } 533 if (fileaddr != -1) { 534 bp = getpbuf(&vnode_pbuf_freecnt); 535 536 /* build a minimal buffer header */ 537 bp->b_iocmd = BIO_READ; 538 bp->b_iodone = bdone; 539 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 540 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 541 bp->b_rcred = crhold(curthread->td_ucred); 542 bp->b_wcred = crhold(curthread->td_ucred); 543 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 544 bp->b_blkno = fileaddr; 545 pbgetbo(bo, bp); 546 bp->b_bcount = bsize; 547 bp->b_bufsize = bsize; 548 bp->b_runningbufspace = bp->b_bufsize; 549 runningbufspace += bp->b_runningbufspace; 550 551 /* do the input */ 552 bp->b_iooffset = dbtob(bp->b_blkno); 553 bstrategy(bp); 554 555 bwait(bp, PVM, "vnsrd"); 556 557 if ((bp->b_ioflags & BIO_ERROR) != 0) 558 error = EIO; 559 560 /* 561 * free the buffer header back to the swap buffer pool 562 */ 563 pbrelbo(bp); 564 relpbuf(bp, &vnode_pbuf_freecnt); 565 if (error) 566 break; 567 568 VM_OBJECT_LOCK(object); 569 vm_page_lock_queues(); 570 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 571 vm_page_unlock_queues(); 572 VM_OBJECT_UNLOCK(object); 573 } else { 574 VM_OBJECT_LOCK(object); 575 vm_page_lock_queues(); 576 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 577 vm_page_unlock_queues(); 578 VM_OBJECT_UNLOCK(object); 579 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 580 } 581 } 582 sf_buf_free(sf); 583 vm_page_lock_queues(); 584 pmap_clear_modify(m); 585 vm_page_unlock_queues(); 586 if (error) { 587 return VM_PAGER_ERROR; 588 } 589 return VM_PAGER_OK; 590 591 } 592 593 594 /* 595 * old style vnode pager input routine 596 */ 597 static int 598 vnode_pager_input_old(object, m) 599 vm_object_t object; 600 vm_page_t m; 601 { 602 struct uio auio; 603 struct iovec aiov; 604 int error; 605 int size; 606 struct sf_buf *sf; 607 struct vnode *vp; 608 609 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 610 error = 0; 611 612 /* 613 * Return failure if beyond current EOF 614 */ 615 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 616 return VM_PAGER_BAD; 617 } else { 618 size = PAGE_SIZE; 619 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 620 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 621 vp = object->handle; 622 VM_OBJECT_UNLOCK(object); 623 624 /* 625 * Allocate a kernel virtual address and initialize so that 626 * we can use VOP_READ/WRITE routines. 627 */ 628 sf = sf_buf_alloc(m, 0); 629 630 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 631 aiov.iov_len = size; 632 auio.uio_iov = &aiov; 633 auio.uio_iovcnt = 1; 634 auio.uio_offset = IDX_TO_OFF(m->pindex); 635 auio.uio_segflg = UIO_SYSSPACE; 636 auio.uio_rw = UIO_READ; 637 auio.uio_resid = size; 638 auio.uio_td = curthread; 639 640 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 641 if (!error) { 642 int count = size - auio.uio_resid; 643 644 if (count == 0) 645 error = EINVAL; 646 else if (count != PAGE_SIZE) 647 bzero((caddr_t)sf_buf_kva(sf) + count, 648 PAGE_SIZE - count); 649 } 650 sf_buf_free(sf); 651 652 VM_OBJECT_LOCK(object); 653 } 654 vm_page_lock_queues(); 655 pmap_clear_modify(m); 656 vm_page_undirty(m); 657 vm_page_unlock_queues(); 658 if (!error) 659 m->valid = VM_PAGE_BITS_ALL; 660 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 661 } 662 663 /* 664 * generic vnode pager input routine 665 */ 666 667 /* 668 * Local media VFS's that do not implement their own VOP_GETPAGES 669 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 670 * to implement the previous behaviour. 671 * 672 * All other FS's should use the bypass to get to the local media 673 * backing vp's VOP_GETPAGES. 674 */ 675 static int 676 vnode_pager_getpages(object, m, count, reqpage) 677 vm_object_t object; 678 vm_page_t *m; 679 int count; 680 int reqpage; 681 { 682 int rtval; 683 struct vnode *vp; 684 int bytes = count * PAGE_SIZE; 685 int vfslocked; 686 687 vp = object->handle; 688 VM_OBJECT_UNLOCK(object); 689 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 690 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 691 KASSERT(rtval != EOPNOTSUPP, 692 ("vnode_pager: FS getpages not implemented\n")); 693 VFS_UNLOCK_GIANT(vfslocked); 694 VM_OBJECT_LOCK(object); 695 return rtval; 696 } 697 698 /* 699 * This is now called from local media FS's to operate against their 700 * own vnodes if they fail to implement VOP_GETPAGES. 701 */ 702 int 703 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 704 struct vnode *vp; 705 vm_page_t *m; 706 int bytecount; 707 int reqpage; 708 { 709 vm_object_t object; 710 vm_offset_t kva; 711 off_t foff, tfoff, nextoff; 712 int i, j, size, bsize, first; 713 daddr_t firstaddr; 714 struct bufobj *bo; 715 int runpg; 716 int runend; 717 struct buf *bp; 718 int count; 719 int error = 0; 720 721 object = vp->v_object; 722 count = bytecount / PAGE_SIZE; 723 724 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 725 ("vnode_pager_generic_getpages does not support devices")); 726 if (vp->v_mount == NULL) 727 return VM_PAGER_BAD; 728 729 bsize = vp->v_mount->mnt_stat.f_iosize; 730 731 /* get the UNDERLYING device for the file with VOP_BMAP() */ 732 733 /* 734 * originally, we did not check for an error return value -- assuming 735 * an fs always has a bmap entry point -- that assumption is wrong!!! 736 */ 737 foff = IDX_TO_OFF(m[reqpage]->pindex); 738 739 /* 740 * if we can't bmap, use old VOP code 741 */ 742 if (VOP_BMAP(vp, 0, &bo, 0, NULL, NULL)) { 743 VM_OBJECT_LOCK(object); 744 vm_page_lock_queues(); 745 for (i = 0; i < count; i++) 746 if (i != reqpage) 747 vm_page_free(m[i]); 748 vm_page_unlock_queues(); 749 cnt.v_vnodein++; 750 cnt.v_vnodepgsin++; 751 error = vnode_pager_input_old(object, m[reqpage]); 752 VM_OBJECT_UNLOCK(object); 753 return (error); 754 755 /* 756 * if the blocksize is smaller than a page size, then use 757 * special small filesystem code. NFS sometimes has a small 758 * blocksize, but it can handle large reads itself. 759 */ 760 } else if ((PAGE_SIZE / bsize) > 1 && 761 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 762 VM_OBJECT_LOCK(object); 763 vm_page_lock_queues(); 764 for (i = 0; i < count; i++) 765 if (i != reqpage) 766 vm_page_free(m[i]); 767 vm_page_unlock_queues(); 768 VM_OBJECT_UNLOCK(object); 769 cnt.v_vnodein++; 770 cnt.v_vnodepgsin++; 771 return vnode_pager_input_smlfs(object, m[reqpage]); 772 } 773 774 /* 775 * If we have a completely valid page available to us, we can 776 * clean up and return. Otherwise we have to re-read the 777 * media. 778 */ 779 VM_OBJECT_LOCK(object); 780 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 781 vm_page_lock_queues(); 782 for (i = 0; i < count; i++) 783 if (i != reqpage) 784 vm_page_free(m[i]); 785 vm_page_unlock_queues(); 786 VM_OBJECT_UNLOCK(object); 787 return VM_PAGER_OK; 788 } 789 m[reqpage]->valid = 0; 790 VM_OBJECT_UNLOCK(object); 791 792 /* 793 * here on direct device I/O 794 */ 795 firstaddr = -1; 796 797 /* 798 * calculate the run that includes the required page 799 */ 800 for (first = 0, i = 0; i < count; i = runend) { 801 firstaddr = vnode_pager_addr(vp, 802 IDX_TO_OFF(m[i]->pindex), &runpg); 803 if (firstaddr == -1) { 804 VM_OBJECT_LOCK(object); 805 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 806 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 807 (intmax_t)firstaddr, (uintmax_t)(foff >> 32), 808 (uintmax_t)foff, 809 (uintmax_t) 810 (object->un_pager.vnp.vnp_size >> 32), 811 (uintmax_t)object->un_pager.vnp.vnp_size); 812 } 813 vm_page_lock_queues(); 814 vm_page_free(m[i]); 815 vm_page_unlock_queues(); 816 VM_OBJECT_UNLOCK(object); 817 runend = i + 1; 818 first = runend; 819 continue; 820 } 821 runend = i + runpg; 822 if (runend <= reqpage) { 823 VM_OBJECT_LOCK(object); 824 vm_page_lock_queues(); 825 for (j = i; j < runend; j++) 826 vm_page_free(m[j]); 827 vm_page_unlock_queues(); 828 VM_OBJECT_UNLOCK(object); 829 } else { 830 if (runpg < (count - first)) { 831 VM_OBJECT_LOCK(object); 832 vm_page_lock_queues(); 833 for (i = first + runpg; i < count; i++) 834 vm_page_free(m[i]); 835 vm_page_unlock_queues(); 836 VM_OBJECT_UNLOCK(object); 837 count = first + runpg; 838 } 839 break; 840 } 841 first = runend; 842 } 843 844 /* 845 * the first and last page have been calculated now, move input pages 846 * to be zero based... 847 */ 848 if (first != 0) { 849 for (i = first; i < count; i++) { 850 m[i - first] = m[i]; 851 } 852 count -= first; 853 reqpage -= first; 854 } 855 856 /* 857 * calculate the file virtual address for the transfer 858 */ 859 foff = IDX_TO_OFF(m[0]->pindex); 860 861 /* 862 * calculate the size of the transfer 863 */ 864 size = count * PAGE_SIZE; 865 KASSERT(count > 0, ("zero count")); 866 if ((foff + size) > object->un_pager.vnp.vnp_size) 867 size = object->un_pager.vnp.vnp_size - foff; 868 KASSERT(size > 0, ("zero size")); 869 870 /* 871 * round up physical size for real devices. 872 */ 873 if (1) { 874 int secmask = bo->bo_bsize - 1; 875 KASSERT(secmask < PAGE_SIZE && secmask > 0, 876 ("vnode_pager_generic_getpages: sector size %d too large", 877 secmask + 1)); 878 size = (size + secmask) & ~secmask; 879 } 880 881 bp = getpbuf(&vnode_pbuf_freecnt); 882 kva = (vm_offset_t) bp->b_data; 883 884 /* 885 * and map the pages to be read into the kva 886 */ 887 pmap_qenter(kva, m, count); 888 889 /* build a minimal buffer header */ 890 bp->b_iocmd = BIO_READ; 891 bp->b_iodone = bdone; 892 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 893 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 894 bp->b_rcred = crhold(curthread->td_ucred); 895 bp->b_wcred = crhold(curthread->td_ucred); 896 bp->b_blkno = firstaddr; 897 pbgetbo(bo, bp); 898 bp->b_bcount = size; 899 bp->b_bufsize = size; 900 bp->b_runningbufspace = bp->b_bufsize; 901 runningbufspace += bp->b_runningbufspace; 902 903 cnt.v_vnodein++; 904 cnt.v_vnodepgsin += count; 905 906 /* do the input */ 907 bp->b_iooffset = dbtob(bp->b_blkno); 908 bstrategy(bp); 909 910 bwait(bp, PVM, "vnread"); 911 912 if ((bp->b_ioflags & BIO_ERROR) != 0) 913 error = EIO; 914 915 if (!error) { 916 if (size != count * PAGE_SIZE) 917 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 918 } 919 pmap_qremove(kva, count); 920 921 /* 922 * free the buffer header back to the swap buffer pool 923 */ 924 pbrelbo(bp); 925 relpbuf(bp, &vnode_pbuf_freecnt); 926 927 VM_OBJECT_LOCK(object); 928 vm_page_lock_queues(); 929 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 930 vm_page_t mt; 931 932 nextoff = tfoff + PAGE_SIZE; 933 mt = m[i]; 934 935 if (nextoff <= object->un_pager.vnp.vnp_size) { 936 /* 937 * Read filled up entire page. 938 */ 939 mt->valid = VM_PAGE_BITS_ALL; 940 vm_page_undirty(mt); /* should be an assert? XXX */ 941 pmap_clear_modify(mt); 942 } else { 943 /* 944 * Read did not fill up entire page. Since this 945 * is getpages, the page may be mapped, so we have 946 * to zero the invalid portions of the page even 947 * though we aren't setting them valid. 948 * 949 * Currently we do not set the entire page valid, 950 * we just try to clear the piece that we couldn't 951 * read. 952 */ 953 vm_page_set_validclean(mt, 0, 954 object->un_pager.vnp.vnp_size - tfoff); 955 /* handled by vm_fault now */ 956 /* vm_page_zero_invalid(mt, FALSE); */ 957 } 958 959 if (i != reqpage) { 960 961 /* 962 * whether or not to leave the page activated is up in 963 * the air, but we should put the page on a page queue 964 * somewhere. (it already is in the object). Result: 965 * It appears that empirical results show that 966 * deactivating pages is best. 967 */ 968 969 /* 970 * just in case someone was asking for this page we 971 * now tell them that it is ok to use 972 */ 973 if (!error) { 974 if (mt->flags & PG_WANTED) 975 vm_page_activate(mt); 976 else 977 vm_page_deactivate(mt); 978 vm_page_wakeup(mt); 979 } else { 980 vm_page_free(mt); 981 } 982 } 983 } 984 vm_page_unlock_queues(); 985 VM_OBJECT_UNLOCK(object); 986 if (error) { 987 printf("vnode_pager_getpages: I/O read error\n"); 988 } 989 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 990 } 991 992 /* 993 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 994 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 995 * vnode_pager_generic_putpages() to implement the previous behaviour. 996 * 997 * All other FS's should use the bypass to get to the local media 998 * backing vp's VOP_PUTPAGES. 999 */ 1000 static void 1001 vnode_pager_putpages(object, m, count, sync, rtvals) 1002 vm_object_t object; 1003 vm_page_t *m; 1004 int count; 1005 boolean_t sync; 1006 int *rtvals; 1007 { 1008 int rtval; 1009 struct vnode *vp; 1010 struct mount *mp; 1011 int bytes = count * PAGE_SIZE; 1012 1013 /* 1014 * Force synchronous operation if we are extremely low on memory 1015 * to prevent a low-memory deadlock. VOP operations often need to 1016 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1017 * operation ). The swapper handles the case by limiting the amount 1018 * of asynchronous I/O, but that sort of solution doesn't scale well 1019 * for the vnode pager without a lot of work. 1020 * 1021 * Also, the backing vnode's iodone routine may not wake the pageout 1022 * daemon up. This should be probably be addressed XXX. 1023 */ 1024 1025 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 1026 sync |= OBJPC_SYNC; 1027 1028 /* 1029 * Call device-specific putpages function 1030 */ 1031 vp = object->handle; 1032 VM_OBJECT_UNLOCK(object); 1033 if (vp->v_type != VREG) 1034 mp = NULL; 1035 (void)vn_start_write(vp, &mp, V_WAIT); 1036 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 1037 KASSERT(rtval != EOPNOTSUPP, 1038 ("vnode_pager: stale FS putpages\n")); 1039 vn_finished_write(mp); 1040 VM_OBJECT_LOCK(object); 1041 } 1042 1043 1044 /* 1045 * This is now called from local media FS's to operate against their 1046 * own vnodes if they fail to implement VOP_PUTPAGES. 1047 * 1048 * This is typically called indirectly via the pageout daemon and 1049 * clustering has already typically occured, so in general we ask the 1050 * underlying filesystem to write the data out asynchronously rather 1051 * then delayed. 1052 */ 1053 int 1054 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 1055 struct vnode *vp; 1056 vm_page_t *m; 1057 int bytecount; 1058 int flags; 1059 int *rtvals; 1060 { 1061 int i; 1062 vm_object_t object; 1063 int count; 1064 1065 int maxsize, ncount; 1066 vm_ooffset_t poffset; 1067 struct uio auio; 1068 struct iovec aiov; 1069 int error; 1070 int ioflags; 1071 1072 object = vp->v_object; 1073 count = bytecount / PAGE_SIZE; 1074 1075 for (i = 0; i < count; i++) 1076 rtvals[i] = VM_PAGER_AGAIN; 1077 1078 if ((int64_t)m[0]->pindex < 0) { 1079 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1080 (long)m[0]->pindex, (u_long)m[0]->dirty); 1081 rtvals[0] = VM_PAGER_BAD; 1082 return VM_PAGER_BAD; 1083 } 1084 1085 maxsize = count * PAGE_SIZE; 1086 ncount = count; 1087 1088 poffset = IDX_TO_OFF(m[0]->pindex); 1089 1090 /* 1091 * If the page-aligned write is larger then the actual file we 1092 * have to invalidate pages occuring beyond the file EOF. However, 1093 * there is an edge case where a file may not be page-aligned where 1094 * the last page is partially invalid. In this case the filesystem 1095 * may not properly clear the dirty bits for the entire page (which 1096 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1097 * With the page locked we are free to fix-up the dirty bits here. 1098 * 1099 * We do not under any circumstances truncate the valid bits, as 1100 * this will screw up bogus page replacement. 1101 */ 1102 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1103 if (object->un_pager.vnp.vnp_size > poffset) { 1104 int pgoff; 1105 1106 maxsize = object->un_pager.vnp.vnp_size - poffset; 1107 ncount = btoc(maxsize); 1108 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1109 vm_page_lock_queues(); 1110 vm_page_clear_dirty(m[ncount - 1], pgoff, 1111 PAGE_SIZE - pgoff); 1112 vm_page_unlock_queues(); 1113 } 1114 } else { 1115 maxsize = 0; 1116 ncount = 0; 1117 } 1118 if (ncount < count) { 1119 for (i = ncount; i < count; i++) { 1120 rtvals[i] = VM_PAGER_BAD; 1121 } 1122 } 1123 } 1124 1125 /* 1126 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1127 * rather then a bdwrite() to prevent paging I/O from saturating 1128 * the buffer cache. Dummy-up the sequential heuristic to cause 1129 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1130 * the system decides how to cluster. 1131 */ 1132 ioflags = IO_VMIO; 1133 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1134 ioflags |= IO_SYNC; 1135 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1136 ioflags |= IO_ASYNC; 1137 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1138 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1139 1140 aiov.iov_base = (caddr_t) 0; 1141 aiov.iov_len = maxsize; 1142 auio.uio_iov = &aiov; 1143 auio.uio_iovcnt = 1; 1144 auio.uio_offset = poffset; 1145 auio.uio_segflg = UIO_NOCOPY; 1146 auio.uio_rw = UIO_WRITE; 1147 auio.uio_resid = maxsize; 1148 auio.uio_td = (struct thread *) 0; 1149 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1150 cnt.v_vnodeout++; 1151 cnt.v_vnodepgsout += ncount; 1152 1153 if (error) { 1154 printf("vnode_pager_putpages: I/O error %d\n", error); 1155 } 1156 if (auio.uio_resid) { 1157 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1158 auio.uio_resid, (u_long)m[0]->pindex); 1159 } 1160 for (i = 0; i < ncount; i++) { 1161 rtvals[i] = VM_PAGER_OK; 1162 } 1163 return rtvals[0]; 1164 } 1165 1166 struct vnode * 1167 vnode_pager_lock(vm_object_t first_object) 1168 { 1169 struct vnode *vp; 1170 vm_object_t backing_object, object; 1171 1172 VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED); 1173 for (object = first_object; object != NULL; object = backing_object) { 1174 if (object->type != OBJT_VNODE) { 1175 if ((backing_object = object->backing_object) != NULL) 1176 VM_OBJECT_LOCK(backing_object); 1177 if (object != first_object) 1178 VM_OBJECT_UNLOCK(object); 1179 continue; 1180 } 1181 retry: 1182 if (object->flags & OBJ_DEAD) { 1183 if (object != first_object) 1184 VM_OBJECT_UNLOCK(object); 1185 return NULL; 1186 } 1187 vp = object->handle; 1188 VI_LOCK(vp); 1189 VM_OBJECT_UNLOCK(object); 1190 if (first_object != object) 1191 VM_OBJECT_UNLOCK(first_object); 1192 VFS_ASSERT_GIANT(vp->v_mount); 1193 if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | 1194 LK_RETRY | LK_SHARED, curthread)) { 1195 VM_OBJECT_LOCK(first_object); 1196 if (object != first_object) 1197 VM_OBJECT_LOCK(object); 1198 if (object->type != OBJT_VNODE) { 1199 if (object != first_object) 1200 VM_OBJECT_UNLOCK(object); 1201 return NULL; 1202 } 1203 printf("vnode_pager_lock: retrying\n"); 1204 goto retry; 1205 } 1206 VM_OBJECT_LOCK(first_object); 1207 return (vp); 1208 } 1209 return NULL; 1210 } 1211