xref: /freebsd/sys/vm/vnode_pager.c (revision d06955f9bdb1416d9196043ed781f9b36dae9adc)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
43  */
44 
45 /*
46  * Page to/from files (vnodes).
47  */
48 
49 /*
50  * TODO:
51  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52  *	greatly re-simplify the vnode_pager.
53  */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include "opt_vm.h"
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/proc.h>
63 #include <sys/vnode.h>
64 #include <sys/mount.h>
65 #include <sys/bio.h>
66 #include <sys/buf.h>
67 #include <sys/vmmeter.h>
68 #include <sys/limits.h>
69 #include <sys/conf.h>
70 #include <sys/rwlock.h>
71 #include <sys/sf_buf.h>
72 
73 #include <machine/atomic.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <vm/vm_object.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_pager.h>
80 #include <vm/vm_map.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_extern.h>
83 
84 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
85     daddr_t *rtaddress, int *run);
86 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
87 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
88 static void vnode_pager_dealloc(vm_object_t);
89 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
90 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
91     int *, vop_getpages_iodone_t, void *);
92 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
93 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
94 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
95     vm_ooffset_t, struct ucred *cred);
96 static int vnode_pager_generic_getpages_done(struct buf *);
97 static void vnode_pager_generic_getpages_done_async(struct buf *);
98 
99 struct pagerops vnodepagerops = {
100 	.pgo_alloc =	vnode_pager_alloc,
101 	.pgo_dealloc =	vnode_pager_dealloc,
102 	.pgo_getpages =	vnode_pager_getpages,
103 	.pgo_getpages_async = vnode_pager_getpages_async,
104 	.pgo_putpages =	vnode_pager_putpages,
105 	.pgo_haspage =	vnode_pager_haspage,
106 };
107 
108 int vnode_pbuf_freecnt;
109 int vnode_async_pbuf_freecnt;
110 
111 /* Create the VM system backing object for this vnode */
112 int
113 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
114 {
115 	vm_object_t object;
116 	vm_ooffset_t size = isize;
117 	struct vattr va;
118 
119 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
120 		return (0);
121 
122 	while ((object = vp->v_object) != NULL) {
123 		VM_OBJECT_WLOCK(object);
124 		if (!(object->flags & OBJ_DEAD)) {
125 			VM_OBJECT_WUNLOCK(object);
126 			return (0);
127 		}
128 		VOP_UNLOCK(vp, 0);
129 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
130 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
131 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
132 	}
133 
134 	if (size == 0) {
135 		if (vn_isdisk(vp, NULL)) {
136 			size = IDX_TO_OFF(INT_MAX);
137 		} else {
138 			if (VOP_GETATTR(vp, &va, td->td_ucred))
139 				return (0);
140 			size = va.va_size;
141 		}
142 	}
143 
144 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
145 	/*
146 	 * Dereference the reference we just created.  This assumes
147 	 * that the object is associated with the vp.
148 	 */
149 	VM_OBJECT_WLOCK(object);
150 	object->ref_count--;
151 	VM_OBJECT_WUNLOCK(object);
152 	vrele(vp);
153 
154 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
155 
156 	return (0);
157 }
158 
159 void
160 vnode_destroy_vobject(struct vnode *vp)
161 {
162 	struct vm_object *obj;
163 
164 	obj = vp->v_object;
165 	if (obj == NULL)
166 		return;
167 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
168 	VM_OBJECT_WLOCK(obj);
169 	umtx_shm_object_terminated(obj);
170 	if (obj->ref_count == 0) {
171 		/*
172 		 * don't double-terminate the object
173 		 */
174 		if ((obj->flags & OBJ_DEAD) == 0) {
175 			vm_object_terminate(obj);
176 		} else {
177 			/*
178 			 * Waiters were already handled during object
179 			 * termination.  The exclusive vnode lock hopefully
180 			 * prevented new waiters from referencing the dying
181 			 * object.
182 			 */
183 			KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
184 			    ("OBJ_DISCONNECTWNT set obj %p flags %x",
185 			    obj, obj->flags));
186 			vp->v_object = NULL;
187 			VM_OBJECT_WUNLOCK(obj);
188 		}
189 	} else {
190 		/*
191 		 * Woe to the process that tries to page now :-).
192 		 */
193 		vm_pager_deallocate(obj);
194 		VM_OBJECT_WUNLOCK(obj);
195 	}
196 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
197 }
198 
199 
200 /*
201  * Allocate (or lookup) pager for a vnode.
202  * Handle is a vnode pointer.
203  *
204  * MPSAFE
205  */
206 vm_object_t
207 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
208     vm_ooffset_t offset, struct ucred *cred)
209 {
210 	vm_object_t object;
211 	struct vnode *vp;
212 
213 	/*
214 	 * Pageout to vnode, no can do yet.
215 	 */
216 	if (handle == NULL)
217 		return (NULL);
218 
219 	vp = (struct vnode *) handle;
220 
221 	/*
222 	 * If the object is being terminated, wait for it to
223 	 * go away.
224 	 */
225 retry:
226 	while ((object = vp->v_object) != NULL) {
227 		VM_OBJECT_WLOCK(object);
228 		if ((object->flags & OBJ_DEAD) == 0)
229 			break;
230 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
231 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
232 	}
233 
234 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
235 
236 	if (object == NULL) {
237 		/*
238 		 * Add an object of the appropriate size
239 		 */
240 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
241 
242 		object->un_pager.vnp.vnp_size = size;
243 		object->un_pager.vnp.writemappings = 0;
244 
245 		object->handle = handle;
246 		VI_LOCK(vp);
247 		if (vp->v_object != NULL) {
248 			/*
249 			 * Object has been created while we were sleeping
250 			 */
251 			VI_UNLOCK(vp);
252 			VM_OBJECT_WLOCK(object);
253 			KASSERT(object->ref_count == 1,
254 			    ("leaked ref %p %d", object, object->ref_count));
255 			object->type = OBJT_DEAD;
256 			object->ref_count = 0;
257 			VM_OBJECT_WUNLOCK(object);
258 			vm_object_destroy(object);
259 			goto retry;
260 		}
261 		vp->v_object = object;
262 		VI_UNLOCK(vp);
263 	} else {
264 		object->ref_count++;
265 #if VM_NRESERVLEVEL > 0
266 		vm_object_color(object, 0);
267 #endif
268 		VM_OBJECT_WUNLOCK(object);
269 	}
270 	vrefact(vp);
271 	return (object);
272 }
273 
274 /*
275  *	The object must be locked.
276  */
277 static void
278 vnode_pager_dealloc(vm_object_t object)
279 {
280 	struct vnode *vp;
281 	int refs;
282 
283 	vp = object->handle;
284 	if (vp == NULL)
285 		panic("vnode_pager_dealloc: pager already dealloced");
286 
287 	VM_OBJECT_ASSERT_WLOCKED(object);
288 	vm_object_pip_wait(object, "vnpdea");
289 	refs = object->ref_count;
290 
291 	object->handle = NULL;
292 	object->type = OBJT_DEAD;
293 	if (object->flags & OBJ_DISCONNECTWNT) {
294 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
295 		wakeup(object);
296 	}
297 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
298 	if (object->un_pager.vnp.writemappings > 0) {
299 		object->un_pager.vnp.writemappings = 0;
300 		VOP_ADD_WRITECOUNT(vp, -1);
301 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
302 		    __func__, vp, vp->v_writecount);
303 	}
304 	vp->v_object = NULL;
305 	VOP_UNSET_TEXT(vp);
306 	VM_OBJECT_WUNLOCK(object);
307 	while (refs-- > 0)
308 		vunref(vp);
309 	VM_OBJECT_WLOCK(object);
310 }
311 
312 static boolean_t
313 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
314     int *after)
315 {
316 	struct vnode *vp = object->handle;
317 	daddr_t bn;
318 	int err;
319 	daddr_t reqblock;
320 	int poff;
321 	int bsize;
322 	int pagesperblock, blocksperpage;
323 
324 	VM_OBJECT_ASSERT_WLOCKED(object);
325 	/*
326 	 * If no vp or vp is doomed or marked transparent to VM, we do not
327 	 * have the page.
328 	 */
329 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
330 		return FALSE;
331 	/*
332 	 * If the offset is beyond end of file we do
333 	 * not have the page.
334 	 */
335 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
336 		return FALSE;
337 
338 	bsize = vp->v_mount->mnt_stat.f_iosize;
339 	pagesperblock = bsize / PAGE_SIZE;
340 	blocksperpage = 0;
341 	if (pagesperblock > 0) {
342 		reqblock = pindex / pagesperblock;
343 	} else {
344 		blocksperpage = (PAGE_SIZE / bsize);
345 		reqblock = pindex * blocksperpage;
346 	}
347 	VM_OBJECT_WUNLOCK(object);
348 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
349 	VM_OBJECT_WLOCK(object);
350 	if (err)
351 		return TRUE;
352 	if (bn == -1)
353 		return FALSE;
354 	if (pagesperblock > 0) {
355 		poff = pindex - (reqblock * pagesperblock);
356 		if (before) {
357 			*before *= pagesperblock;
358 			*before += poff;
359 		}
360 		if (after) {
361 			/*
362 			 * The BMAP vop can report a partial block in the
363 			 * 'after', but must not report blocks after EOF.
364 			 * Assert the latter, and truncate 'after' in case
365 			 * of the former.
366 			 */
367 			KASSERT((reqblock + *after) * pagesperblock <
368 			    roundup2(object->size, pagesperblock),
369 			    ("%s: reqblock %jd after %d size %ju", __func__,
370 			    (intmax_t )reqblock, *after,
371 			    (uintmax_t )object->size));
372 			*after *= pagesperblock;
373 			*after += pagesperblock - (poff + 1);
374 			if (pindex + *after >= object->size)
375 				*after = object->size - 1 - pindex;
376 		}
377 	} else {
378 		if (before) {
379 			*before /= blocksperpage;
380 		}
381 
382 		if (after) {
383 			*after /= blocksperpage;
384 		}
385 	}
386 	return TRUE;
387 }
388 
389 /*
390  * Lets the VM system know about a change in size for a file.
391  * We adjust our own internal size and flush any cached pages in
392  * the associated object that are affected by the size change.
393  *
394  * Note: this routine may be invoked as a result of a pager put
395  * operation (possibly at object termination time), so we must be careful.
396  */
397 void
398 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
399 {
400 	vm_object_t object;
401 	vm_page_t m;
402 	vm_pindex_t nobjsize;
403 
404 	if ((object = vp->v_object) == NULL)
405 		return;
406 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
407 	VM_OBJECT_WLOCK(object);
408 	if (object->type == OBJT_DEAD) {
409 		VM_OBJECT_WUNLOCK(object);
410 		return;
411 	}
412 	KASSERT(object->type == OBJT_VNODE,
413 	    ("not vnode-backed object %p", object));
414 	if (nsize == object->un_pager.vnp.vnp_size) {
415 		/*
416 		 * Hasn't changed size
417 		 */
418 		VM_OBJECT_WUNLOCK(object);
419 		return;
420 	}
421 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
422 	if (nsize < object->un_pager.vnp.vnp_size) {
423 		/*
424 		 * File has shrunk. Toss any cached pages beyond the new EOF.
425 		 */
426 		if (nobjsize < object->size)
427 			vm_object_page_remove(object, nobjsize, object->size,
428 			    0);
429 		/*
430 		 * this gets rid of garbage at the end of a page that is now
431 		 * only partially backed by the vnode.
432 		 *
433 		 * XXX for some reason (I don't know yet), if we take a
434 		 * completely invalid page and mark it partially valid
435 		 * it can screw up NFS reads, so we don't allow the case.
436 		 */
437 		if ((nsize & PAGE_MASK) &&
438 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
439 		    m->valid != 0) {
440 			int base = (int)nsize & PAGE_MASK;
441 			int size = PAGE_SIZE - base;
442 
443 			/*
444 			 * Clear out partial-page garbage in case
445 			 * the page has been mapped.
446 			 */
447 			pmap_zero_page_area(m, base, size);
448 
449 			/*
450 			 * Update the valid bits to reflect the blocks that
451 			 * have been zeroed.  Some of these valid bits may
452 			 * have already been set.
453 			 */
454 			vm_page_set_valid_range(m, base, size);
455 
456 			/*
457 			 * Round "base" to the next block boundary so that the
458 			 * dirty bit for a partially zeroed block is not
459 			 * cleared.
460 			 */
461 			base = roundup2(base, DEV_BSIZE);
462 
463 			/*
464 			 * Clear out partial-page dirty bits.
465 			 *
466 			 * note that we do not clear out the valid
467 			 * bits.  This would prevent bogus_page
468 			 * replacement from working properly.
469 			 */
470 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
471 		}
472 	}
473 	object->un_pager.vnp.vnp_size = nsize;
474 	object->size = nobjsize;
475 	VM_OBJECT_WUNLOCK(object);
476 }
477 
478 /*
479  * calculate the linear (byte) disk address of specified virtual
480  * file address
481  */
482 static int
483 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
484     int *run)
485 {
486 	int bsize;
487 	int err;
488 	daddr_t vblock;
489 	daddr_t voffset;
490 
491 	if (address < 0)
492 		return -1;
493 
494 	if (vp->v_iflag & VI_DOOMED)
495 		return -1;
496 
497 	bsize = vp->v_mount->mnt_stat.f_iosize;
498 	vblock = address / bsize;
499 	voffset = address % bsize;
500 
501 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
502 	if (err == 0) {
503 		if (*rtaddress != -1)
504 			*rtaddress += voffset / DEV_BSIZE;
505 		if (run) {
506 			*run += 1;
507 			*run *= bsize/PAGE_SIZE;
508 			*run -= voffset/PAGE_SIZE;
509 		}
510 	}
511 
512 	return (err);
513 }
514 
515 /*
516  * small block filesystem vnode pager input
517  */
518 static int
519 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
520 {
521 	struct vnode *vp;
522 	struct bufobj *bo;
523 	struct buf *bp;
524 	struct sf_buf *sf;
525 	daddr_t fileaddr;
526 	vm_offset_t bsize;
527 	vm_page_bits_t bits;
528 	int error, i;
529 
530 	error = 0;
531 	vp = object->handle;
532 	if (vp->v_iflag & VI_DOOMED)
533 		return VM_PAGER_BAD;
534 
535 	bsize = vp->v_mount->mnt_stat.f_iosize;
536 
537 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
538 
539 	sf = sf_buf_alloc(m, 0);
540 
541 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
542 		vm_ooffset_t address;
543 
544 		bits = vm_page_bits(i * bsize, bsize);
545 		if (m->valid & bits)
546 			continue;
547 
548 		address = IDX_TO_OFF(m->pindex) + i * bsize;
549 		if (address >= object->un_pager.vnp.vnp_size) {
550 			fileaddr = -1;
551 		} else {
552 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
553 			if (error)
554 				break;
555 		}
556 		if (fileaddr != -1) {
557 			bp = getpbuf(&vnode_pbuf_freecnt);
558 
559 			/* build a minimal buffer header */
560 			bp->b_iocmd = BIO_READ;
561 			bp->b_iodone = bdone;
562 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
563 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
564 			bp->b_rcred = crhold(curthread->td_ucred);
565 			bp->b_wcred = crhold(curthread->td_ucred);
566 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
567 			bp->b_blkno = fileaddr;
568 			pbgetbo(bo, bp);
569 			bp->b_vp = vp;
570 			bp->b_bcount = bsize;
571 			bp->b_bufsize = bsize;
572 			bp->b_runningbufspace = bp->b_bufsize;
573 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
574 
575 			/* do the input */
576 			bp->b_iooffset = dbtob(bp->b_blkno);
577 			bstrategy(bp);
578 
579 			bwait(bp, PVM, "vnsrd");
580 
581 			if ((bp->b_ioflags & BIO_ERROR) != 0)
582 				error = EIO;
583 
584 			/*
585 			 * free the buffer header back to the swap buffer pool
586 			 */
587 			bp->b_vp = NULL;
588 			pbrelbo(bp);
589 			relpbuf(bp, &vnode_pbuf_freecnt);
590 			if (error)
591 				break;
592 		} else
593 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
594 		KASSERT((m->dirty & bits) == 0,
595 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
596 		VM_OBJECT_WLOCK(object);
597 		m->valid |= bits;
598 		VM_OBJECT_WUNLOCK(object);
599 	}
600 	sf_buf_free(sf);
601 	if (error) {
602 		return VM_PAGER_ERROR;
603 	}
604 	return VM_PAGER_OK;
605 }
606 
607 /*
608  * old style vnode pager input routine
609  */
610 static int
611 vnode_pager_input_old(vm_object_t object, vm_page_t m)
612 {
613 	struct uio auio;
614 	struct iovec aiov;
615 	int error;
616 	int size;
617 	struct sf_buf *sf;
618 	struct vnode *vp;
619 
620 	VM_OBJECT_ASSERT_WLOCKED(object);
621 	error = 0;
622 
623 	/*
624 	 * Return failure if beyond current EOF
625 	 */
626 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
627 		return VM_PAGER_BAD;
628 	} else {
629 		size = PAGE_SIZE;
630 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
631 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
632 		vp = object->handle;
633 		VM_OBJECT_WUNLOCK(object);
634 
635 		/*
636 		 * Allocate a kernel virtual address and initialize so that
637 		 * we can use VOP_READ/WRITE routines.
638 		 */
639 		sf = sf_buf_alloc(m, 0);
640 
641 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
642 		aiov.iov_len = size;
643 		auio.uio_iov = &aiov;
644 		auio.uio_iovcnt = 1;
645 		auio.uio_offset = IDX_TO_OFF(m->pindex);
646 		auio.uio_segflg = UIO_SYSSPACE;
647 		auio.uio_rw = UIO_READ;
648 		auio.uio_resid = size;
649 		auio.uio_td = curthread;
650 
651 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
652 		if (!error) {
653 			int count = size - auio.uio_resid;
654 
655 			if (count == 0)
656 				error = EINVAL;
657 			else if (count != PAGE_SIZE)
658 				bzero((caddr_t)sf_buf_kva(sf) + count,
659 				    PAGE_SIZE - count);
660 		}
661 		sf_buf_free(sf);
662 
663 		VM_OBJECT_WLOCK(object);
664 	}
665 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
666 	if (!error)
667 		m->valid = VM_PAGE_BITS_ALL;
668 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
669 }
670 
671 /*
672  * generic vnode pager input routine
673  */
674 
675 /*
676  * Local media VFS's that do not implement their own VOP_GETPAGES
677  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
678  * to implement the previous behaviour.
679  *
680  * All other FS's should use the bypass to get to the local media
681  * backing vp's VOP_GETPAGES.
682  */
683 static int
684 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
685     int *rahead)
686 {
687 	struct vnode *vp;
688 	int rtval;
689 
690 	vp = object->handle;
691 	VM_OBJECT_WUNLOCK(object);
692 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
693 	KASSERT(rtval != EOPNOTSUPP,
694 	    ("vnode_pager: FS getpages not implemented\n"));
695 	VM_OBJECT_WLOCK(object);
696 	return rtval;
697 }
698 
699 static int
700 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
701     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
702 {
703 	struct vnode *vp;
704 	int rtval;
705 
706 	vp = object->handle;
707 	VM_OBJECT_WUNLOCK(object);
708 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
709 	KASSERT(rtval != EOPNOTSUPP,
710 	    ("vnode_pager: FS getpages_async not implemented\n"));
711 	VM_OBJECT_WLOCK(object);
712 	return (rtval);
713 }
714 
715 /*
716  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
717  * local filesystems, where partially valid pages can only occur at
718  * the end of file.
719  */
720 int
721 vnode_pager_local_getpages(struct vop_getpages_args *ap)
722 {
723 
724 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
725 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
726 }
727 
728 int
729 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
730 {
731 
732 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
733 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
734 }
735 
736 /*
737  * This is now called from local media FS's to operate against their
738  * own vnodes if they fail to implement VOP_GETPAGES.
739  */
740 int
741 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
742     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
743 {
744 	vm_object_t object;
745 	struct bufobj *bo;
746 	struct buf *bp;
747 	off_t foff;
748 #ifdef INVARIANTS
749 	off_t blkno0;
750 #endif
751 	int bsize, pagesperblock, *freecnt;
752 	int error, before, after, rbehind, rahead, poff, i;
753 	int bytecount, secmask;
754 
755 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
756 	    ("%s does not support devices", __func__));
757 
758 	if (vp->v_iflag & VI_DOOMED)
759 		return (VM_PAGER_BAD);
760 
761 	object = vp->v_object;
762 	foff = IDX_TO_OFF(m[0]->pindex);
763 	bsize = vp->v_mount->mnt_stat.f_iosize;
764 	pagesperblock = bsize / PAGE_SIZE;
765 
766 	KASSERT(foff < object->un_pager.vnp.vnp_size,
767 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
768 	KASSERT(count <= sizeof(bp->b_pages),
769 	    ("%s: requested %d pages", __func__, count));
770 
771 	/*
772 	 * The last page has valid blocks.  Invalid part can only
773 	 * exist at the end of file, and the page is made fully valid
774 	 * by zeroing in vm_pager_get_pages().
775 	 */
776 	if (m[count - 1]->valid != 0 && --count == 0) {
777 		if (iodone != NULL)
778 			iodone(arg, m, 1, 0);
779 		return (VM_PAGER_OK);
780 	}
781 
782 	/*
783 	 * Synchronous and asynchronous paging operations use different
784 	 * free pbuf counters.  This is done to avoid asynchronous requests
785 	 * to consume all pbufs.
786 	 * Allocate the pbuf at the very beginning of the function, so that
787 	 * if we are low on certain kind of pbufs don't even proceed to BMAP,
788 	 * but sleep.
789 	 */
790 	freecnt = iodone != NULL ?
791 	    &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt;
792 	bp = getpbuf(freecnt);
793 
794 	/*
795 	 * Get the underlying device blocks for the file with VOP_BMAP().
796 	 * If the file system doesn't support VOP_BMAP, use old way of
797 	 * getting pages via VOP_READ.
798 	 */
799 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
800 	if (error == EOPNOTSUPP) {
801 		relpbuf(bp, freecnt);
802 		VM_OBJECT_WLOCK(object);
803 		for (i = 0; i < count; i++) {
804 			VM_CNT_INC(v_vnodein);
805 			VM_CNT_INC(v_vnodepgsin);
806 			error = vnode_pager_input_old(object, m[i]);
807 			if (error)
808 				break;
809 		}
810 		VM_OBJECT_WUNLOCK(object);
811 		return (error);
812 	} else if (error != 0) {
813 		relpbuf(bp, freecnt);
814 		return (VM_PAGER_ERROR);
815 	}
816 
817 	/*
818 	 * If the file system supports BMAP, but blocksize is smaller
819 	 * than a page size, then use special small filesystem code.
820 	 */
821 	if (pagesperblock == 0) {
822 		relpbuf(bp, freecnt);
823 		for (i = 0; i < count; i++) {
824 			VM_CNT_INC(v_vnodein);
825 			VM_CNT_INC(v_vnodepgsin);
826 			error = vnode_pager_input_smlfs(object, m[i]);
827 			if (error)
828 				break;
829 		}
830 		return (error);
831 	}
832 
833 	/*
834 	 * A sparse file can be encountered only for a single page request,
835 	 * which may not be preceded by call to vm_pager_haspage().
836 	 */
837 	if (bp->b_blkno == -1) {
838 		KASSERT(count == 1,
839 		    ("%s: array[%d] request to a sparse file %p", __func__,
840 		    count, vp));
841 		relpbuf(bp, freecnt);
842 		pmap_zero_page(m[0]);
843 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
844 		    __func__, m[0]));
845 		VM_OBJECT_WLOCK(object);
846 		m[0]->valid = VM_PAGE_BITS_ALL;
847 		VM_OBJECT_WUNLOCK(object);
848 		return (VM_PAGER_OK);
849 	}
850 
851 #ifdef INVARIANTS
852 	blkno0 = bp->b_blkno;
853 #endif
854 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
855 
856 	/* Recalculate blocks available after/before to pages. */
857 	poff = (foff % bsize) / PAGE_SIZE;
858 	before *= pagesperblock;
859 	before += poff;
860 	after *= pagesperblock;
861 	after += pagesperblock - (poff + 1);
862 	if (m[0]->pindex + after >= object->size)
863 		after = object->size - 1 - m[0]->pindex;
864 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
865 	    __func__, count, after + 1));
866 	after -= count - 1;
867 
868 	/* Trim requested rbehind/rahead to possible values. */
869 	rbehind = a_rbehind ? *a_rbehind : 0;
870 	rahead = a_rahead ? *a_rahead : 0;
871 	rbehind = min(rbehind, before);
872 	rbehind = min(rbehind, m[0]->pindex);
873 	rahead = min(rahead, after);
874 	rahead = min(rahead, object->size - m[count - 1]->pindex);
875 	/*
876 	 * Check that total amount of pages fit into buf.  Trim rbehind and
877 	 * rahead evenly if not.
878 	 */
879 	if (rbehind + rahead + count > nitems(bp->b_pages)) {
880 		int trim, sum;
881 
882 		trim = rbehind + rahead + count - nitems(bp->b_pages) + 1;
883 		sum = rbehind + rahead;
884 		if (rbehind == before) {
885 			/* Roundup rbehind trim to block size. */
886 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
887 			if (rbehind < 0)
888 				rbehind = 0;
889 		} else
890 			rbehind -= trim * rbehind / sum;
891 		rahead -= trim * rahead / sum;
892 	}
893 	KASSERT(rbehind + rahead + count <= nitems(bp->b_pages),
894 	    ("%s: behind %d ahead %d count %d", __func__,
895 	    rbehind, rahead, count));
896 
897 	/*
898 	 * Fill in the bp->b_pages[] array with requested and optional
899 	 * read behind or read ahead pages.  Read behind pages are looked
900 	 * up in a backward direction, down to a first cached page.  Same
901 	 * for read ahead pages, but there is no need to shift the array
902 	 * in case of encountering a cached page.
903 	 */
904 	i = bp->b_npages = 0;
905 	if (rbehind) {
906 		vm_pindex_t startpindex, tpindex;
907 		vm_page_t p;
908 
909 		VM_OBJECT_WLOCK(object);
910 		startpindex = m[0]->pindex - rbehind;
911 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
912 		    p->pindex >= startpindex)
913 			startpindex = p->pindex + 1;
914 
915 		/* tpindex is unsigned; beware of numeric underflow. */
916 		for (tpindex = m[0]->pindex - 1;
917 		    tpindex >= startpindex && tpindex < m[0]->pindex;
918 		    tpindex--, i++) {
919 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
920 			if (p == NULL) {
921 				/* Shift the array. */
922 				for (int j = 0; j < i; j++)
923 					bp->b_pages[j] = bp->b_pages[j +
924 					    tpindex + 1 - startpindex];
925 				break;
926 			}
927 			bp->b_pages[tpindex - startpindex] = p;
928 		}
929 
930 		bp->b_pgbefore = i;
931 		bp->b_npages += i;
932 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
933 	} else
934 		bp->b_pgbefore = 0;
935 
936 	/* Requested pages. */
937 	for (int j = 0; j < count; j++, i++)
938 		bp->b_pages[i] = m[j];
939 	bp->b_npages += count;
940 
941 	if (rahead) {
942 		vm_pindex_t endpindex, tpindex;
943 		vm_page_t p;
944 
945 		if (!VM_OBJECT_WOWNED(object))
946 			VM_OBJECT_WLOCK(object);
947 		endpindex = m[count - 1]->pindex + rahead + 1;
948 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
949 		    p->pindex < endpindex)
950 			endpindex = p->pindex;
951 		if (endpindex > object->size)
952 			endpindex = object->size;
953 
954 		for (tpindex = m[count - 1]->pindex + 1;
955 		    tpindex < endpindex; i++, tpindex++) {
956 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
957 			if (p == NULL)
958 				break;
959 			bp->b_pages[i] = p;
960 		}
961 
962 		bp->b_pgafter = i - bp->b_npages;
963 		bp->b_npages = i;
964 	} else
965 		bp->b_pgafter = 0;
966 
967 	if (VM_OBJECT_WOWNED(object))
968 		VM_OBJECT_WUNLOCK(object);
969 
970 	/* Report back actual behind/ahead read. */
971 	if (a_rbehind)
972 		*a_rbehind = bp->b_pgbefore;
973 	if (a_rahead)
974 		*a_rahead = bp->b_pgafter;
975 
976 #ifdef INVARIANTS
977 	KASSERT(bp->b_npages <= nitems(bp->b_pages),
978 	    ("%s: buf %p overflowed", __func__, bp));
979 	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
980 		if (bp->b_pages[j] == bogus_page)
981 			continue;
982 		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
983 		    j - prev, ("%s: pages array not consecutive, bp %p",
984 		     __func__, bp));
985 		prev = j;
986 	}
987 #endif
988 
989 	/*
990 	 * Recalculate first offset and bytecount with regards to read behind.
991 	 * Truncate bytecount to vnode real size and round up physical size
992 	 * for real devices.
993 	 */
994 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
995 	bytecount = bp->b_npages << PAGE_SHIFT;
996 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
997 		bytecount = object->un_pager.vnp.vnp_size - foff;
998 	secmask = bo->bo_bsize - 1;
999 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1000 	    ("%s: sector size %d too large", __func__, secmask + 1));
1001 	bytecount = (bytecount + secmask) & ~secmask;
1002 
1003 	/*
1004 	 * And map the pages to be read into the kva, if the filesystem
1005 	 * requires mapped buffers.
1006 	 */
1007 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1008 	    unmapped_buf_allowed) {
1009 		bp->b_data = unmapped_buf;
1010 		bp->b_offset = 0;
1011 	} else {
1012 		bp->b_data = bp->b_kvabase;
1013 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1014 	}
1015 
1016 	/* Build a minimal buffer header. */
1017 	bp->b_iocmd = BIO_READ;
1018 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1019 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1020 	bp->b_rcred = crhold(curthread->td_ucred);
1021 	bp->b_wcred = crhold(curthread->td_ucred);
1022 	pbgetbo(bo, bp);
1023 	bp->b_vp = vp;
1024 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1025 	bp->b_iooffset = dbtob(bp->b_blkno);
1026 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1027 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1028 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1029 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1030 	    "blkno0 %ju b_blkno %ju", bsize,
1031 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1032 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1033 
1034 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1035 	VM_CNT_INC(v_vnodein);
1036 	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1037 
1038 	if (iodone != NULL) { /* async */
1039 		bp->b_pgiodone = iodone;
1040 		bp->b_caller1 = arg;
1041 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1042 		bp->b_flags |= B_ASYNC;
1043 		BUF_KERNPROC(bp);
1044 		bstrategy(bp);
1045 		return (VM_PAGER_OK);
1046 	} else {
1047 		bp->b_iodone = bdone;
1048 		bstrategy(bp);
1049 		bwait(bp, PVM, "vnread");
1050 		error = vnode_pager_generic_getpages_done(bp);
1051 		for (i = 0; i < bp->b_npages; i++)
1052 			bp->b_pages[i] = NULL;
1053 		bp->b_vp = NULL;
1054 		pbrelbo(bp);
1055 		relpbuf(bp, &vnode_pbuf_freecnt);
1056 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1057 	}
1058 }
1059 
1060 static void
1061 vnode_pager_generic_getpages_done_async(struct buf *bp)
1062 {
1063 	int error;
1064 
1065 	error = vnode_pager_generic_getpages_done(bp);
1066 	/* Run the iodone upon the requested range. */
1067 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1068 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1069 	for (int i = 0; i < bp->b_npages; i++)
1070 		bp->b_pages[i] = NULL;
1071 	bp->b_vp = NULL;
1072 	pbrelbo(bp);
1073 	relpbuf(bp, &vnode_async_pbuf_freecnt);
1074 }
1075 
1076 static int
1077 vnode_pager_generic_getpages_done(struct buf *bp)
1078 {
1079 	vm_object_t object;
1080 	off_t tfoff, nextoff;
1081 	int i, error;
1082 
1083 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1084 	object = bp->b_vp->v_object;
1085 
1086 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1087 		if (!buf_mapped(bp)) {
1088 			bp->b_data = bp->b_kvabase;
1089 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1090 			    bp->b_npages);
1091 		}
1092 		bzero(bp->b_data + bp->b_bcount,
1093 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1094 	}
1095 	if (buf_mapped(bp)) {
1096 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1097 		bp->b_data = unmapped_buf;
1098 	}
1099 
1100 	VM_OBJECT_WLOCK(object);
1101 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1102 	    i < bp->b_npages; i++, tfoff = nextoff) {
1103 		vm_page_t mt;
1104 
1105 		nextoff = tfoff + PAGE_SIZE;
1106 		mt = bp->b_pages[i];
1107 
1108 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1109 			/*
1110 			 * Read filled up entire page.
1111 			 */
1112 			mt->valid = VM_PAGE_BITS_ALL;
1113 			KASSERT(mt->dirty == 0,
1114 			    ("%s: page %p is dirty", __func__, mt));
1115 			KASSERT(!pmap_page_is_mapped(mt),
1116 			    ("%s: page %p is mapped", __func__, mt));
1117 		} else {
1118 			/*
1119 			 * Read did not fill up entire page.
1120 			 *
1121 			 * Currently we do not set the entire page valid,
1122 			 * we just try to clear the piece that we couldn't
1123 			 * read.
1124 			 */
1125 			vm_page_set_valid_range(mt, 0,
1126 			    object->un_pager.vnp.vnp_size - tfoff);
1127 			KASSERT((mt->dirty & vm_page_bits(0,
1128 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1129 			    ("%s: page %p is dirty", __func__, mt));
1130 		}
1131 
1132 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1133 			vm_page_readahead_finish(mt);
1134 	}
1135 	VM_OBJECT_WUNLOCK(object);
1136 	if (error != 0)
1137 		printf("%s: I/O read error %d\n", __func__, error);
1138 
1139 	return (error);
1140 }
1141 
1142 /*
1143  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1144  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1145  * vnode_pager_generic_putpages() to implement the previous behaviour.
1146  *
1147  * All other FS's should use the bypass to get to the local media
1148  * backing vp's VOP_PUTPAGES.
1149  */
1150 static void
1151 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1152     int flags, int *rtvals)
1153 {
1154 	int rtval;
1155 	struct vnode *vp;
1156 	int bytes = count * PAGE_SIZE;
1157 
1158 	/*
1159 	 * Force synchronous operation if we are extremely low on memory
1160 	 * to prevent a low-memory deadlock.  VOP operations often need to
1161 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1162 	 * operation ).  The swapper handles the case by limiting the amount
1163 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1164 	 * for the vnode pager without a lot of work.
1165 	 *
1166 	 * Also, the backing vnode's iodone routine may not wake the pageout
1167 	 * daemon up.  This should be probably be addressed XXX.
1168 	 */
1169 
1170 	if (vm_cnt.v_free_count < vm_cnt.v_pageout_free_min)
1171 		flags |= VM_PAGER_PUT_SYNC;
1172 
1173 	/*
1174 	 * Call device-specific putpages function
1175 	 */
1176 	vp = object->handle;
1177 	VM_OBJECT_WUNLOCK(object);
1178 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1179 	KASSERT(rtval != EOPNOTSUPP,
1180 	    ("vnode_pager: stale FS putpages\n"));
1181 	VM_OBJECT_WLOCK(object);
1182 }
1183 
1184 static int
1185 vn_off2bidx(vm_ooffset_t offset)
1186 {
1187 
1188 	return ((offset & PAGE_MASK) / DEV_BSIZE);
1189 }
1190 
1191 static bool
1192 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1193 {
1194 
1195 	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1196 	    offset < IDX_TO_OFF(m->pindex + 1),
1197 	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1198 	    (uintmax_t)offset));
1199 	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1200 }
1201 
1202 /*
1203  * This is now called from local media FS's to operate against their
1204  * own vnodes if they fail to implement VOP_PUTPAGES.
1205  *
1206  * This is typically called indirectly via the pageout daemon and
1207  * clustering has already typically occurred, so in general we ask the
1208  * underlying filesystem to write the data out asynchronously rather
1209  * then delayed.
1210  */
1211 int
1212 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1213     int flags, int *rtvals)
1214 {
1215 	vm_object_t object;
1216 	vm_page_t m;
1217 	vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1218 	struct uio auio;
1219 	struct iovec aiov;
1220 	off_t prev_resid, wrsz;
1221 	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1222 	bool in_hole;
1223 	static struct timeval lastfail;
1224 	static int curfail;
1225 
1226 	object = vp->v_object;
1227 	count = bytecount / PAGE_SIZE;
1228 
1229 	for (i = 0; i < count; i++)
1230 		rtvals[i] = VM_PAGER_ERROR;
1231 
1232 	if ((int64_t)ma[0]->pindex < 0) {
1233 		printf("vnode_pager_generic_putpages: "
1234 		    "attempt to write meta-data 0x%jx(%lx)\n",
1235 		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1236 		rtvals[0] = VM_PAGER_BAD;
1237 		return (VM_PAGER_BAD);
1238 	}
1239 
1240 	maxsize = count * PAGE_SIZE;
1241 	ncount = count;
1242 
1243 	poffset = IDX_TO_OFF(ma[0]->pindex);
1244 
1245 	/*
1246 	 * If the page-aligned write is larger then the actual file we
1247 	 * have to invalidate pages occurring beyond the file EOF.  However,
1248 	 * there is an edge case where a file may not be page-aligned where
1249 	 * the last page is partially invalid.  In this case the filesystem
1250 	 * may not properly clear the dirty bits for the entire page (which
1251 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1252 	 * With the page locked we are free to fix-up the dirty bits here.
1253 	 *
1254 	 * We do not under any circumstances truncate the valid bits, as
1255 	 * this will screw up bogus page replacement.
1256 	 */
1257 	VM_OBJECT_RLOCK(object);
1258 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1259 		if (!VM_OBJECT_TRYUPGRADE(object)) {
1260 			VM_OBJECT_RUNLOCK(object);
1261 			VM_OBJECT_WLOCK(object);
1262 			if (maxsize + poffset <= object->un_pager.vnp.vnp_size)
1263 				goto downgrade;
1264 		}
1265 		if (object->un_pager.vnp.vnp_size > poffset) {
1266 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1267 			ncount = btoc(maxsize);
1268 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1269 				/*
1270 				 * If the object is locked and the following
1271 				 * conditions hold, then the page's dirty
1272 				 * field cannot be concurrently changed by a
1273 				 * pmap operation.
1274 				 */
1275 				m = ma[ncount - 1];
1276 				vm_page_assert_sbusied(m);
1277 				KASSERT(!pmap_page_is_write_mapped(m),
1278 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1279 				MPASS(m->dirty != 0);
1280 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1281 				    pgoff);
1282 			}
1283 		} else {
1284 			maxsize = 0;
1285 			ncount = 0;
1286 		}
1287 		for (i = ncount; i < count; i++)
1288 			rtvals[i] = VM_PAGER_BAD;
1289 downgrade:
1290 		VM_OBJECT_LOCK_DOWNGRADE(object);
1291 	}
1292 
1293 	auio.uio_iov = &aiov;
1294 	auio.uio_segflg = UIO_NOCOPY;
1295 	auio.uio_rw = UIO_WRITE;
1296 	auio.uio_td = NULL;
1297 	maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1298 
1299 	for (prev_offset = poffset; prev_offset < maxblksz;) {
1300 		/* Skip clean blocks. */
1301 		for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1302 			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1303 			for (i = vn_off2bidx(prev_offset);
1304 			    i < sizeof(vm_page_bits_t) * NBBY &&
1305 			    prev_offset < maxblksz; i++) {
1306 				if (vn_dirty_blk(m, prev_offset)) {
1307 					in_hole = false;
1308 					break;
1309 				}
1310 				prev_offset += DEV_BSIZE;
1311 			}
1312 		}
1313 		if (in_hole)
1314 			goto write_done;
1315 
1316 		/* Find longest run of dirty blocks. */
1317 		for (next_offset = prev_offset; next_offset < maxblksz;) {
1318 			m = ma[OFF_TO_IDX(next_offset - poffset)];
1319 			for (i = vn_off2bidx(next_offset);
1320 			    i < sizeof(vm_page_bits_t) * NBBY &&
1321 			    next_offset < maxblksz; i++) {
1322 				if (!vn_dirty_blk(m, next_offset))
1323 					goto start_write;
1324 				next_offset += DEV_BSIZE;
1325 			}
1326 		}
1327 start_write:
1328 		if (next_offset > poffset + maxsize)
1329 			next_offset = poffset + maxsize;
1330 
1331 		/*
1332 		 * Getting here requires finding a dirty block in the
1333 		 * 'skip clean blocks' loop.
1334 		 */
1335 		MPASS(prev_offset < next_offset);
1336 
1337 		VM_OBJECT_RUNLOCK(object);
1338 		aiov.iov_base = NULL;
1339 		auio.uio_iovcnt = 1;
1340 		auio.uio_offset = prev_offset;
1341 		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1342 		    prev_offset;
1343 		error = VOP_WRITE(vp, &auio,
1344 		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1345 
1346 		wrsz = prev_resid - auio.uio_resid;
1347 		if (wrsz == 0) {
1348 			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1349 				vn_printf(vp, "vnode_pager_putpages: "
1350 				    "zero-length write at %ju resid %zd\n",
1351 				    auio.uio_offset, auio.uio_resid);
1352 			}
1353 			VM_OBJECT_RLOCK(object);
1354 			break;
1355 		}
1356 
1357 		/* Adjust the starting offset for next iteration. */
1358 		prev_offset += wrsz;
1359 		MPASS(auio.uio_offset == prev_offset);
1360 
1361 		ppscheck = 0;
1362 		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1363 		    &curfail, 1)) != 0)
1364 			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1365 			    error);
1366 		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1367 		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1368 			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1369 			    "at %ju\n", auio.uio_resid,
1370 			    (uintmax_t)ma[0]->pindex);
1371 		VM_OBJECT_RLOCK(object);
1372 		if (error != 0 || auio.uio_resid != 0)
1373 			break;
1374 	}
1375 write_done:
1376 	/* Mark completely processed pages. */
1377 	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1378 		rtvals[i] = VM_PAGER_OK;
1379 	/* Mark partial EOF page. */
1380 	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1381 		rtvals[i++] = VM_PAGER_OK;
1382 	/* Unwritten pages in range, free bonus if the page is clean. */
1383 	for (; i < ncount; i++)
1384 		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1385 	VM_OBJECT_RUNLOCK(object);
1386 	VM_CNT_ADD(v_vnodepgsout, i);
1387 	VM_CNT_INC(v_vnodeout);
1388 	return (rtvals[0]);
1389 }
1390 
1391 int
1392 vnode_pager_putpages_ioflags(int pager_flags)
1393 {
1394 	int ioflags;
1395 
1396 	/*
1397 	 * Pageouts are already clustered, use IO_ASYNC to force a
1398 	 * bawrite() rather then a bdwrite() to prevent paging I/O
1399 	 * from saturating the buffer cache.  Dummy-up the sequential
1400 	 * heuristic to cause large ranges to cluster.  If neither
1401 	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1402 	 * cluster.
1403 	 */
1404 	ioflags = IO_VMIO;
1405 	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1406 		ioflags |= IO_SYNC;
1407 	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1408 		ioflags |= IO_ASYNC;
1409 	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1410 	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1411 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1412 	return (ioflags);
1413 }
1414 
1415 /*
1416  * vnode_pager_undirty_pages().
1417  *
1418  * A helper to mark pages as clean after pageout that was possibly
1419  * done with a short write.  The lpos argument specifies the page run
1420  * length in bytes, and the written argument specifies how many bytes
1421  * were actually written.  eof is the offset past the last valid byte
1422  * in the vnode using the absolute file position of the first byte in
1423  * the run as the base from which it is computed.
1424  */
1425 void
1426 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1427     int lpos)
1428 {
1429 	vm_object_t obj;
1430 	int i, pos, pos_devb;
1431 
1432 	if (written == 0 && eof >= lpos)
1433 		return;
1434 	obj = ma[0]->object;
1435 	VM_OBJECT_WLOCK(obj);
1436 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1437 		if (pos < trunc_page(written)) {
1438 			rtvals[i] = VM_PAGER_OK;
1439 			vm_page_undirty(ma[i]);
1440 		} else {
1441 			/* Partially written page. */
1442 			rtvals[i] = VM_PAGER_AGAIN;
1443 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1444 		}
1445 	}
1446 	if (eof >= lpos) /* avoid truncation */
1447 		goto done;
1448 	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1449 		if (pos != trunc_page(pos)) {
1450 			/*
1451 			 * The page contains the last valid byte in
1452 			 * the vnode, mark the rest of the page as
1453 			 * clean, potentially making the whole page
1454 			 * clean.
1455 			 */
1456 			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1457 			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1458 			    pos_devb);
1459 
1460 			/*
1461 			 * If the page was cleaned, report the pageout
1462 			 * on it as successful.  msync() no longer
1463 			 * needs to write out the page, endlessly
1464 			 * creating write requests and dirty buffers.
1465 			 */
1466 			if (ma[i]->dirty == 0)
1467 				rtvals[i] = VM_PAGER_OK;
1468 
1469 			pos = round_page(pos);
1470 		} else {
1471 			/* vm_pageout_flush() clears dirty */
1472 			rtvals[i] = VM_PAGER_BAD;
1473 			pos += PAGE_SIZE;
1474 		}
1475 	}
1476 done:
1477 	VM_OBJECT_WUNLOCK(obj);
1478 }
1479 
1480 void
1481 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1482     vm_offset_t end)
1483 {
1484 	struct vnode *vp;
1485 	vm_ooffset_t old_wm;
1486 
1487 	VM_OBJECT_WLOCK(object);
1488 	if (object->type != OBJT_VNODE) {
1489 		VM_OBJECT_WUNLOCK(object);
1490 		return;
1491 	}
1492 	old_wm = object->un_pager.vnp.writemappings;
1493 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1494 	vp = object->handle;
1495 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1496 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1497 		VOP_ADD_WRITECOUNT(vp, 1);
1498 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1499 		    __func__, vp, vp->v_writecount);
1500 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1501 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1502 		VOP_ADD_WRITECOUNT(vp, -1);
1503 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1504 		    __func__, vp, vp->v_writecount);
1505 	}
1506 	VM_OBJECT_WUNLOCK(object);
1507 }
1508 
1509 void
1510 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1511     vm_offset_t end)
1512 {
1513 	struct vnode *vp;
1514 	struct mount *mp;
1515 	vm_offset_t inc;
1516 
1517 	VM_OBJECT_WLOCK(object);
1518 
1519 	/*
1520 	 * First, recheck the object type to account for the race when
1521 	 * the vnode is reclaimed.
1522 	 */
1523 	if (object->type != OBJT_VNODE) {
1524 		VM_OBJECT_WUNLOCK(object);
1525 		return;
1526 	}
1527 
1528 	/*
1529 	 * Optimize for the case when writemappings is not going to
1530 	 * zero.
1531 	 */
1532 	inc = end - start;
1533 	if (object->un_pager.vnp.writemappings != inc) {
1534 		object->un_pager.vnp.writemappings -= inc;
1535 		VM_OBJECT_WUNLOCK(object);
1536 		return;
1537 	}
1538 
1539 	vp = object->handle;
1540 	vhold(vp);
1541 	VM_OBJECT_WUNLOCK(object);
1542 	mp = NULL;
1543 	vn_start_write(vp, &mp, V_WAIT);
1544 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1545 
1546 	/*
1547 	 * Decrement the object's writemappings, by swapping the start
1548 	 * and end arguments for vnode_pager_update_writecount().  If
1549 	 * there was not a race with vnode reclaimation, then the
1550 	 * vnode's v_writecount is decremented.
1551 	 */
1552 	vnode_pager_update_writecount(object, end, start);
1553 	VOP_UNLOCK(vp, 0);
1554 	vdrop(vp);
1555 	if (mp != NULL)
1556 		vn_finished_write(mp);
1557 }
1558