xref: /freebsd/sys/vm/vnode_pager.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/limits.h>
65 #include <sys/conf.h>
66 #include <sys/sf_buf.h>
67 
68 #include <machine/atomic.h>
69 
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vm_map.h>
76 #include <vm/vnode_pager.h>
77 #include <vm/vm_extern.h>
78 
79 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
80     daddr_t *rtaddress, int *run);
81 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
82 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
83 static void vnode_pager_dealloc(vm_object_t);
84 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
85 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
86 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
87 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
88     vm_ooffset_t, struct ucred *cred);
89 
90 struct pagerops vnodepagerops = {
91 	.pgo_alloc =	vnode_pager_alloc,
92 	.pgo_dealloc =	vnode_pager_dealloc,
93 	.pgo_getpages =	vnode_pager_getpages,
94 	.pgo_putpages =	vnode_pager_putpages,
95 	.pgo_haspage =	vnode_pager_haspage,
96 };
97 
98 int vnode_pbuf_freecnt;
99 
100 /* Create the VM system backing object for this vnode */
101 int
102 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
103 {
104 	vm_object_t object;
105 	vm_ooffset_t size = isize;
106 	struct vattr va;
107 
108 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
109 		return (0);
110 
111 	while ((object = vp->v_object) != NULL) {
112 		VM_OBJECT_LOCK(object);
113 		if (!(object->flags & OBJ_DEAD)) {
114 			VM_OBJECT_UNLOCK(object);
115 			return (0);
116 		}
117 		VOP_UNLOCK(vp, 0);
118 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
119 		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0);
120 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
121 	}
122 
123 	if (size == 0) {
124 		if (vn_isdisk(vp, NULL)) {
125 			size = IDX_TO_OFF(INT_MAX);
126 		} else {
127 			if (VOP_GETATTR(vp, &va, td->td_ucred))
128 				return (0);
129 			size = va.va_size;
130 		}
131 	}
132 
133 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
134 	/*
135 	 * Dereference the reference we just created.  This assumes
136 	 * that the object is associated with the vp.
137 	 */
138 	VM_OBJECT_LOCK(object);
139 	object->ref_count--;
140 	VM_OBJECT_UNLOCK(object);
141 	vrele(vp);
142 
143 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
144 
145 	return (0);
146 }
147 
148 void
149 vnode_destroy_vobject(struct vnode *vp)
150 {
151 	struct vm_object *obj;
152 
153 	obj = vp->v_object;
154 	if (obj == NULL)
155 		return;
156 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
157 	VM_OBJECT_LOCK(obj);
158 	if (obj->ref_count == 0) {
159 		/*
160 		 * vclean() may be called twice. The first time
161 		 * removes the primary reference to the object,
162 		 * the second time goes one further and is a
163 		 * special-case to terminate the object.
164 		 *
165 		 * don't double-terminate the object
166 		 */
167 		if ((obj->flags & OBJ_DEAD) == 0)
168 			vm_object_terminate(obj);
169 		else
170 			VM_OBJECT_UNLOCK(obj);
171 	} else {
172 		/*
173 		 * Woe to the process that tries to page now :-).
174 		 */
175 		vm_pager_deallocate(obj);
176 		VM_OBJECT_UNLOCK(obj);
177 	}
178 	vp->v_object = NULL;
179 }
180 
181 
182 /*
183  * Allocate (or lookup) pager for a vnode.
184  * Handle is a vnode pointer.
185  *
186  * MPSAFE
187  */
188 vm_object_t
189 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
190     vm_ooffset_t offset, struct ucred *cred)
191 {
192 	vm_object_t object;
193 	struct vnode *vp;
194 
195 	/*
196 	 * Pageout to vnode, no can do yet.
197 	 */
198 	if (handle == NULL)
199 		return (NULL);
200 
201 	vp = (struct vnode *) handle;
202 
203 	/*
204 	 * If the object is being terminated, wait for it to
205 	 * go away.
206 	 */
207 retry:
208 	while ((object = vp->v_object) != NULL) {
209 		VM_OBJECT_LOCK(object);
210 		if ((object->flags & OBJ_DEAD) == 0)
211 			break;
212 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
213 		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
214 	}
215 
216 	if (vp->v_usecount == 0)
217 		panic("vnode_pager_alloc: no vnode reference");
218 
219 	if (object == NULL) {
220 		/*
221 		 * Add an object of the appropriate size
222 		 */
223 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
224 
225 		object->un_pager.vnp.vnp_size = size;
226 		object->un_pager.vnp.writemappings = 0;
227 
228 		object->handle = handle;
229 		VI_LOCK(vp);
230 		if (vp->v_object != NULL) {
231 			/*
232 			 * Object has been created while we were sleeping
233 			 */
234 			VI_UNLOCK(vp);
235 			vm_object_destroy(object);
236 			goto retry;
237 		}
238 		vp->v_object = object;
239 		VI_UNLOCK(vp);
240 	} else {
241 		object->ref_count++;
242 		VM_OBJECT_UNLOCK(object);
243 	}
244 	vref(vp);
245 	return (object);
246 }
247 
248 /*
249  *	The object must be locked.
250  */
251 static void
252 vnode_pager_dealloc(object)
253 	vm_object_t object;
254 {
255 	struct vnode *vp;
256 	int refs;
257 
258 	vp = object->handle;
259 	if (vp == NULL)
260 		panic("vnode_pager_dealloc: pager already dealloced");
261 
262 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
263 	vm_object_pip_wait(object, "vnpdea");
264 	refs = object->ref_count;
265 
266 	object->handle = NULL;
267 	object->type = OBJT_DEAD;
268 	if (object->flags & OBJ_DISCONNECTWNT) {
269 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
270 		wakeup(object);
271 	}
272 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
273 	if (object->un_pager.vnp.writemappings > 0) {
274 		object->un_pager.vnp.writemappings = 0;
275 		VOP_ADD_WRITECOUNT(vp, -1);
276 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
277 		    __func__, vp, vp->v_writecount);
278 	}
279 	vp->v_object = NULL;
280 	VOP_UNSET_TEXT(vp);
281 	VM_OBJECT_UNLOCK(object);
282 	while (refs-- > 0)
283 		vunref(vp);
284 	VM_OBJECT_LOCK(object);
285 }
286 
287 static boolean_t
288 vnode_pager_haspage(object, pindex, before, after)
289 	vm_object_t object;
290 	vm_pindex_t pindex;
291 	int *before;
292 	int *after;
293 {
294 	struct vnode *vp = object->handle;
295 	daddr_t bn;
296 	int err;
297 	daddr_t reqblock;
298 	int poff;
299 	int bsize;
300 	int pagesperblock, blocksperpage;
301 
302 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
303 	/*
304 	 * If no vp or vp is doomed or marked transparent to VM, we do not
305 	 * have the page.
306 	 */
307 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
308 		return FALSE;
309 	/*
310 	 * If the offset is beyond end of file we do
311 	 * not have the page.
312 	 */
313 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
314 		return FALSE;
315 
316 	bsize = vp->v_mount->mnt_stat.f_iosize;
317 	pagesperblock = bsize / PAGE_SIZE;
318 	blocksperpage = 0;
319 	if (pagesperblock > 0) {
320 		reqblock = pindex / pagesperblock;
321 	} else {
322 		blocksperpage = (PAGE_SIZE / bsize);
323 		reqblock = pindex * blocksperpage;
324 	}
325 	VM_OBJECT_UNLOCK(object);
326 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
327 	VM_OBJECT_LOCK(object);
328 	if (err)
329 		return TRUE;
330 	if (bn == -1)
331 		return FALSE;
332 	if (pagesperblock > 0) {
333 		poff = pindex - (reqblock * pagesperblock);
334 		if (before) {
335 			*before *= pagesperblock;
336 			*before += poff;
337 		}
338 		if (after) {
339 			int numafter;
340 			*after *= pagesperblock;
341 			numafter = pagesperblock - (poff + 1);
342 			if (IDX_TO_OFF(pindex + numafter) >
343 			    object->un_pager.vnp.vnp_size) {
344 				numafter =
345 		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
346 				    pindex;
347 			}
348 			*after += numafter;
349 		}
350 	} else {
351 		if (before) {
352 			*before /= blocksperpage;
353 		}
354 
355 		if (after) {
356 			*after /= blocksperpage;
357 		}
358 	}
359 	return TRUE;
360 }
361 
362 /*
363  * Lets the VM system know about a change in size for a file.
364  * We adjust our own internal size and flush any cached pages in
365  * the associated object that are affected by the size change.
366  *
367  * Note: this routine may be invoked as a result of a pager put
368  * operation (possibly at object termination time), so we must be careful.
369  */
370 void
371 vnode_pager_setsize(vp, nsize)
372 	struct vnode *vp;
373 	vm_ooffset_t nsize;
374 {
375 	vm_object_t object;
376 	vm_page_t m;
377 	vm_pindex_t nobjsize;
378 
379 	if ((object = vp->v_object) == NULL)
380 		return;
381 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
382 	VM_OBJECT_LOCK(object);
383 	if (nsize == object->un_pager.vnp.vnp_size) {
384 		/*
385 		 * Hasn't changed size
386 		 */
387 		VM_OBJECT_UNLOCK(object);
388 		return;
389 	}
390 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
391 	if (nsize < object->un_pager.vnp.vnp_size) {
392 		/*
393 		 * File has shrunk. Toss any cached pages beyond the new EOF.
394 		 */
395 		if (nobjsize < object->size)
396 			vm_object_page_remove(object, nobjsize, object->size,
397 			    0);
398 		/*
399 		 * this gets rid of garbage at the end of a page that is now
400 		 * only partially backed by the vnode.
401 		 *
402 		 * XXX for some reason (I don't know yet), if we take a
403 		 * completely invalid page and mark it partially valid
404 		 * it can screw up NFS reads, so we don't allow the case.
405 		 */
406 		if ((nsize & PAGE_MASK) &&
407 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
408 		    m->valid != 0) {
409 			int base = (int)nsize & PAGE_MASK;
410 			int size = PAGE_SIZE - base;
411 
412 			/*
413 			 * Clear out partial-page garbage in case
414 			 * the page has been mapped.
415 			 */
416 			pmap_zero_page_area(m, base, size);
417 
418 			/*
419 			 * Update the valid bits to reflect the blocks that
420 			 * have been zeroed.  Some of these valid bits may
421 			 * have already been set.
422 			 */
423 			vm_page_set_valid_range(m, base, size);
424 
425 			/*
426 			 * Round "base" to the next block boundary so that the
427 			 * dirty bit for a partially zeroed block is not
428 			 * cleared.
429 			 */
430 			base = roundup2(base, DEV_BSIZE);
431 
432 			/*
433 			 * Clear out partial-page dirty bits.
434 			 *
435 			 * note that we do not clear out the valid
436 			 * bits.  This would prevent bogus_page
437 			 * replacement from working properly.
438 			 */
439 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
440 		} else if ((nsize & PAGE_MASK) &&
441 		    vm_page_is_cached(object, OFF_TO_IDX(nsize))) {
442 			vm_page_cache_free(object, OFF_TO_IDX(nsize),
443 			    nobjsize);
444 		}
445 	}
446 	object->un_pager.vnp.vnp_size = nsize;
447 	object->size = nobjsize;
448 	VM_OBJECT_UNLOCK(object);
449 }
450 
451 /*
452  * calculate the linear (byte) disk address of specified virtual
453  * file address
454  */
455 static int
456 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
457     int *run)
458 {
459 	int bsize;
460 	int err;
461 	daddr_t vblock;
462 	daddr_t voffset;
463 
464 	if (address < 0)
465 		return -1;
466 
467 	if (vp->v_iflag & VI_DOOMED)
468 		return -1;
469 
470 	bsize = vp->v_mount->mnt_stat.f_iosize;
471 	vblock = address / bsize;
472 	voffset = address % bsize;
473 
474 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
475 	if (err == 0) {
476 		if (*rtaddress != -1)
477 			*rtaddress += voffset / DEV_BSIZE;
478 		if (run) {
479 			*run += 1;
480 			*run *= bsize/PAGE_SIZE;
481 			*run -= voffset/PAGE_SIZE;
482 		}
483 	}
484 
485 	return (err);
486 }
487 
488 /*
489  * small block filesystem vnode pager input
490  */
491 static int
492 vnode_pager_input_smlfs(object, m)
493 	vm_object_t object;
494 	vm_page_t m;
495 {
496 	struct vnode *vp;
497 	struct bufobj *bo;
498 	struct buf *bp;
499 	struct sf_buf *sf;
500 	daddr_t fileaddr;
501 	vm_offset_t bsize;
502 	vm_page_bits_t bits;
503 	int error, i;
504 
505 	error = 0;
506 	vp = object->handle;
507 	if (vp->v_iflag & VI_DOOMED)
508 		return VM_PAGER_BAD;
509 
510 	bsize = vp->v_mount->mnt_stat.f_iosize;
511 
512 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
513 
514 	sf = sf_buf_alloc(m, 0);
515 
516 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
517 		vm_ooffset_t address;
518 
519 		bits = vm_page_bits(i * bsize, bsize);
520 		if (m->valid & bits)
521 			continue;
522 
523 		address = IDX_TO_OFF(m->pindex) + i * bsize;
524 		if (address >= object->un_pager.vnp.vnp_size) {
525 			fileaddr = -1;
526 		} else {
527 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
528 			if (error)
529 				break;
530 		}
531 		if (fileaddr != -1) {
532 			bp = getpbuf(&vnode_pbuf_freecnt);
533 
534 			/* build a minimal buffer header */
535 			bp->b_iocmd = BIO_READ;
536 			bp->b_iodone = bdone;
537 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
538 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
539 			bp->b_rcred = crhold(curthread->td_ucred);
540 			bp->b_wcred = crhold(curthread->td_ucred);
541 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
542 			bp->b_blkno = fileaddr;
543 			pbgetbo(bo, bp);
544 			bp->b_vp = vp;
545 			bp->b_bcount = bsize;
546 			bp->b_bufsize = bsize;
547 			bp->b_runningbufspace = bp->b_bufsize;
548 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
549 
550 			/* do the input */
551 			bp->b_iooffset = dbtob(bp->b_blkno);
552 			bstrategy(bp);
553 
554 			bwait(bp, PVM, "vnsrd");
555 
556 			if ((bp->b_ioflags & BIO_ERROR) != 0)
557 				error = EIO;
558 
559 			/*
560 			 * free the buffer header back to the swap buffer pool
561 			 */
562 			bp->b_vp = NULL;
563 			pbrelbo(bp);
564 			relpbuf(bp, &vnode_pbuf_freecnt);
565 			if (error)
566 				break;
567 		} else
568 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
569 		KASSERT((m->dirty & bits) == 0,
570 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
571 		VM_OBJECT_LOCK(object);
572 		m->valid |= bits;
573 		VM_OBJECT_UNLOCK(object);
574 	}
575 	sf_buf_free(sf);
576 	if (error) {
577 		return VM_PAGER_ERROR;
578 	}
579 	return VM_PAGER_OK;
580 }
581 
582 /*
583  * old style vnode pager input routine
584  */
585 static int
586 vnode_pager_input_old(object, m)
587 	vm_object_t object;
588 	vm_page_t m;
589 {
590 	struct uio auio;
591 	struct iovec aiov;
592 	int error;
593 	int size;
594 	struct sf_buf *sf;
595 	struct vnode *vp;
596 
597 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
598 	error = 0;
599 
600 	/*
601 	 * Return failure if beyond current EOF
602 	 */
603 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
604 		return VM_PAGER_BAD;
605 	} else {
606 		size = PAGE_SIZE;
607 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
608 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
609 		vp = object->handle;
610 		VM_OBJECT_UNLOCK(object);
611 
612 		/*
613 		 * Allocate a kernel virtual address and initialize so that
614 		 * we can use VOP_READ/WRITE routines.
615 		 */
616 		sf = sf_buf_alloc(m, 0);
617 
618 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
619 		aiov.iov_len = size;
620 		auio.uio_iov = &aiov;
621 		auio.uio_iovcnt = 1;
622 		auio.uio_offset = IDX_TO_OFF(m->pindex);
623 		auio.uio_segflg = UIO_SYSSPACE;
624 		auio.uio_rw = UIO_READ;
625 		auio.uio_resid = size;
626 		auio.uio_td = curthread;
627 
628 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
629 		if (!error) {
630 			int count = size - auio.uio_resid;
631 
632 			if (count == 0)
633 				error = EINVAL;
634 			else if (count != PAGE_SIZE)
635 				bzero((caddr_t)sf_buf_kva(sf) + count,
636 				    PAGE_SIZE - count);
637 		}
638 		sf_buf_free(sf);
639 
640 		VM_OBJECT_LOCK(object);
641 	}
642 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
643 	if (!error)
644 		m->valid = VM_PAGE_BITS_ALL;
645 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
646 }
647 
648 /*
649  * generic vnode pager input routine
650  */
651 
652 /*
653  * Local media VFS's that do not implement their own VOP_GETPAGES
654  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
655  * to implement the previous behaviour.
656  *
657  * All other FS's should use the bypass to get to the local media
658  * backing vp's VOP_GETPAGES.
659  */
660 static int
661 vnode_pager_getpages(object, m, count, reqpage)
662 	vm_object_t object;
663 	vm_page_t *m;
664 	int count;
665 	int reqpage;
666 {
667 	int rtval;
668 	struct vnode *vp;
669 	int bytes = count * PAGE_SIZE;
670 
671 	vp = object->handle;
672 	VM_OBJECT_UNLOCK(object);
673 	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
674 	KASSERT(rtval != EOPNOTSUPP,
675 	    ("vnode_pager: FS getpages not implemented\n"));
676 	VM_OBJECT_LOCK(object);
677 	return rtval;
678 }
679 
680 /*
681  * This is now called from local media FS's to operate against their
682  * own vnodes if they fail to implement VOP_GETPAGES.
683  */
684 int
685 vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
686 	struct vnode *vp;
687 	vm_page_t *m;
688 	int bytecount;
689 	int reqpage;
690 {
691 	vm_object_t object;
692 	vm_offset_t kva;
693 	off_t foff, tfoff, nextoff;
694 	int i, j, size, bsize, first;
695 	daddr_t firstaddr, reqblock;
696 	struct bufobj *bo;
697 	int runpg;
698 	int runend;
699 	struct buf *bp;
700 	int count;
701 	int error;
702 
703 	object = vp->v_object;
704 	count = bytecount / PAGE_SIZE;
705 
706 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
707 	    ("vnode_pager_generic_getpages does not support devices"));
708 	if (vp->v_iflag & VI_DOOMED)
709 		return VM_PAGER_BAD;
710 
711 	bsize = vp->v_mount->mnt_stat.f_iosize;
712 
713 	/* get the UNDERLYING device for the file with VOP_BMAP() */
714 
715 	/*
716 	 * originally, we did not check for an error return value -- assuming
717 	 * an fs always has a bmap entry point -- that assumption is wrong!!!
718 	 */
719 	foff = IDX_TO_OFF(m[reqpage]->pindex);
720 
721 	/*
722 	 * if we can't bmap, use old VOP code
723 	 */
724 	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
725 	if (error == EOPNOTSUPP) {
726 		VM_OBJECT_LOCK(object);
727 
728 		for (i = 0; i < count; i++)
729 			if (i != reqpage) {
730 				vm_page_lock(m[i]);
731 				vm_page_free(m[i]);
732 				vm_page_unlock(m[i]);
733 			}
734 		PCPU_INC(cnt.v_vnodein);
735 		PCPU_INC(cnt.v_vnodepgsin);
736 		error = vnode_pager_input_old(object, m[reqpage]);
737 		VM_OBJECT_UNLOCK(object);
738 		return (error);
739 	} else if (error != 0) {
740 		VM_OBJECT_LOCK(object);
741 		for (i = 0; i < count; i++)
742 			if (i != reqpage) {
743 				vm_page_lock(m[i]);
744 				vm_page_free(m[i]);
745 				vm_page_unlock(m[i]);
746 			}
747 		VM_OBJECT_UNLOCK(object);
748 		return (VM_PAGER_ERROR);
749 
750 		/*
751 		 * if the blocksize is smaller than a page size, then use
752 		 * special small filesystem code.  NFS sometimes has a small
753 		 * blocksize, but it can handle large reads itself.
754 		 */
755 	} else if ((PAGE_SIZE / bsize) > 1 &&
756 	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
757 		VM_OBJECT_LOCK(object);
758 		for (i = 0; i < count; i++)
759 			if (i != reqpage) {
760 				vm_page_lock(m[i]);
761 				vm_page_free(m[i]);
762 				vm_page_unlock(m[i]);
763 			}
764 		VM_OBJECT_UNLOCK(object);
765 		PCPU_INC(cnt.v_vnodein);
766 		PCPU_INC(cnt.v_vnodepgsin);
767 		return vnode_pager_input_smlfs(object, m[reqpage]);
768 	}
769 
770 	/*
771 	 * If we have a completely valid page available to us, we can
772 	 * clean up and return.  Otherwise we have to re-read the
773 	 * media.
774 	 */
775 	VM_OBJECT_LOCK(object);
776 	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
777 		for (i = 0; i < count; i++)
778 			if (i != reqpage) {
779 				vm_page_lock(m[i]);
780 				vm_page_free(m[i]);
781 				vm_page_unlock(m[i]);
782 			}
783 		VM_OBJECT_UNLOCK(object);
784 		return VM_PAGER_OK;
785 	} else if (reqblock == -1) {
786 		pmap_zero_page(m[reqpage]);
787 		KASSERT(m[reqpage]->dirty == 0,
788 		    ("vnode_pager_generic_getpages: page %p is dirty", m));
789 		m[reqpage]->valid = VM_PAGE_BITS_ALL;
790 		for (i = 0; i < count; i++)
791 			if (i != reqpage) {
792 				vm_page_lock(m[i]);
793 				vm_page_free(m[i]);
794 				vm_page_unlock(m[i]);
795 			}
796 		VM_OBJECT_UNLOCK(object);
797 		return (VM_PAGER_OK);
798 	}
799 	m[reqpage]->valid = 0;
800 	VM_OBJECT_UNLOCK(object);
801 
802 	/*
803 	 * here on direct device I/O
804 	 */
805 	firstaddr = -1;
806 
807 	/*
808 	 * calculate the run that includes the required page
809 	 */
810 	for (first = 0, i = 0; i < count; i = runend) {
811 		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
812 		    &runpg) != 0) {
813 			VM_OBJECT_LOCK(object);
814 			for (; i < count; i++)
815 				if (i != reqpage) {
816 					vm_page_lock(m[i]);
817 					vm_page_free(m[i]);
818 					vm_page_unlock(m[i]);
819 				}
820 			VM_OBJECT_UNLOCK(object);
821 			return (VM_PAGER_ERROR);
822 		}
823 		if (firstaddr == -1) {
824 			VM_OBJECT_LOCK(object);
825 			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
826 				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
827 				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
828 				    (uintmax_t)foff,
829 				    (uintmax_t)
830 				    (object->un_pager.vnp.vnp_size >> 32),
831 				    (uintmax_t)object->un_pager.vnp.vnp_size);
832 			}
833 			vm_page_lock(m[i]);
834 			vm_page_free(m[i]);
835 			vm_page_unlock(m[i]);
836 			VM_OBJECT_UNLOCK(object);
837 			runend = i + 1;
838 			first = runend;
839 			continue;
840 		}
841 		runend = i + runpg;
842 		if (runend <= reqpage) {
843 			VM_OBJECT_LOCK(object);
844 			for (j = i; j < runend; j++) {
845 				vm_page_lock(m[j]);
846 				vm_page_free(m[j]);
847 				vm_page_unlock(m[j]);
848 			}
849 			VM_OBJECT_UNLOCK(object);
850 		} else {
851 			if (runpg < (count - first)) {
852 				VM_OBJECT_LOCK(object);
853 				for (i = first + runpg; i < count; i++) {
854 					vm_page_lock(m[i]);
855 					vm_page_free(m[i]);
856 					vm_page_unlock(m[i]);
857 				}
858 				VM_OBJECT_UNLOCK(object);
859 				count = first + runpg;
860 			}
861 			break;
862 		}
863 		first = runend;
864 	}
865 
866 	/*
867 	 * the first and last page have been calculated now, move input pages
868 	 * to be zero based...
869 	 */
870 	if (first != 0) {
871 		m += first;
872 		count -= first;
873 		reqpage -= first;
874 	}
875 
876 	/*
877 	 * calculate the file virtual address for the transfer
878 	 */
879 	foff = IDX_TO_OFF(m[0]->pindex);
880 
881 	/*
882 	 * calculate the size of the transfer
883 	 */
884 	size = count * PAGE_SIZE;
885 	KASSERT(count > 0, ("zero count"));
886 	if ((foff + size) > object->un_pager.vnp.vnp_size)
887 		size = object->un_pager.vnp.vnp_size - foff;
888 	KASSERT(size > 0, ("zero size"));
889 
890 	/*
891 	 * round up physical size for real devices.
892 	 */
893 	if (1) {
894 		int secmask = bo->bo_bsize - 1;
895 		KASSERT(secmask < PAGE_SIZE && secmask > 0,
896 		    ("vnode_pager_generic_getpages: sector size %d too large",
897 		    secmask + 1));
898 		size = (size + secmask) & ~secmask;
899 	}
900 
901 	bp = getpbuf(&vnode_pbuf_freecnt);
902 	kva = (vm_offset_t) bp->b_data;
903 
904 	/*
905 	 * and map the pages to be read into the kva
906 	 */
907 	pmap_qenter(kva, m, count);
908 
909 	/* build a minimal buffer header */
910 	bp->b_iocmd = BIO_READ;
911 	bp->b_iodone = bdone;
912 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
913 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
914 	bp->b_rcred = crhold(curthread->td_ucred);
915 	bp->b_wcred = crhold(curthread->td_ucred);
916 	bp->b_blkno = firstaddr;
917 	pbgetbo(bo, bp);
918 	bp->b_vp = vp;
919 	bp->b_bcount = size;
920 	bp->b_bufsize = size;
921 	bp->b_runningbufspace = bp->b_bufsize;
922 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
923 
924 	PCPU_INC(cnt.v_vnodein);
925 	PCPU_ADD(cnt.v_vnodepgsin, count);
926 
927 	/* do the input */
928 	bp->b_iooffset = dbtob(bp->b_blkno);
929 	bstrategy(bp);
930 
931 	bwait(bp, PVM, "vnread");
932 
933 	if ((bp->b_ioflags & BIO_ERROR) != 0)
934 		error = EIO;
935 
936 	if (!error) {
937 		if (size != count * PAGE_SIZE)
938 			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
939 	}
940 	pmap_qremove(kva, count);
941 
942 	/*
943 	 * free the buffer header back to the swap buffer pool
944 	 */
945 	bp->b_vp = NULL;
946 	pbrelbo(bp);
947 	relpbuf(bp, &vnode_pbuf_freecnt);
948 
949 	VM_OBJECT_LOCK(object);
950 	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
951 		vm_page_t mt;
952 
953 		nextoff = tfoff + PAGE_SIZE;
954 		mt = m[i];
955 
956 		if (nextoff <= object->un_pager.vnp.vnp_size) {
957 			/*
958 			 * Read filled up entire page.
959 			 */
960 			mt->valid = VM_PAGE_BITS_ALL;
961 			KASSERT(mt->dirty == 0,
962 			    ("vnode_pager_generic_getpages: page %p is dirty",
963 			    mt));
964 			KASSERT(!pmap_page_is_mapped(mt),
965 			    ("vnode_pager_generic_getpages: page %p is mapped",
966 			    mt));
967 		} else {
968 			/*
969 			 * Read did not fill up entire page.
970 			 *
971 			 * Currently we do not set the entire page valid,
972 			 * we just try to clear the piece that we couldn't
973 			 * read.
974 			 */
975 			vm_page_set_valid_range(mt, 0,
976 			    object->un_pager.vnp.vnp_size - tfoff);
977 			KASSERT((mt->dirty & vm_page_bits(0,
978 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
979 			    ("vnode_pager_generic_getpages: page %p is dirty",
980 			    mt));
981 		}
982 
983 		if (i != reqpage)
984 			vm_page_readahead_finish(mt);
985 	}
986 	VM_OBJECT_UNLOCK(object);
987 	if (error) {
988 		printf("vnode_pager_getpages: I/O read error\n");
989 	}
990 	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
991 }
992 
993 /*
994  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
995  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
996  * vnode_pager_generic_putpages() to implement the previous behaviour.
997  *
998  * All other FS's should use the bypass to get to the local media
999  * backing vp's VOP_PUTPAGES.
1000  */
1001 static void
1002 vnode_pager_putpages(object, m, count, sync, rtvals)
1003 	vm_object_t object;
1004 	vm_page_t *m;
1005 	int count;
1006 	boolean_t sync;
1007 	int *rtvals;
1008 {
1009 	int rtval;
1010 	struct vnode *vp;
1011 	int bytes = count * PAGE_SIZE;
1012 
1013 	/*
1014 	 * Force synchronous operation if we are extremely low on memory
1015 	 * to prevent a low-memory deadlock.  VOP operations often need to
1016 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1017 	 * operation ).  The swapper handles the case by limiting the amount
1018 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1019 	 * for the vnode pager without a lot of work.
1020 	 *
1021 	 * Also, the backing vnode's iodone routine may not wake the pageout
1022 	 * daemon up.  This should be probably be addressed XXX.
1023 	 */
1024 
1025 	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
1026 		sync |= OBJPC_SYNC;
1027 
1028 	/*
1029 	 * Call device-specific putpages function
1030 	 */
1031 	vp = object->handle;
1032 	VM_OBJECT_UNLOCK(object);
1033 	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1034 	KASSERT(rtval != EOPNOTSUPP,
1035 	    ("vnode_pager: stale FS putpages\n"));
1036 	VM_OBJECT_LOCK(object);
1037 }
1038 
1039 
1040 /*
1041  * This is now called from local media FS's to operate against their
1042  * own vnodes if they fail to implement VOP_PUTPAGES.
1043  *
1044  * This is typically called indirectly via the pageout daemon and
1045  * clustering has already typically occured, so in general we ask the
1046  * underlying filesystem to write the data out asynchronously rather
1047  * then delayed.
1048  */
1049 int
1050 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1051     int flags, int *rtvals)
1052 {
1053 	int i;
1054 	vm_object_t object;
1055 	vm_page_t m;
1056 	int count;
1057 
1058 	int maxsize, ncount;
1059 	vm_ooffset_t poffset;
1060 	struct uio auio;
1061 	struct iovec aiov;
1062 	int error;
1063 	int ioflags;
1064 	int ppscheck = 0;
1065 	static struct timeval lastfail;
1066 	static int curfail;
1067 
1068 	object = vp->v_object;
1069 	count = bytecount / PAGE_SIZE;
1070 
1071 	for (i = 0; i < count; i++)
1072 		rtvals[i] = VM_PAGER_ERROR;
1073 
1074 	if ((int64_t)ma[0]->pindex < 0) {
1075 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1076 		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1077 		rtvals[0] = VM_PAGER_BAD;
1078 		return VM_PAGER_BAD;
1079 	}
1080 
1081 	maxsize = count * PAGE_SIZE;
1082 	ncount = count;
1083 
1084 	poffset = IDX_TO_OFF(ma[0]->pindex);
1085 
1086 	/*
1087 	 * If the page-aligned write is larger then the actual file we
1088 	 * have to invalidate pages occuring beyond the file EOF.  However,
1089 	 * there is an edge case where a file may not be page-aligned where
1090 	 * the last page is partially invalid.  In this case the filesystem
1091 	 * may not properly clear the dirty bits for the entire page (which
1092 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1093 	 * With the page locked we are free to fix-up the dirty bits here.
1094 	 *
1095 	 * We do not under any circumstances truncate the valid bits, as
1096 	 * this will screw up bogus page replacement.
1097 	 */
1098 	VM_OBJECT_LOCK(object);
1099 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1100 		if (object->un_pager.vnp.vnp_size > poffset) {
1101 			int pgoff;
1102 
1103 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1104 			ncount = btoc(maxsize);
1105 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1106 				/*
1107 				 * If the object is locked and the following
1108 				 * conditions hold, then the page's dirty
1109 				 * field cannot be concurrently changed by a
1110 				 * pmap operation.
1111 				 */
1112 				m = ma[ncount - 1];
1113 				KASSERT(m->busy > 0,
1114 		("vnode_pager_generic_putpages: page %p is not busy", m));
1115 				KASSERT(!pmap_page_is_write_mapped(m),
1116 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1117 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1118 				    pgoff);
1119 			}
1120 		} else {
1121 			maxsize = 0;
1122 			ncount = 0;
1123 		}
1124 		if (ncount < count) {
1125 			for (i = ncount; i < count; i++) {
1126 				rtvals[i] = VM_PAGER_BAD;
1127 			}
1128 		}
1129 	}
1130 	VM_OBJECT_UNLOCK(object);
1131 
1132 	/*
1133 	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1134 	 * rather then a bdwrite() to prevent paging I/O from saturating
1135 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1136 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1137 	 * the system decides how to cluster.
1138 	 */
1139 	ioflags = IO_VMIO;
1140 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1141 		ioflags |= IO_SYNC;
1142 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1143 		ioflags |= IO_ASYNC;
1144 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1145 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1146 
1147 	aiov.iov_base = (caddr_t) 0;
1148 	aiov.iov_len = maxsize;
1149 	auio.uio_iov = &aiov;
1150 	auio.uio_iovcnt = 1;
1151 	auio.uio_offset = poffset;
1152 	auio.uio_segflg = UIO_NOCOPY;
1153 	auio.uio_rw = UIO_WRITE;
1154 	auio.uio_resid = maxsize;
1155 	auio.uio_td = (struct thread *) 0;
1156 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1157 	PCPU_INC(cnt.v_vnodeout);
1158 	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1159 
1160 	if (error) {
1161 		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1162 			printf("vnode_pager_putpages: I/O error %d\n", error);
1163 	}
1164 	if (auio.uio_resid) {
1165 		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1166 			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1167 			    auio.uio_resid, (u_long)ma[0]->pindex);
1168 	}
1169 	for (i = 0; i < ncount; i++) {
1170 		rtvals[i] = VM_PAGER_OK;
1171 	}
1172 	return rtvals[0];
1173 }
1174 
1175 void
1176 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1177 {
1178 	vm_object_t obj;
1179 	int i, pos;
1180 
1181 	if (written == 0)
1182 		return;
1183 	obj = ma[0]->object;
1184 	VM_OBJECT_LOCK(obj);
1185 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1186 		if (pos < trunc_page(written)) {
1187 			rtvals[i] = VM_PAGER_OK;
1188 			vm_page_undirty(ma[i]);
1189 		} else {
1190 			/* Partially written page. */
1191 			rtvals[i] = VM_PAGER_AGAIN;
1192 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1193 		}
1194 	}
1195 	VM_OBJECT_UNLOCK(obj);
1196 }
1197 
1198 void
1199 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1200     vm_offset_t end)
1201 {
1202 	struct vnode *vp;
1203 	vm_ooffset_t old_wm;
1204 
1205 	VM_OBJECT_LOCK(object);
1206 	if (object->type != OBJT_VNODE) {
1207 		VM_OBJECT_UNLOCK(object);
1208 		return;
1209 	}
1210 	old_wm = object->un_pager.vnp.writemappings;
1211 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1212 	vp = object->handle;
1213 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1214 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1215 		VOP_ADD_WRITECOUNT(vp, 1);
1216 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1217 		    __func__, vp, vp->v_writecount);
1218 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1219 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1220 		VOP_ADD_WRITECOUNT(vp, -1);
1221 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1222 		    __func__, vp, vp->v_writecount);
1223 	}
1224 	VM_OBJECT_UNLOCK(object);
1225 }
1226 
1227 void
1228 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1229     vm_offset_t end)
1230 {
1231 	struct vnode *vp;
1232 	struct mount *mp;
1233 	vm_offset_t inc;
1234 
1235 	VM_OBJECT_LOCK(object);
1236 
1237 	/*
1238 	 * First, recheck the object type to account for the race when
1239 	 * the vnode is reclaimed.
1240 	 */
1241 	if (object->type != OBJT_VNODE) {
1242 		VM_OBJECT_UNLOCK(object);
1243 		return;
1244 	}
1245 
1246 	/*
1247 	 * Optimize for the case when writemappings is not going to
1248 	 * zero.
1249 	 */
1250 	inc = end - start;
1251 	if (object->un_pager.vnp.writemappings != inc) {
1252 		object->un_pager.vnp.writemappings -= inc;
1253 		VM_OBJECT_UNLOCK(object);
1254 		return;
1255 	}
1256 
1257 	vp = object->handle;
1258 	vhold(vp);
1259 	VM_OBJECT_UNLOCK(object);
1260 	mp = NULL;
1261 	vn_start_write(vp, &mp, V_WAIT);
1262 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1263 
1264 	/*
1265 	 * Decrement the object's writemappings, by swapping the start
1266 	 * and end arguments for vnode_pager_update_writecount().  If
1267 	 * there was not a race with vnode reclaimation, then the
1268 	 * vnode's v_writecount is decremented.
1269 	 */
1270 	vnode_pager_update_writecount(object, end, start);
1271 	VOP_UNLOCK(vp, 0);
1272 	vdrop(vp);
1273 	if (mp != NULL)
1274 		vn_finished_write(mp);
1275 }
1276