1 /*- 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/limits.h> 65 #include <sys/conf.h> 66 #include <sys/sf_buf.h> 67 68 #include <machine/atomic.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_param.h> 72 #include <vm/vm_object.h> 73 #include <vm/vm_page.h> 74 #include <vm/vm_pager.h> 75 #include <vm/vm_map.h> 76 #include <vm/vnode_pager.h> 77 #include <vm/vm_extern.h> 78 79 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 80 daddr_t *rtaddress, int *run); 81 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 82 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 83 static void vnode_pager_dealloc(vm_object_t); 84 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 85 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 86 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 87 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, 88 vm_ooffset_t, struct ucred *cred); 89 90 struct pagerops vnodepagerops = { 91 .pgo_alloc = vnode_pager_alloc, 92 .pgo_dealloc = vnode_pager_dealloc, 93 .pgo_getpages = vnode_pager_getpages, 94 .pgo_putpages = vnode_pager_putpages, 95 .pgo_haspage = vnode_pager_haspage, 96 }; 97 98 int vnode_pbuf_freecnt; 99 100 /* Create the VM system backing object for this vnode */ 101 int 102 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 103 { 104 vm_object_t object; 105 vm_ooffset_t size = isize; 106 struct vattr va; 107 108 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 109 return (0); 110 111 while ((object = vp->v_object) != NULL) { 112 VM_OBJECT_LOCK(object); 113 if (!(object->flags & OBJ_DEAD)) { 114 VM_OBJECT_UNLOCK(object); 115 return (0); 116 } 117 VOP_UNLOCK(vp, 0); 118 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 119 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0); 120 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 121 } 122 123 if (size == 0) { 124 if (vn_isdisk(vp, NULL)) { 125 size = IDX_TO_OFF(INT_MAX); 126 } else { 127 if (VOP_GETATTR(vp, &va, td->td_ucred)) 128 return (0); 129 size = va.va_size; 130 } 131 } 132 133 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); 134 /* 135 * Dereference the reference we just created. This assumes 136 * that the object is associated with the vp. 137 */ 138 VM_OBJECT_LOCK(object); 139 object->ref_count--; 140 VM_OBJECT_UNLOCK(object); 141 vrele(vp); 142 143 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 144 145 return (0); 146 } 147 148 void 149 vnode_destroy_vobject(struct vnode *vp) 150 { 151 struct vm_object *obj; 152 153 obj = vp->v_object; 154 if (obj == NULL) 155 return; 156 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 157 VM_OBJECT_LOCK(obj); 158 if (obj->ref_count == 0) { 159 /* 160 * vclean() may be called twice. The first time 161 * removes the primary reference to the object, 162 * the second time goes one further and is a 163 * special-case to terminate the object. 164 * 165 * don't double-terminate the object 166 */ 167 if ((obj->flags & OBJ_DEAD) == 0) 168 vm_object_terminate(obj); 169 else 170 VM_OBJECT_UNLOCK(obj); 171 } else { 172 /* 173 * Woe to the process that tries to page now :-). 174 */ 175 vm_pager_deallocate(obj); 176 VM_OBJECT_UNLOCK(obj); 177 } 178 vp->v_object = NULL; 179 } 180 181 182 /* 183 * Allocate (or lookup) pager for a vnode. 184 * Handle is a vnode pointer. 185 * 186 * MPSAFE 187 */ 188 vm_object_t 189 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 190 vm_ooffset_t offset, struct ucred *cred) 191 { 192 vm_object_t object; 193 struct vnode *vp; 194 195 /* 196 * Pageout to vnode, no can do yet. 197 */ 198 if (handle == NULL) 199 return (NULL); 200 201 vp = (struct vnode *) handle; 202 203 /* 204 * If the object is being terminated, wait for it to 205 * go away. 206 */ 207 retry: 208 while ((object = vp->v_object) != NULL) { 209 VM_OBJECT_LOCK(object); 210 if ((object->flags & OBJ_DEAD) == 0) 211 break; 212 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 213 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 214 } 215 216 if (vp->v_usecount == 0) 217 panic("vnode_pager_alloc: no vnode reference"); 218 219 if (object == NULL) { 220 /* 221 * Add an object of the appropriate size 222 */ 223 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 224 225 object->un_pager.vnp.vnp_size = size; 226 object->un_pager.vnp.writemappings = 0; 227 228 object->handle = handle; 229 VI_LOCK(vp); 230 if (vp->v_object != NULL) { 231 /* 232 * Object has been created while we were sleeping 233 */ 234 VI_UNLOCK(vp); 235 vm_object_destroy(object); 236 goto retry; 237 } 238 vp->v_object = object; 239 VI_UNLOCK(vp); 240 } else { 241 object->ref_count++; 242 VM_OBJECT_UNLOCK(object); 243 } 244 vref(vp); 245 return (object); 246 } 247 248 /* 249 * The object must be locked. 250 */ 251 static void 252 vnode_pager_dealloc(object) 253 vm_object_t object; 254 { 255 struct vnode *vp; 256 int refs; 257 258 vp = object->handle; 259 if (vp == NULL) 260 panic("vnode_pager_dealloc: pager already dealloced"); 261 262 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 263 vm_object_pip_wait(object, "vnpdea"); 264 refs = object->ref_count; 265 266 object->handle = NULL; 267 object->type = OBJT_DEAD; 268 if (object->flags & OBJ_DISCONNECTWNT) { 269 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 270 wakeup(object); 271 } 272 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 273 if (object->un_pager.vnp.writemappings > 0) { 274 object->un_pager.vnp.writemappings = 0; 275 VOP_ADD_WRITECOUNT(vp, -1); 276 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 277 __func__, vp, vp->v_writecount); 278 } 279 vp->v_object = NULL; 280 VOP_UNSET_TEXT(vp); 281 VM_OBJECT_UNLOCK(object); 282 while (refs-- > 0) 283 vunref(vp); 284 VM_OBJECT_LOCK(object); 285 } 286 287 static boolean_t 288 vnode_pager_haspage(object, pindex, before, after) 289 vm_object_t object; 290 vm_pindex_t pindex; 291 int *before; 292 int *after; 293 { 294 struct vnode *vp = object->handle; 295 daddr_t bn; 296 int err; 297 daddr_t reqblock; 298 int poff; 299 int bsize; 300 int pagesperblock, blocksperpage; 301 302 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 303 /* 304 * If no vp or vp is doomed or marked transparent to VM, we do not 305 * have the page. 306 */ 307 if (vp == NULL || vp->v_iflag & VI_DOOMED) 308 return FALSE; 309 /* 310 * If the offset is beyond end of file we do 311 * not have the page. 312 */ 313 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 314 return FALSE; 315 316 bsize = vp->v_mount->mnt_stat.f_iosize; 317 pagesperblock = bsize / PAGE_SIZE; 318 blocksperpage = 0; 319 if (pagesperblock > 0) { 320 reqblock = pindex / pagesperblock; 321 } else { 322 blocksperpage = (PAGE_SIZE / bsize); 323 reqblock = pindex * blocksperpage; 324 } 325 VM_OBJECT_UNLOCK(object); 326 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 327 VM_OBJECT_LOCK(object); 328 if (err) 329 return TRUE; 330 if (bn == -1) 331 return FALSE; 332 if (pagesperblock > 0) { 333 poff = pindex - (reqblock * pagesperblock); 334 if (before) { 335 *before *= pagesperblock; 336 *before += poff; 337 } 338 if (after) { 339 int numafter; 340 *after *= pagesperblock; 341 numafter = pagesperblock - (poff + 1); 342 if (IDX_TO_OFF(pindex + numafter) > 343 object->un_pager.vnp.vnp_size) { 344 numafter = 345 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 346 pindex; 347 } 348 *after += numafter; 349 } 350 } else { 351 if (before) { 352 *before /= blocksperpage; 353 } 354 355 if (after) { 356 *after /= blocksperpage; 357 } 358 } 359 return TRUE; 360 } 361 362 /* 363 * Lets the VM system know about a change in size for a file. 364 * We adjust our own internal size and flush any cached pages in 365 * the associated object that are affected by the size change. 366 * 367 * Note: this routine may be invoked as a result of a pager put 368 * operation (possibly at object termination time), so we must be careful. 369 */ 370 void 371 vnode_pager_setsize(vp, nsize) 372 struct vnode *vp; 373 vm_ooffset_t nsize; 374 { 375 vm_object_t object; 376 vm_page_t m; 377 vm_pindex_t nobjsize; 378 379 if ((object = vp->v_object) == NULL) 380 return; 381 /* ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */ 382 VM_OBJECT_LOCK(object); 383 if (nsize == object->un_pager.vnp.vnp_size) { 384 /* 385 * Hasn't changed size 386 */ 387 VM_OBJECT_UNLOCK(object); 388 return; 389 } 390 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 391 if (nsize < object->un_pager.vnp.vnp_size) { 392 /* 393 * File has shrunk. Toss any cached pages beyond the new EOF. 394 */ 395 if (nobjsize < object->size) 396 vm_object_page_remove(object, nobjsize, object->size, 397 0); 398 /* 399 * this gets rid of garbage at the end of a page that is now 400 * only partially backed by the vnode. 401 * 402 * XXX for some reason (I don't know yet), if we take a 403 * completely invalid page and mark it partially valid 404 * it can screw up NFS reads, so we don't allow the case. 405 */ 406 if ((nsize & PAGE_MASK) && 407 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 408 m->valid != 0) { 409 int base = (int)nsize & PAGE_MASK; 410 int size = PAGE_SIZE - base; 411 412 /* 413 * Clear out partial-page garbage in case 414 * the page has been mapped. 415 */ 416 pmap_zero_page_area(m, base, size); 417 418 /* 419 * Update the valid bits to reflect the blocks that 420 * have been zeroed. Some of these valid bits may 421 * have already been set. 422 */ 423 vm_page_set_valid_range(m, base, size); 424 425 /* 426 * Round "base" to the next block boundary so that the 427 * dirty bit for a partially zeroed block is not 428 * cleared. 429 */ 430 base = roundup2(base, DEV_BSIZE); 431 432 /* 433 * Clear out partial-page dirty bits. 434 * 435 * note that we do not clear out the valid 436 * bits. This would prevent bogus_page 437 * replacement from working properly. 438 */ 439 vm_page_clear_dirty(m, base, PAGE_SIZE - base); 440 } else if ((nsize & PAGE_MASK) && 441 vm_page_is_cached(object, OFF_TO_IDX(nsize))) { 442 vm_page_cache_free(object, OFF_TO_IDX(nsize), 443 nobjsize); 444 } 445 } 446 object->un_pager.vnp.vnp_size = nsize; 447 object->size = nobjsize; 448 VM_OBJECT_UNLOCK(object); 449 } 450 451 /* 452 * calculate the linear (byte) disk address of specified virtual 453 * file address 454 */ 455 static int 456 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 457 int *run) 458 { 459 int bsize; 460 int err; 461 daddr_t vblock; 462 daddr_t voffset; 463 464 if (address < 0) 465 return -1; 466 467 if (vp->v_iflag & VI_DOOMED) 468 return -1; 469 470 bsize = vp->v_mount->mnt_stat.f_iosize; 471 vblock = address / bsize; 472 voffset = address % bsize; 473 474 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 475 if (err == 0) { 476 if (*rtaddress != -1) 477 *rtaddress += voffset / DEV_BSIZE; 478 if (run) { 479 *run += 1; 480 *run *= bsize/PAGE_SIZE; 481 *run -= voffset/PAGE_SIZE; 482 } 483 } 484 485 return (err); 486 } 487 488 /* 489 * small block filesystem vnode pager input 490 */ 491 static int 492 vnode_pager_input_smlfs(object, m) 493 vm_object_t object; 494 vm_page_t m; 495 { 496 struct vnode *vp; 497 struct bufobj *bo; 498 struct buf *bp; 499 struct sf_buf *sf; 500 daddr_t fileaddr; 501 vm_offset_t bsize; 502 vm_page_bits_t bits; 503 int error, i; 504 505 error = 0; 506 vp = object->handle; 507 if (vp->v_iflag & VI_DOOMED) 508 return VM_PAGER_BAD; 509 510 bsize = vp->v_mount->mnt_stat.f_iosize; 511 512 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 513 514 sf = sf_buf_alloc(m, 0); 515 516 for (i = 0; i < PAGE_SIZE / bsize; i++) { 517 vm_ooffset_t address; 518 519 bits = vm_page_bits(i * bsize, bsize); 520 if (m->valid & bits) 521 continue; 522 523 address = IDX_TO_OFF(m->pindex) + i * bsize; 524 if (address >= object->un_pager.vnp.vnp_size) { 525 fileaddr = -1; 526 } else { 527 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 528 if (error) 529 break; 530 } 531 if (fileaddr != -1) { 532 bp = getpbuf(&vnode_pbuf_freecnt); 533 534 /* build a minimal buffer header */ 535 bp->b_iocmd = BIO_READ; 536 bp->b_iodone = bdone; 537 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 538 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 539 bp->b_rcred = crhold(curthread->td_ucred); 540 bp->b_wcred = crhold(curthread->td_ucred); 541 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 542 bp->b_blkno = fileaddr; 543 pbgetbo(bo, bp); 544 bp->b_vp = vp; 545 bp->b_bcount = bsize; 546 bp->b_bufsize = bsize; 547 bp->b_runningbufspace = bp->b_bufsize; 548 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 549 550 /* do the input */ 551 bp->b_iooffset = dbtob(bp->b_blkno); 552 bstrategy(bp); 553 554 bwait(bp, PVM, "vnsrd"); 555 556 if ((bp->b_ioflags & BIO_ERROR) != 0) 557 error = EIO; 558 559 /* 560 * free the buffer header back to the swap buffer pool 561 */ 562 bp->b_vp = NULL; 563 pbrelbo(bp); 564 relpbuf(bp, &vnode_pbuf_freecnt); 565 if (error) 566 break; 567 } else 568 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 569 KASSERT((m->dirty & bits) == 0, 570 ("vnode_pager_input_smlfs: page %p is dirty", m)); 571 VM_OBJECT_LOCK(object); 572 m->valid |= bits; 573 VM_OBJECT_UNLOCK(object); 574 } 575 sf_buf_free(sf); 576 if (error) { 577 return VM_PAGER_ERROR; 578 } 579 return VM_PAGER_OK; 580 } 581 582 /* 583 * old style vnode pager input routine 584 */ 585 static int 586 vnode_pager_input_old(object, m) 587 vm_object_t object; 588 vm_page_t m; 589 { 590 struct uio auio; 591 struct iovec aiov; 592 int error; 593 int size; 594 struct sf_buf *sf; 595 struct vnode *vp; 596 597 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 598 error = 0; 599 600 /* 601 * Return failure if beyond current EOF 602 */ 603 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 604 return VM_PAGER_BAD; 605 } else { 606 size = PAGE_SIZE; 607 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 608 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 609 vp = object->handle; 610 VM_OBJECT_UNLOCK(object); 611 612 /* 613 * Allocate a kernel virtual address and initialize so that 614 * we can use VOP_READ/WRITE routines. 615 */ 616 sf = sf_buf_alloc(m, 0); 617 618 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 619 aiov.iov_len = size; 620 auio.uio_iov = &aiov; 621 auio.uio_iovcnt = 1; 622 auio.uio_offset = IDX_TO_OFF(m->pindex); 623 auio.uio_segflg = UIO_SYSSPACE; 624 auio.uio_rw = UIO_READ; 625 auio.uio_resid = size; 626 auio.uio_td = curthread; 627 628 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 629 if (!error) { 630 int count = size - auio.uio_resid; 631 632 if (count == 0) 633 error = EINVAL; 634 else if (count != PAGE_SIZE) 635 bzero((caddr_t)sf_buf_kva(sf) + count, 636 PAGE_SIZE - count); 637 } 638 sf_buf_free(sf); 639 640 VM_OBJECT_LOCK(object); 641 } 642 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 643 if (!error) 644 m->valid = VM_PAGE_BITS_ALL; 645 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 646 } 647 648 /* 649 * generic vnode pager input routine 650 */ 651 652 /* 653 * Local media VFS's that do not implement their own VOP_GETPAGES 654 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 655 * to implement the previous behaviour. 656 * 657 * All other FS's should use the bypass to get to the local media 658 * backing vp's VOP_GETPAGES. 659 */ 660 static int 661 vnode_pager_getpages(object, m, count, reqpage) 662 vm_object_t object; 663 vm_page_t *m; 664 int count; 665 int reqpage; 666 { 667 int rtval; 668 struct vnode *vp; 669 int bytes = count * PAGE_SIZE; 670 671 vp = object->handle; 672 VM_OBJECT_UNLOCK(object); 673 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 674 KASSERT(rtval != EOPNOTSUPP, 675 ("vnode_pager: FS getpages not implemented\n")); 676 VM_OBJECT_LOCK(object); 677 return rtval; 678 } 679 680 /* 681 * This is now called from local media FS's to operate against their 682 * own vnodes if they fail to implement VOP_GETPAGES. 683 */ 684 int 685 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 686 struct vnode *vp; 687 vm_page_t *m; 688 int bytecount; 689 int reqpage; 690 { 691 vm_object_t object; 692 vm_offset_t kva; 693 off_t foff, tfoff, nextoff; 694 int i, j, size, bsize, first; 695 daddr_t firstaddr, reqblock; 696 struct bufobj *bo; 697 int runpg; 698 int runend; 699 struct buf *bp; 700 int count; 701 int error; 702 703 object = vp->v_object; 704 count = bytecount / PAGE_SIZE; 705 706 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 707 ("vnode_pager_generic_getpages does not support devices")); 708 if (vp->v_iflag & VI_DOOMED) 709 return VM_PAGER_BAD; 710 711 bsize = vp->v_mount->mnt_stat.f_iosize; 712 713 /* get the UNDERLYING device for the file with VOP_BMAP() */ 714 715 /* 716 * originally, we did not check for an error return value -- assuming 717 * an fs always has a bmap entry point -- that assumption is wrong!!! 718 */ 719 foff = IDX_TO_OFF(m[reqpage]->pindex); 720 721 /* 722 * if we can't bmap, use old VOP code 723 */ 724 error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL); 725 if (error == EOPNOTSUPP) { 726 VM_OBJECT_LOCK(object); 727 728 for (i = 0; i < count; i++) 729 if (i != reqpage) { 730 vm_page_lock(m[i]); 731 vm_page_free(m[i]); 732 vm_page_unlock(m[i]); 733 } 734 PCPU_INC(cnt.v_vnodein); 735 PCPU_INC(cnt.v_vnodepgsin); 736 error = vnode_pager_input_old(object, m[reqpage]); 737 VM_OBJECT_UNLOCK(object); 738 return (error); 739 } else if (error != 0) { 740 VM_OBJECT_LOCK(object); 741 for (i = 0; i < count; i++) 742 if (i != reqpage) { 743 vm_page_lock(m[i]); 744 vm_page_free(m[i]); 745 vm_page_unlock(m[i]); 746 } 747 VM_OBJECT_UNLOCK(object); 748 return (VM_PAGER_ERROR); 749 750 /* 751 * if the blocksize is smaller than a page size, then use 752 * special small filesystem code. NFS sometimes has a small 753 * blocksize, but it can handle large reads itself. 754 */ 755 } else if ((PAGE_SIZE / bsize) > 1 && 756 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 757 VM_OBJECT_LOCK(object); 758 for (i = 0; i < count; i++) 759 if (i != reqpage) { 760 vm_page_lock(m[i]); 761 vm_page_free(m[i]); 762 vm_page_unlock(m[i]); 763 } 764 VM_OBJECT_UNLOCK(object); 765 PCPU_INC(cnt.v_vnodein); 766 PCPU_INC(cnt.v_vnodepgsin); 767 return vnode_pager_input_smlfs(object, m[reqpage]); 768 } 769 770 /* 771 * If we have a completely valid page available to us, we can 772 * clean up and return. Otherwise we have to re-read the 773 * media. 774 */ 775 VM_OBJECT_LOCK(object); 776 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 777 for (i = 0; i < count; i++) 778 if (i != reqpage) { 779 vm_page_lock(m[i]); 780 vm_page_free(m[i]); 781 vm_page_unlock(m[i]); 782 } 783 VM_OBJECT_UNLOCK(object); 784 return VM_PAGER_OK; 785 } else if (reqblock == -1) { 786 pmap_zero_page(m[reqpage]); 787 KASSERT(m[reqpage]->dirty == 0, 788 ("vnode_pager_generic_getpages: page %p is dirty", m)); 789 m[reqpage]->valid = VM_PAGE_BITS_ALL; 790 for (i = 0; i < count; i++) 791 if (i != reqpage) { 792 vm_page_lock(m[i]); 793 vm_page_free(m[i]); 794 vm_page_unlock(m[i]); 795 } 796 VM_OBJECT_UNLOCK(object); 797 return (VM_PAGER_OK); 798 } 799 m[reqpage]->valid = 0; 800 VM_OBJECT_UNLOCK(object); 801 802 /* 803 * here on direct device I/O 804 */ 805 firstaddr = -1; 806 807 /* 808 * calculate the run that includes the required page 809 */ 810 for (first = 0, i = 0; i < count; i = runend) { 811 if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr, 812 &runpg) != 0) { 813 VM_OBJECT_LOCK(object); 814 for (; i < count; i++) 815 if (i != reqpage) { 816 vm_page_lock(m[i]); 817 vm_page_free(m[i]); 818 vm_page_unlock(m[i]); 819 } 820 VM_OBJECT_UNLOCK(object); 821 return (VM_PAGER_ERROR); 822 } 823 if (firstaddr == -1) { 824 VM_OBJECT_LOCK(object); 825 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 826 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 827 (intmax_t)firstaddr, (uintmax_t)(foff >> 32), 828 (uintmax_t)foff, 829 (uintmax_t) 830 (object->un_pager.vnp.vnp_size >> 32), 831 (uintmax_t)object->un_pager.vnp.vnp_size); 832 } 833 vm_page_lock(m[i]); 834 vm_page_free(m[i]); 835 vm_page_unlock(m[i]); 836 VM_OBJECT_UNLOCK(object); 837 runend = i + 1; 838 first = runend; 839 continue; 840 } 841 runend = i + runpg; 842 if (runend <= reqpage) { 843 VM_OBJECT_LOCK(object); 844 for (j = i; j < runend; j++) { 845 vm_page_lock(m[j]); 846 vm_page_free(m[j]); 847 vm_page_unlock(m[j]); 848 } 849 VM_OBJECT_UNLOCK(object); 850 } else { 851 if (runpg < (count - first)) { 852 VM_OBJECT_LOCK(object); 853 for (i = first + runpg; i < count; i++) { 854 vm_page_lock(m[i]); 855 vm_page_free(m[i]); 856 vm_page_unlock(m[i]); 857 } 858 VM_OBJECT_UNLOCK(object); 859 count = first + runpg; 860 } 861 break; 862 } 863 first = runend; 864 } 865 866 /* 867 * the first and last page have been calculated now, move input pages 868 * to be zero based... 869 */ 870 if (first != 0) { 871 m += first; 872 count -= first; 873 reqpage -= first; 874 } 875 876 /* 877 * calculate the file virtual address for the transfer 878 */ 879 foff = IDX_TO_OFF(m[0]->pindex); 880 881 /* 882 * calculate the size of the transfer 883 */ 884 size = count * PAGE_SIZE; 885 KASSERT(count > 0, ("zero count")); 886 if ((foff + size) > object->un_pager.vnp.vnp_size) 887 size = object->un_pager.vnp.vnp_size - foff; 888 KASSERT(size > 0, ("zero size")); 889 890 /* 891 * round up physical size for real devices. 892 */ 893 if (1) { 894 int secmask = bo->bo_bsize - 1; 895 KASSERT(secmask < PAGE_SIZE && secmask > 0, 896 ("vnode_pager_generic_getpages: sector size %d too large", 897 secmask + 1)); 898 size = (size + secmask) & ~secmask; 899 } 900 901 bp = getpbuf(&vnode_pbuf_freecnt); 902 kva = (vm_offset_t) bp->b_data; 903 904 /* 905 * and map the pages to be read into the kva 906 */ 907 pmap_qenter(kva, m, count); 908 909 /* build a minimal buffer header */ 910 bp->b_iocmd = BIO_READ; 911 bp->b_iodone = bdone; 912 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 913 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 914 bp->b_rcred = crhold(curthread->td_ucred); 915 bp->b_wcred = crhold(curthread->td_ucred); 916 bp->b_blkno = firstaddr; 917 pbgetbo(bo, bp); 918 bp->b_vp = vp; 919 bp->b_bcount = size; 920 bp->b_bufsize = size; 921 bp->b_runningbufspace = bp->b_bufsize; 922 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 923 924 PCPU_INC(cnt.v_vnodein); 925 PCPU_ADD(cnt.v_vnodepgsin, count); 926 927 /* do the input */ 928 bp->b_iooffset = dbtob(bp->b_blkno); 929 bstrategy(bp); 930 931 bwait(bp, PVM, "vnread"); 932 933 if ((bp->b_ioflags & BIO_ERROR) != 0) 934 error = EIO; 935 936 if (!error) { 937 if (size != count * PAGE_SIZE) 938 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 939 } 940 pmap_qremove(kva, count); 941 942 /* 943 * free the buffer header back to the swap buffer pool 944 */ 945 bp->b_vp = NULL; 946 pbrelbo(bp); 947 relpbuf(bp, &vnode_pbuf_freecnt); 948 949 VM_OBJECT_LOCK(object); 950 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 951 vm_page_t mt; 952 953 nextoff = tfoff + PAGE_SIZE; 954 mt = m[i]; 955 956 if (nextoff <= object->un_pager.vnp.vnp_size) { 957 /* 958 * Read filled up entire page. 959 */ 960 mt->valid = VM_PAGE_BITS_ALL; 961 KASSERT(mt->dirty == 0, 962 ("vnode_pager_generic_getpages: page %p is dirty", 963 mt)); 964 KASSERT(!pmap_page_is_mapped(mt), 965 ("vnode_pager_generic_getpages: page %p is mapped", 966 mt)); 967 } else { 968 /* 969 * Read did not fill up entire page. 970 * 971 * Currently we do not set the entire page valid, 972 * we just try to clear the piece that we couldn't 973 * read. 974 */ 975 vm_page_set_valid_range(mt, 0, 976 object->un_pager.vnp.vnp_size - tfoff); 977 KASSERT((mt->dirty & vm_page_bits(0, 978 object->un_pager.vnp.vnp_size - tfoff)) == 0, 979 ("vnode_pager_generic_getpages: page %p is dirty", 980 mt)); 981 } 982 983 if (i != reqpage) 984 vm_page_readahead_finish(mt); 985 } 986 VM_OBJECT_UNLOCK(object); 987 if (error) { 988 printf("vnode_pager_getpages: I/O read error\n"); 989 } 990 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 991 } 992 993 /* 994 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 995 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 996 * vnode_pager_generic_putpages() to implement the previous behaviour. 997 * 998 * All other FS's should use the bypass to get to the local media 999 * backing vp's VOP_PUTPAGES. 1000 */ 1001 static void 1002 vnode_pager_putpages(object, m, count, sync, rtvals) 1003 vm_object_t object; 1004 vm_page_t *m; 1005 int count; 1006 boolean_t sync; 1007 int *rtvals; 1008 { 1009 int rtval; 1010 struct vnode *vp; 1011 int bytes = count * PAGE_SIZE; 1012 1013 /* 1014 * Force synchronous operation if we are extremely low on memory 1015 * to prevent a low-memory deadlock. VOP operations often need to 1016 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1017 * operation ). The swapper handles the case by limiting the amount 1018 * of asynchronous I/O, but that sort of solution doesn't scale well 1019 * for the vnode pager without a lot of work. 1020 * 1021 * Also, the backing vnode's iodone routine may not wake the pageout 1022 * daemon up. This should be probably be addressed XXX. 1023 */ 1024 1025 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 1026 sync |= OBJPC_SYNC; 1027 1028 /* 1029 * Call device-specific putpages function 1030 */ 1031 vp = object->handle; 1032 VM_OBJECT_UNLOCK(object); 1033 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 1034 KASSERT(rtval != EOPNOTSUPP, 1035 ("vnode_pager: stale FS putpages\n")); 1036 VM_OBJECT_LOCK(object); 1037 } 1038 1039 1040 /* 1041 * This is now called from local media FS's to operate against their 1042 * own vnodes if they fail to implement VOP_PUTPAGES. 1043 * 1044 * This is typically called indirectly via the pageout daemon and 1045 * clustering has already typically occured, so in general we ask the 1046 * underlying filesystem to write the data out asynchronously rather 1047 * then delayed. 1048 */ 1049 int 1050 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, 1051 int flags, int *rtvals) 1052 { 1053 int i; 1054 vm_object_t object; 1055 vm_page_t m; 1056 int count; 1057 1058 int maxsize, ncount; 1059 vm_ooffset_t poffset; 1060 struct uio auio; 1061 struct iovec aiov; 1062 int error; 1063 int ioflags; 1064 int ppscheck = 0; 1065 static struct timeval lastfail; 1066 static int curfail; 1067 1068 object = vp->v_object; 1069 count = bytecount / PAGE_SIZE; 1070 1071 for (i = 0; i < count; i++) 1072 rtvals[i] = VM_PAGER_ERROR; 1073 1074 if ((int64_t)ma[0]->pindex < 0) { 1075 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1076 (long)ma[0]->pindex, (u_long)ma[0]->dirty); 1077 rtvals[0] = VM_PAGER_BAD; 1078 return VM_PAGER_BAD; 1079 } 1080 1081 maxsize = count * PAGE_SIZE; 1082 ncount = count; 1083 1084 poffset = IDX_TO_OFF(ma[0]->pindex); 1085 1086 /* 1087 * If the page-aligned write is larger then the actual file we 1088 * have to invalidate pages occuring beyond the file EOF. However, 1089 * there is an edge case where a file may not be page-aligned where 1090 * the last page is partially invalid. In this case the filesystem 1091 * may not properly clear the dirty bits for the entire page (which 1092 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1093 * With the page locked we are free to fix-up the dirty bits here. 1094 * 1095 * We do not under any circumstances truncate the valid bits, as 1096 * this will screw up bogus page replacement. 1097 */ 1098 VM_OBJECT_LOCK(object); 1099 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1100 if (object->un_pager.vnp.vnp_size > poffset) { 1101 int pgoff; 1102 1103 maxsize = object->un_pager.vnp.vnp_size - poffset; 1104 ncount = btoc(maxsize); 1105 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1106 /* 1107 * If the object is locked and the following 1108 * conditions hold, then the page's dirty 1109 * field cannot be concurrently changed by a 1110 * pmap operation. 1111 */ 1112 m = ma[ncount - 1]; 1113 KASSERT(m->busy > 0, 1114 ("vnode_pager_generic_putpages: page %p is not busy", m)); 1115 KASSERT(!pmap_page_is_write_mapped(m), 1116 ("vnode_pager_generic_putpages: page %p is not read-only", m)); 1117 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 1118 pgoff); 1119 } 1120 } else { 1121 maxsize = 0; 1122 ncount = 0; 1123 } 1124 if (ncount < count) { 1125 for (i = ncount; i < count; i++) { 1126 rtvals[i] = VM_PAGER_BAD; 1127 } 1128 } 1129 } 1130 VM_OBJECT_UNLOCK(object); 1131 1132 /* 1133 * pageouts are already clustered, use IO_ASYNC to force a bawrite() 1134 * rather then a bdwrite() to prevent paging I/O from saturating 1135 * the buffer cache. Dummy-up the sequential heuristic to cause 1136 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1137 * the system decides how to cluster. 1138 */ 1139 ioflags = IO_VMIO; 1140 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1141 ioflags |= IO_SYNC; 1142 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1143 ioflags |= IO_ASYNC; 1144 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1145 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1146 1147 aiov.iov_base = (caddr_t) 0; 1148 aiov.iov_len = maxsize; 1149 auio.uio_iov = &aiov; 1150 auio.uio_iovcnt = 1; 1151 auio.uio_offset = poffset; 1152 auio.uio_segflg = UIO_NOCOPY; 1153 auio.uio_rw = UIO_WRITE; 1154 auio.uio_resid = maxsize; 1155 auio.uio_td = (struct thread *) 0; 1156 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1157 PCPU_INC(cnt.v_vnodeout); 1158 PCPU_ADD(cnt.v_vnodepgsout, ncount); 1159 1160 if (error) { 1161 if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1))) 1162 printf("vnode_pager_putpages: I/O error %d\n", error); 1163 } 1164 if (auio.uio_resid) { 1165 if (ppscheck || ppsratecheck(&lastfail, &curfail, 1)) 1166 printf("vnode_pager_putpages: residual I/O %zd at %lu\n", 1167 auio.uio_resid, (u_long)ma[0]->pindex); 1168 } 1169 for (i = 0; i < ncount; i++) { 1170 rtvals[i] = VM_PAGER_OK; 1171 } 1172 return rtvals[0]; 1173 } 1174 1175 void 1176 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written) 1177 { 1178 vm_object_t obj; 1179 int i, pos; 1180 1181 if (written == 0) 1182 return; 1183 obj = ma[0]->object; 1184 VM_OBJECT_LOCK(obj); 1185 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { 1186 if (pos < trunc_page(written)) { 1187 rtvals[i] = VM_PAGER_OK; 1188 vm_page_undirty(ma[i]); 1189 } else { 1190 /* Partially written page. */ 1191 rtvals[i] = VM_PAGER_AGAIN; 1192 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); 1193 } 1194 } 1195 VM_OBJECT_UNLOCK(obj); 1196 } 1197 1198 void 1199 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, 1200 vm_offset_t end) 1201 { 1202 struct vnode *vp; 1203 vm_ooffset_t old_wm; 1204 1205 VM_OBJECT_LOCK(object); 1206 if (object->type != OBJT_VNODE) { 1207 VM_OBJECT_UNLOCK(object); 1208 return; 1209 } 1210 old_wm = object->un_pager.vnp.writemappings; 1211 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; 1212 vp = object->handle; 1213 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { 1214 ASSERT_VOP_ELOCKED(vp, "v_writecount inc"); 1215 VOP_ADD_WRITECOUNT(vp, 1); 1216 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 1217 __func__, vp, vp->v_writecount); 1218 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { 1219 ASSERT_VOP_ELOCKED(vp, "v_writecount dec"); 1220 VOP_ADD_WRITECOUNT(vp, -1); 1221 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 1222 __func__, vp, vp->v_writecount); 1223 } 1224 VM_OBJECT_UNLOCK(object); 1225 } 1226 1227 void 1228 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, 1229 vm_offset_t end) 1230 { 1231 struct vnode *vp; 1232 struct mount *mp; 1233 vm_offset_t inc; 1234 1235 VM_OBJECT_LOCK(object); 1236 1237 /* 1238 * First, recheck the object type to account for the race when 1239 * the vnode is reclaimed. 1240 */ 1241 if (object->type != OBJT_VNODE) { 1242 VM_OBJECT_UNLOCK(object); 1243 return; 1244 } 1245 1246 /* 1247 * Optimize for the case when writemappings is not going to 1248 * zero. 1249 */ 1250 inc = end - start; 1251 if (object->un_pager.vnp.writemappings != inc) { 1252 object->un_pager.vnp.writemappings -= inc; 1253 VM_OBJECT_UNLOCK(object); 1254 return; 1255 } 1256 1257 vp = object->handle; 1258 vhold(vp); 1259 VM_OBJECT_UNLOCK(object); 1260 mp = NULL; 1261 vn_start_write(vp, &mp, V_WAIT); 1262 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1263 1264 /* 1265 * Decrement the object's writemappings, by swapping the start 1266 * and end arguments for vnode_pager_update_writecount(). If 1267 * there was not a race with vnode reclaimation, then the 1268 * vnode's v_writecount is decremented. 1269 */ 1270 vnode_pager_update_writecount(object, end, start); 1271 VOP_UNLOCK(vp, 0); 1272 vdrop(vp); 1273 if (mp != NULL) 1274 vn_finished_write(mp); 1275 } 1276