1 /*- 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/limits.h> 65 #include <sys/conf.h> 66 #include <sys/sf_buf.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_object.h> 70 #include <vm/vm_page.h> 71 #include <vm/vm_pager.h> 72 #include <vm/vm_map.h> 73 #include <vm/vnode_pager.h> 74 #include <vm/vm_extern.h> 75 76 static void vnode_pager_init(void); 77 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 78 int *run); 79 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 80 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 81 static void vnode_pager_dealloc(vm_object_t); 82 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 83 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 84 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 85 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t); 86 87 struct pagerops vnodepagerops = { 88 .pgo_init = vnode_pager_init, 89 .pgo_alloc = vnode_pager_alloc, 90 .pgo_dealloc = vnode_pager_dealloc, 91 .pgo_getpages = vnode_pager_getpages, 92 .pgo_putpages = vnode_pager_putpages, 93 .pgo_haspage = vnode_pager_haspage, 94 }; 95 96 int vnode_pbuf_freecnt; 97 98 static void 99 vnode_pager_init(void) 100 { 101 102 vnode_pbuf_freecnt = nswbuf / 2 + 1; 103 } 104 105 /* Create the VM system backing object for this vnode */ 106 int 107 vnode_create_vobject(struct vnode *vp, size_t isize, struct thread *td) 108 { 109 vm_object_t object; 110 vm_ooffset_t size = isize; 111 struct vattr va; 112 113 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 114 return (0); 115 116 while ((object = vp->v_object) != NULL) { 117 VM_OBJECT_LOCK(object); 118 if (!(object->flags & OBJ_DEAD)) { 119 VM_OBJECT_UNLOCK(object); 120 return (0); 121 } 122 VOP_UNLOCK(vp, 0, td); 123 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 124 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0); 125 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 126 } 127 128 if (size == 0) { 129 if (vn_isdisk(vp, NULL)) { 130 size = IDX_TO_OFF(INT_MAX); 131 } else { 132 if (VOP_GETATTR(vp, &va, td->td_ucred, td) != 0) 133 return (0); 134 size = va.va_size; 135 } 136 } 137 138 object = vnode_pager_alloc(vp, size, 0, 0); 139 /* 140 * Dereference the reference we just created. This assumes 141 * that the object is associated with the vp. 142 */ 143 VM_OBJECT_LOCK(object); 144 object->ref_count--; 145 VM_OBJECT_UNLOCK(object); 146 vrele(vp); 147 148 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 149 150 return (0); 151 } 152 153 void 154 vnode_destroy_vobject(struct vnode *vp) 155 { 156 struct vm_object *obj; 157 158 obj = vp->v_object; 159 if (obj == NULL) 160 return; 161 ASSERT_VOP_LOCKED(vp, "vnode_destroy_vobject"); 162 VM_OBJECT_LOCK(obj); 163 if (obj->ref_count == 0) { 164 /* 165 * vclean() may be called twice. The first time 166 * removes the primary reference to the object, 167 * the second time goes one further and is a 168 * special-case to terminate the object. 169 * 170 * don't double-terminate the object 171 */ 172 if ((obj->flags & OBJ_DEAD) == 0) 173 vm_object_terminate(obj); 174 else 175 VM_OBJECT_UNLOCK(obj); 176 } else { 177 /* 178 * Woe to the process that tries to page now :-). 179 */ 180 vm_pager_deallocate(obj); 181 VM_OBJECT_UNLOCK(obj); 182 } 183 vp->v_object = NULL; 184 } 185 186 187 /* 188 * Allocate (or lookup) pager for a vnode. 189 * Handle is a vnode pointer. 190 * 191 * MPSAFE 192 */ 193 vm_object_t 194 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 195 vm_ooffset_t offset) 196 { 197 vm_object_t object; 198 struct vnode *vp; 199 200 /* 201 * Pageout to vnode, no can do yet. 202 */ 203 if (handle == NULL) 204 return (NULL); 205 206 vp = (struct vnode *) handle; 207 208 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 209 210 /* 211 * If the object is being terminated, wait for it to 212 * go away. 213 */ 214 while ((object = vp->v_object) != NULL) { 215 VM_OBJECT_LOCK(object); 216 if ((object->flags & OBJ_DEAD) == 0) 217 break; 218 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 219 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 220 } 221 222 if (vp->v_usecount == 0) 223 panic("vnode_pager_alloc: no vnode reference"); 224 225 if (object == NULL) { 226 /* 227 * And an object of the appropriate size 228 */ 229 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 230 231 object->un_pager.vnp.vnp_size = size; 232 233 object->handle = handle; 234 vp->v_object = object; 235 } else { 236 object->ref_count++; 237 VM_OBJECT_UNLOCK(object); 238 } 239 vref(vp); 240 return (object); 241 } 242 243 /* 244 * The object must be locked. 245 */ 246 static void 247 vnode_pager_dealloc(object) 248 vm_object_t object; 249 { 250 struct vnode *vp = object->handle; 251 252 if (vp == NULL) 253 panic("vnode_pager_dealloc: pager already dealloced"); 254 255 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 256 vm_object_pip_wait(object, "vnpdea"); 257 258 object->handle = NULL; 259 object->type = OBJT_DEAD; 260 if (object->flags & OBJ_DISCONNECTWNT) { 261 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 262 wakeup(object); 263 } 264 ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc"); 265 vp->v_object = NULL; 266 vp->v_vflag &= ~VV_TEXT; 267 } 268 269 static boolean_t 270 vnode_pager_haspage(object, pindex, before, after) 271 vm_object_t object; 272 vm_pindex_t pindex; 273 int *before; 274 int *after; 275 { 276 struct vnode *vp = object->handle; 277 daddr_t bn; 278 int err; 279 daddr_t reqblock; 280 int poff; 281 int bsize; 282 int pagesperblock, blocksperpage; 283 int vfslocked; 284 285 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 286 /* 287 * If no vp or vp is doomed or marked transparent to VM, we do not 288 * have the page. 289 */ 290 if (vp == NULL) 291 return FALSE; 292 293 VI_LOCK(vp); 294 if (vp->v_iflag & VI_DOOMED) { 295 VI_UNLOCK(vp); 296 return FALSE; 297 } 298 VI_UNLOCK(vp); 299 /* 300 * If filesystem no longer mounted or offset beyond end of file we do 301 * not have the page. 302 */ 303 if ((vp->v_mount == NULL) || 304 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)) 305 return FALSE; 306 307 bsize = vp->v_mount->mnt_stat.f_iosize; 308 pagesperblock = bsize / PAGE_SIZE; 309 blocksperpage = 0; 310 if (pagesperblock > 0) { 311 reqblock = pindex / pagesperblock; 312 } else { 313 blocksperpage = (PAGE_SIZE / bsize); 314 reqblock = pindex * blocksperpage; 315 } 316 VM_OBJECT_UNLOCK(object); 317 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 318 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 319 VFS_UNLOCK_GIANT(vfslocked); 320 VM_OBJECT_LOCK(object); 321 if (err) 322 return TRUE; 323 if (bn == -1) 324 return FALSE; 325 if (pagesperblock > 0) { 326 poff = pindex - (reqblock * pagesperblock); 327 if (before) { 328 *before *= pagesperblock; 329 *before += poff; 330 } 331 if (after) { 332 int numafter; 333 *after *= pagesperblock; 334 numafter = pagesperblock - (poff + 1); 335 if (IDX_TO_OFF(pindex + numafter) > 336 object->un_pager.vnp.vnp_size) { 337 numafter = 338 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 339 pindex; 340 } 341 *after += numafter; 342 } 343 } else { 344 if (before) { 345 *before /= blocksperpage; 346 } 347 348 if (after) { 349 *after /= blocksperpage; 350 } 351 } 352 return TRUE; 353 } 354 355 /* 356 * Lets the VM system know about a change in size for a file. 357 * We adjust our own internal size and flush any cached pages in 358 * the associated object that are affected by the size change. 359 * 360 * Note: this routine may be invoked as a result of a pager put 361 * operation (possibly at object termination time), so we must be careful. 362 */ 363 void 364 vnode_pager_setsize(vp, nsize) 365 struct vnode *vp; 366 vm_ooffset_t nsize; 367 { 368 vm_object_t object; 369 vm_page_t m; 370 vm_pindex_t nobjsize; 371 372 if ((object = vp->v_object) == NULL) 373 return; 374 VM_OBJECT_LOCK(object); 375 if (nsize == object->un_pager.vnp.vnp_size) { 376 /* 377 * Hasn't changed size 378 */ 379 VM_OBJECT_UNLOCK(object); 380 return; 381 } 382 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 383 if (nsize < object->un_pager.vnp.vnp_size) { 384 /* 385 * File has shrunk. Toss any cached pages beyond the new EOF. 386 */ 387 if (nobjsize < object->size) 388 vm_object_page_remove(object, nobjsize, object->size, 389 FALSE); 390 /* 391 * this gets rid of garbage at the end of a page that is now 392 * only partially backed by the vnode. 393 * 394 * XXX for some reason (I don't know yet), if we take a 395 * completely invalid page and mark it partially valid 396 * it can screw up NFS reads, so we don't allow the case. 397 */ 398 if ((nsize & PAGE_MASK) && 399 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 400 m->valid != 0) { 401 int base = (int)nsize & PAGE_MASK; 402 int size = PAGE_SIZE - base; 403 404 /* 405 * Clear out partial-page garbage in case 406 * the page has been mapped. 407 */ 408 pmap_zero_page_area(m, base, size); 409 410 /* 411 * XXX work around SMP data integrity race 412 * by unmapping the page from user processes. 413 * The garbage we just cleared may be mapped 414 * to a user process running on another cpu 415 * and this code is not running through normal 416 * I/O channels which handle SMP issues for 417 * us, so unmap page to synchronize all cpus. 418 * 419 * XXX should vm_pager_unmap_page() have 420 * dealt with this? 421 */ 422 vm_page_lock_queues(); 423 pmap_remove_all(m); 424 425 /* 426 * Clear out partial-page dirty bits. This 427 * has the side effect of setting the valid 428 * bits, but that is ok. There are a bunch 429 * of places in the VM system where we expected 430 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 431 * case is one of them. If the page is still 432 * partially dirty, make it fully dirty. 433 * 434 * note that we do not clear out the valid 435 * bits. This would prevent bogus_page 436 * replacement from working properly. 437 */ 438 vm_page_set_validclean(m, base, size); 439 if (m->dirty != 0) 440 m->dirty = VM_PAGE_BITS_ALL; 441 vm_page_unlock_queues(); 442 } 443 } 444 object->un_pager.vnp.vnp_size = nsize; 445 object->size = nobjsize; 446 VM_OBJECT_UNLOCK(object); 447 } 448 449 /* 450 * calculate the linear (byte) disk address of specified virtual 451 * file address 452 */ 453 static vm_offset_t 454 vnode_pager_addr(vp, address, run) 455 struct vnode *vp; 456 vm_ooffset_t address; 457 int *run; 458 { 459 int rtaddress; 460 int bsize; 461 daddr_t block; 462 int err; 463 daddr_t vblock; 464 int voffset; 465 466 if (address < 0) 467 return -1; 468 469 if (vp->v_mount == NULL) 470 return -1; 471 472 bsize = vp->v_mount->mnt_stat.f_iosize; 473 vblock = address / bsize; 474 voffset = address % bsize; 475 476 err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL); 477 478 if (err || (block == -1)) 479 rtaddress = -1; 480 else { 481 rtaddress = block + voffset / DEV_BSIZE; 482 if (run) { 483 *run += 1; 484 *run *= bsize/PAGE_SIZE; 485 *run -= voffset/PAGE_SIZE; 486 } 487 } 488 489 return rtaddress; 490 } 491 492 /* 493 * small block filesystem vnode pager input 494 */ 495 static int 496 vnode_pager_input_smlfs(object, m) 497 vm_object_t object; 498 vm_page_t m; 499 { 500 int i; 501 struct vnode *vp; 502 struct bufobj *bo; 503 struct buf *bp; 504 struct sf_buf *sf; 505 int fileaddr; 506 vm_offset_t bsize; 507 int error = 0; 508 509 vp = object->handle; 510 if (vp->v_mount == NULL) 511 return VM_PAGER_BAD; 512 513 bsize = vp->v_mount->mnt_stat.f_iosize; 514 515 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 516 517 sf = sf_buf_alloc(m, 0); 518 519 for (i = 0; i < PAGE_SIZE / bsize; i++) { 520 vm_ooffset_t address; 521 522 if (vm_page_bits(i * bsize, bsize) & m->valid) 523 continue; 524 525 address = IDX_TO_OFF(m->pindex) + i * bsize; 526 if (address >= object->un_pager.vnp.vnp_size) { 527 fileaddr = -1; 528 } else { 529 fileaddr = vnode_pager_addr(vp, address, NULL); 530 } 531 if (fileaddr != -1) { 532 bp = getpbuf(&vnode_pbuf_freecnt); 533 534 /* build a minimal buffer header */ 535 bp->b_iocmd = BIO_READ; 536 bp->b_iodone = bdone; 537 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 538 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 539 bp->b_rcred = crhold(curthread->td_ucred); 540 bp->b_wcred = crhold(curthread->td_ucred); 541 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 542 bp->b_blkno = fileaddr; 543 pbgetbo(bo, bp); 544 bp->b_bcount = bsize; 545 bp->b_bufsize = bsize; 546 bp->b_runningbufspace = bp->b_bufsize; 547 runningbufspace += bp->b_runningbufspace; 548 549 /* do the input */ 550 bp->b_iooffset = dbtob(bp->b_blkno); 551 bstrategy(bp); 552 553 /* we definitely need to be at splvm here */ 554 555 bwait(bp, PVM, "vnsrd"); 556 557 if ((bp->b_ioflags & BIO_ERROR) != 0) 558 error = EIO; 559 560 /* 561 * free the buffer header back to the swap buffer pool 562 */ 563 pbrelbo(bp); 564 relpbuf(bp, &vnode_pbuf_freecnt); 565 if (error) 566 break; 567 568 VM_OBJECT_LOCK(object); 569 vm_page_lock_queues(); 570 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 571 vm_page_unlock_queues(); 572 VM_OBJECT_UNLOCK(object); 573 } else { 574 VM_OBJECT_LOCK(object); 575 vm_page_lock_queues(); 576 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 577 vm_page_unlock_queues(); 578 VM_OBJECT_UNLOCK(object); 579 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 580 } 581 } 582 sf_buf_free(sf); 583 vm_page_lock_queues(); 584 pmap_clear_modify(m); 585 vm_page_unlock_queues(); 586 if (error) { 587 return VM_PAGER_ERROR; 588 } 589 return VM_PAGER_OK; 590 591 } 592 593 594 /* 595 * old style vnode pager input routine 596 */ 597 static int 598 vnode_pager_input_old(object, m) 599 vm_object_t object; 600 vm_page_t m; 601 { 602 struct uio auio; 603 struct iovec aiov; 604 int error; 605 int size; 606 struct sf_buf *sf; 607 struct vnode *vp; 608 609 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 610 error = 0; 611 612 /* 613 * Return failure if beyond current EOF 614 */ 615 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 616 return VM_PAGER_BAD; 617 } else { 618 size = PAGE_SIZE; 619 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 620 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 621 vp = object->handle; 622 VM_OBJECT_UNLOCK(object); 623 624 /* 625 * Allocate a kernel virtual address and initialize so that 626 * we can use VOP_READ/WRITE routines. 627 */ 628 sf = sf_buf_alloc(m, 0); 629 630 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 631 aiov.iov_len = size; 632 auio.uio_iov = &aiov; 633 auio.uio_iovcnt = 1; 634 auio.uio_offset = IDX_TO_OFF(m->pindex); 635 auio.uio_segflg = UIO_SYSSPACE; 636 auio.uio_rw = UIO_READ; 637 auio.uio_resid = size; 638 auio.uio_td = curthread; 639 640 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 641 if (!error) { 642 int count = size - auio.uio_resid; 643 644 if (count == 0) 645 error = EINVAL; 646 else if (count != PAGE_SIZE) 647 bzero((caddr_t)sf_buf_kva(sf) + count, 648 PAGE_SIZE - count); 649 } 650 sf_buf_free(sf); 651 652 VM_OBJECT_LOCK(object); 653 } 654 vm_page_lock_queues(); 655 pmap_clear_modify(m); 656 vm_page_undirty(m); 657 vm_page_unlock_queues(); 658 if (!error) 659 m->valid = VM_PAGE_BITS_ALL; 660 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 661 } 662 663 /* 664 * generic vnode pager input routine 665 */ 666 667 /* 668 * Local media VFS's that do not implement their own VOP_GETPAGES 669 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 670 * to implement the previous behaviour. 671 * 672 * All other FS's should use the bypass to get to the local media 673 * backing vp's VOP_GETPAGES. 674 */ 675 static int 676 vnode_pager_getpages(object, m, count, reqpage) 677 vm_object_t object; 678 vm_page_t *m; 679 int count; 680 int reqpage; 681 { 682 int rtval; 683 struct vnode *vp; 684 int bytes = count * PAGE_SIZE; 685 int vfslocked; 686 687 vp = object->handle; 688 VM_OBJECT_UNLOCK(object); 689 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 690 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 691 KASSERT(rtval != EOPNOTSUPP, 692 ("vnode_pager: FS getpages not implemented\n")); 693 VFS_UNLOCK_GIANT(vfslocked); 694 VM_OBJECT_LOCK(object); 695 return rtval; 696 } 697 698 /* 699 * This is now called from local media FS's to operate against their 700 * own vnodes if they fail to implement VOP_GETPAGES. 701 */ 702 int 703 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 704 struct vnode *vp; 705 vm_page_t *m; 706 int bytecount; 707 int reqpage; 708 { 709 vm_object_t object; 710 vm_offset_t kva; 711 off_t foff, tfoff, nextoff; 712 int i, j, size, bsize, first, firstaddr; 713 struct bufobj *bo; 714 int runpg; 715 int runend; 716 struct buf *bp; 717 int count; 718 int error = 0; 719 720 object = vp->v_object; 721 count = bytecount / PAGE_SIZE; 722 723 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 724 ("vnode_pager_generic_getpages does not support devices")); 725 if (vp->v_mount == NULL) 726 return VM_PAGER_BAD; 727 728 bsize = vp->v_mount->mnt_stat.f_iosize; 729 730 /* get the UNDERLYING device for the file with VOP_BMAP() */ 731 732 /* 733 * originally, we did not check for an error return value -- assuming 734 * an fs always has a bmap entry point -- that assumption is wrong!!! 735 */ 736 foff = IDX_TO_OFF(m[reqpage]->pindex); 737 738 /* 739 * if we can't bmap, use old VOP code 740 */ 741 if (VOP_BMAP(vp, 0, &bo, 0, NULL, NULL)) { 742 VM_OBJECT_LOCK(object); 743 vm_page_lock_queues(); 744 for (i = 0; i < count; i++) 745 if (i != reqpage) 746 vm_page_free(m[i]); 747 vm_page_unlock_queues(); 748 cnt.v_vnodein++; 749 cnt.v_vnodepgsin++; 750 error = vnode_pager_input_old(object, m[reqpage]); 751 VM_OBJECT_UNLOCK(object); 752 return (error); 753 754 /* 755 * if the blocksize is smaller than a page size, then use 756 * special small filesystem code. NFS sometimes has a small 757 * blocksize, but it can handle large reads itself. 758 */ 759 } else if ((PAGE_SIZE / bsize) > 1 && 760 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 761 VM_OBJECT_LOCK(object); 762 vm_page_lock_queues(); 763 for (i = 0; i < count; i++) 764 if (i != reqpage) 765 vm_page_free(m[i]); 766 vm_page_unlock_queues(); 767 VM_OBJECT_UNLOCK(object); 768 cnt.v_vnodein++; 769 cnt.v_vnodepgsin++; 770 return vnode_pager_input_smlfs(object, m[reqpage]); 771 } 772 773 /* 774 * If we have a completely valid page available to us, we can 775 * clean up and return. Otherwise we have to re-read the 776 * media. 777 */ 778 VM_OBJECT_LOCK(object); 779 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 780 vm_page_lock_queues(); 781 for (i = 0; i < count; i++) 782 if (i != reqpage) 783 vm_page_free(m[i]); 784 vm_page_unlock_queues(); 785 VM_OBJECT_UNLOCK(object); 786 return VM_PAGER_OK; 787 } 788 m[reqpage]->valid = 0; 789 VM_OBJECT_UNLOCK(object); 790 791 /* 792 * here on direct device I/O 793 */ 794 firstaddr = -1; 795 796 /* 797 * calculate the run that includes the required page 798 */ 799 for (first = 0, i = 0; i < count; i = runend) { 800 firstaddr = vnode_pager_addr(vp, 801 IDX_TO_OFF(m[i]->pindex), &runpg); 802 if (firstaddr == -1) { 803 VM_OBJECT_LOCK(object); 804 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 805 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 806 firstaddr, (uintmax_t)(foff >> 32), 807 (uintmax_t)foff, 808 (uintmax_t) 809 (object->un_pager.vnp.vnp_size >> 32), 810 (uintmax_t)object->un_pager.vnp.vnp_size); 811 } 812 vm_page_lock_queues(); 813 vm_page_free(m[i]); 814 vm_page_unlock_queues(); 815 VM_OBJECT_UNLOCK(object); 816 runend = i + 1; 817 first = runend; 818 continue; 819 } 820 runend = i + runpg; 821 if (runend <= reqpage) { 822 VM_OBJECT_LOCK(object); 823 vm_page_lock_queues(); 824 for (j = i; j < runend; j++) 825 vm_page_free(m[j]); 826 vm_page_unlock_queues(); 827 VM_OBJECT_UNLOCK(object); 828 } else { 829 if (runpg < (count - first)) { 830 VM_OBJECT_LOCK(object); 831 vm_page_lock_queues(); 832 for (i = first + runpg; i < count; i++) 833 vm_page_free(m[i]); 834 vm_page_unlock_queues(); 835 VM_OBJECT_UNLOCK(object); 836 count = first + runpg; 837 } 838 break; 839 } 840 first = runend; 841 } 842 843 /* 844 * the first and last page have been calculated now, move input pages 845 * to be zero based... 846 */ 847 if (first != 0) { 848 for (i = first; i < count; i++) { 849 m[i - first] = m[i]; 850 } 851 count -= first; 852 reqpage -= first; 853 } 854 855 /* 856 * calculate the file virtual address for the transfer 857 */ 858 foff = IDX_TO_OFF(m[0]->pindex); 859 860 /* 861 * calculate the size of the transfer 862 */ 863 size = count * PAGE_SIZE; 864 KASSERT(count > 0, ("zero count")); 865 if ((foff + size) > object->un_pager.vnp.vnp_size) 866 size = object->un_pager.vnp.vnp_size - foff; 867 KASSERT(size > 0, ("zero size")); 868 869 /* 870 * round up physical size for real devices. 871 */ 872 if (1) { 873 int secmask = bo->bo_bsize - 1; 874 KASSERT(secmask < PAGE_SIZE && secmask > 0, 875 ("vnode_pager_generic_getpages: sector size %d too large", 876 secmask + 1)); 877 size = (size + secmask) & ~secmask; 878 } 879 880 bp = getpbuf(&vnode_pbuf_freecnt); 881 kva = (vm_offset_t) bp->b_data; 882 883 /* 884 * and map the pages to be read into the kva 885 */ 886 pmap_qenter(kva, m, count); 887 888 /* build a minimal buffer header */ 889 bp->b_iocmd = BIO_READ; 890 bp->b_iodone = bdone; 891 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 892 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 893 bp->b_rcred = crhold(curthread->td_ucred); 894 bp->b_wcred = crhold(curthread->td_ucred); 895 bp->b_blkno = firstaddr; 896 pbgetbo(bo, bp); 897 bp->b_bcount = size; 898 bp->b_bufsize = size; 899 bp->b_runningbufspace = bp->b_bufsize; 900 runningbufspace += bp->b_runningbufspace; 901 902 cnt.v_vnodein++; 903 cnt.v_vnodepgsin += count; 904 905 /* do the input */ 906 bp->b_iooffset = dbtob(bp->b_blkno); 907 bstrategy(bp); 908 909 bwait(bp, PVM, "vnread"); 910 911 if ((bp->b_ioflags & BIO_ERROR) != 0) 912 error = EIO; 913 914 if (!error) { 915 if (size != count * PAGE_SIZE) 916 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 917 } 918 pmap_qremove(kva, count); 919 920 /* 921 * free the buffer header back to the swap buffer pool 922 */ 923 pbrelbo(bp); 924 relpbuf(bp, &vnode_pbuf_freecnt); 925 926 VM_OBJECT_LOCK(object); 927 vm_page_lock_queues(); 928 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 929 vm_page_t mt; 930 931 nextoff = tfoff + PAGE_SIZE; 932 mt = m[i]; 933 934 if (nextoff <= object->un_pager.vnp.vnp_size) { 935 /* 936 * Read filled up entire page. 937 */ 938 mt->valid = VM_PAGE_BITS_ALL; 939 vm_page_undirty(mt); /* should be an assert? XXX */ 940 pmap_clear_modify(mt); 941 } else { 942 /* 943 * Read did not fill up entire page. Since this 944 * is getpages, the page may be mapped, so we have 945 * to zero the invalid portions of the page even 946 * though we aren't setting them valid. 947 * 948 * Currently we do not set the entire page valid, 949 * we just try to clear the piece that we couldn't 950 * read. 951 */ 952 vm_page_set_validclean(mt, 0, 953 object->un_pager.vnp.vnp_size - tfoff); 954 /* handled by vm_fault now */ 955 /* vm_page_zero_invalid(mt, FALSE); */ 956 } 957 958 if (i != reqpage) { 959 960 /* 961 * whether or not to leave the page activated is up in 962 * the air, but we should put the page on a page queue 963 * somewhere. (it already is in the object). Result: 964 * It appears that empirical results show that 965 * deactivating pages is best. 966 */ 967 968 /* 969 * just in case someone was asking for this page we 970 * now tell them that it is ok to use 971 */ 972 if (!error) { 973 if (mt->flags & PG_WANTED) 974 vm_page_activate(mt); 975 else 976 vm_page_deactivate(mt); 977 vm_page_wakeup(mt); 978 } else { 979 vm_page_free(mt); 980 } 981 } 982 } 983 vm_page_unlock_queues(); 984 VM_OBJECT_UNLOCK(object); 985 if (error) { 986 printf("vnode_pager_getpages: I/O read error\n"); 987 } 988 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 989 } 990 991 /* 992 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 993 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 994 * vnode_pager_generic_putpages() to implement the previous behaviour. 995 * 996 * All other FS's should use the bypass to get to the local media 997 * backing vp's VOP_PUTPAGES. 998 */ 999 static void 1000 vnode_pager_putpages(object, m, count, sync, rtvals) 1001 vm_object_t object; 1002 vm_page_t *m; 1003 int count; 1004 boolean_t sync; 1005 int *rtvals; 1006 { 1007 int rtval; 1008 struct vnode *vp; 1009 struct mount *mp; 1010 int bytes = count * PAGE_SIZE; 1011 1012 /* 1013 * Force synchronous operation if we are extremely low on memory 1014 * to prevent a low-memory deadlock. VOP operations often need to 1015 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1016 * operation ). The swapper handles the case by limiting the amount 1017 * of asynchronous I/O, but that sort of solution doesn't scale well 1018 * for the vnode pager without a lot of work. 1019 * 1020 * Also, the backing vnode's iodone routine may not wake the pageout 1021 * daemon up. This should be probably be addressed XXX. 1022 */ 1023 1024 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 1025 sync |= OBJPC_SYNC; 1026 1027 /* 1028 * Call device-specific putpages function 1029 */ 1030 vp = object->handle; 1031 VM_OBJECT_UNLOCK(object); 1032 if (vp->v_type != VREG) 1033 mp = NULL; 1034 (void)vn_start_write(vp, &mp, V_WAIT); 1035 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 1036 KASSERT(rtval != EOPNOTSUPP, 1037 ("vnode_pager: stale FS putpages\n")); 1038 vn_finished_write(mp); 1039 VM_OBJECT_LOCK(object); 1040 } 1041 1042 1043 /* 1044 * This is now called from local media FS's to operate against their 1045 * own vnodes if they fail to implement VOP_PUTPAGES. 1046 * 1047 * This is typically called indirectly via the pageout daemon and 1048 * clustering has already typically occured, so in general we ask the 1049 * underlying filesystem to write the data out asynchronously rather 1050 * then delayed. 1051 */ 1052 int 1053 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 1054 struct vnode *vp; 1055 vm_page_t *m; 1056 int bytecount; 1057 int flags; 1058 int *rtvals; 1059 { 1060 int i; 1061 vm_object_t object; 1062 int count; 1063 1064 int maxsize, ncount; 1065 vm_ooffset_t poffset; 1066 struct uio auio; 1067 struct iovec aiov; 1068 int error; 1069 int ioflags; 1070 1071 object = vp->v_object; 1072 count = bytecount / PAGE_SIZE; 1073 1074 for (i = 0; i < count; i++) 1075 rtvals[i] = VM_PAGER_AGAIN; 1076 1077 if ((int64_t)m[0]->pindex < 0) { 1078 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1079 (long)m[0]->pindex, (u_long)m[0]->dirty); 1080 rtvals[0] = VM_PAGER_BAD; 1081 return VM_PAGER_BAD; 1082 } 1083 1084 maxsize = count * PAGE_SIZE; 1085 ncount = count; 1086 1087 poffset = IDX_TO_OFF(m[0]->pindex); 1088 1089 /* 1090 * If the page-aligned write is larger then the actual file we 1091 * have to invalidate pages occuring beyond the file EOF. However, 1092 * there is an edge case where a file may not be page-aligned where 1093 * the last page is partially invalid. In this case the filesystem 1094 * may not properly clear the dirty bits for the entire page (which 1095 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1096 * With the page locked we are free to fix-up the dirty bits here. 1097 * 1098 * We do not under any circumstances truncate the valid bits, as 1099 * this will screw up bogus page replacement. 1100 */ 1101 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1102 if (object->un_pager.vnp.vnp_size > poffset) { 1103 int pgoff; 1104 1105 maxsize = object->un_pager.vnp.vnp_size - poffset; 1106 ncount = btoc(maxsize); 1107 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1108 vm_page_lock_queues(); 1109 vm_page_clear_dirty(m[ncount - 1], pgoff, 1110 PAGE_SIZE - pgoff); 1111 vm_page_unlock_queues(); 1112 } 1113 } else { 1114 maxsize = 0; 1115 ncount = 0; 1116 } 1117 if (ncount < count) { 1118 for (i = ncount; i < count; i++) { 1119 rtvals[i] = VM_PAGER_BAD; 1120 } 1121 } 1122 } 1123 1124 /* 1125 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1126 * rather then a bdwrite() to prevent paging I/O from saturating 1127 * the buffer cache. Dummy-up the sequential heuristic to cause 1128 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1129 * the system decides how to cluster. 1130 */ 1131 ioflags = IO_VMIO; 1132 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1133 ioflags |= IO_SYNC; 1134 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1135 ioflags |= IO_ASYNC; 1136 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1137 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1138 1139 aiov.iov_base = (caddr_t) 0; 1140 aiov.iov_len = maxsize; 1141 auio.uio_iov = &aiov; 1142 auio.uio_iovcnt = 1; 1143 auio.uio_offset = poffset; 1144 auio.uio_segflg = UIO_NOCOPY; 1145 auio.uio_rw = UIO_WRITE; 1146 auio.uio_resid = maxsize; 1147 auio.uio_td = (struct thread *) 0; 1148 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1149 cnt.v_vnodeout++; 1150 cnt.v_vnodepgsout += ncount; 1151 1152 if (error) { 1153 printf("vnode_pager_putpages: I/O error %d\n", error); 1154 } 1155 if (auio.uio_resid) { 1156 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1157 auio.uio_resid, (u_long)m[0]->pindex); 1158 } 1159 for (i = 0; i < ncount; i++) { 1160 rtvals[i] = VM_PAGER_OK; 1161 } 1162 return rtvals[0]; 1163 } 1164 1165 struct vnode * 1166 vnode_pager_lock(vm_object_t first_object) 1167 { 1168 struct vnode *vp; 1169 vm_object_t backing_object, object; 1170 1171 VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED); 1172 for (object = first_object; object != NULL; object = backing_object) { 1173 if (object->type != OBJT_VNODE) { 1174 if ((backing_object = object->backing_object) != NULL) 1175 VM_OBJECT_LOCK(backing_object); 1176 if (object != first_object) 1177 VM_OBJECT_UNLOCK(object); 1178 continue; 1179 } 1180 retry: 1181 if (object->flags & OBJ_DEAD) { 1182 if (object != first_object) 1183 VM_OBJECT_UNLOCK(object); 1184 return NULL; 1185 } 1186 vp = object->handle; 1187 VI_LOCK(vp); 1188 VM_OBJECT_UNLOCK(object); 1189 if (first_object != object) 1190 VM_OBJECT_UNLOCK(first_object); 1191 if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | 1192 LK_RETRY | LK_SHARED, curthread)) { 1193 VM_OBJECT_LOCK(first_object); 1194 if (object != first_object) 1195 VM_OBJECT_LOCK(object); 1196 if (object->type != OBJT_VNODE) { 1197 if (object != first_object) 1198 VM_OBJECT_UNLOCK(object); 1199 return NULL; 1200 } 1201 printf("vnode_pager_lock: retrying\n"); 1202 goto retry; 1203 } 1204 VM_OBJECT_LOCK(first_object); 1205 return (vp); 1206 } 1207 return NULL; 1208 } 1209