1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991 The Regents of the University of California. 6 * All rights reserved. 7 * Copyright (c) 1993, 1994 John S. Dyson 8 * Copyright (c) 1995, David Greenman 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 43 */ 44 45 /* 46 * Page to/from files (vnodes). 47 */ 48 49 /* 50 * TODO: 51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 52 * greatly re-simplify the vnode_pager. 53 */ 54 55 #include <sys/cdefs.h> 56 __FBSDID("$FreeBSD$"); 57 58 #include "opt_vm.h" 59 60 #include <sys/param.h> 61 #include <sys/kernel.h> 62 #include <sys/systm.h> 63 #include <sys/sysctl.h> 64 #include <sys/proc.h> 65 #include <sys/vnode.h> 66 #include <sys/mount.h> 67 #include <sys/bio.h> 68 #include <sys/buf.h> 69 #include <sys/vmmeter.h> 70 #include <sys/ktr.h> 71 #include <sys/limits.h> 72 #include <sys/conf.h> 73 #include <sys/refcount.h> 74 #include <sys/rwlock.h> 75 #include <sys/sf_buf.h> 76 #include <sys/domainset.h> 77 78 #include <machine/atomic.h> 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pager.h> 85 #include <vm/vm_map.h> 86 #include <vm/vnode_pager.h> 87 #include <vm/vm_extern.h> 88 #include <vm/uma.h> 89 90 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 91 daddr_t *rtaddress, int *run); 92 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 93 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 94 static void vnode_pager_dealloc(vm_object_t); 95 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *); 96 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 97 int *, vop_getpages_iodone_t, void *); 98 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *); 99 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 100 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, 101 vm_ooffset_t, struct ucred *cred); 102 static int vnode_pager_generic_getpages_done(struct buf *); 103 static void vnode_pager_generic_getpages_done_async(struct buf *); 104 static void vnode_pager_update_writecount(vm_object_t, vm_offset_t, 105 vm_offset_t); 106 static void vnode_pager_release_writecount(vm_object_t, vm_offset_t, 107 vm_offset_t); 108 109 struct pagerops vnodepagerops = { 110 .pgo_alloc = vnode_pager_alloc, 111 .pgo_dealloc = vnode_pager_dealloc, 112 .pgo_getpages = vnode_pager_getpages, 113 .pgo_getpages_async = vnode_pager_getpages_async, 114 .pgo_putpages = vnode_pager_putpages, 115 .pgo_haspage = vnode_pager_haspage, 116 .pgo_update_writecount = vnode_pager_update_writecount, 117 .pgo_release_writecount = vnode_pager_release_writecount, 118 }; 119 120 static struct domainset *vnode_domainset = NULL; 121 122 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, 123 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_RW, &vnode_domainset, 0, 124 sysctl_handle_domainset, "A", "Default vnode NUMA policy"); 125 126 static int nvnpbufs; 127 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 128 &nvnpbufs, 0, "number of physical buffers allocated for vnode pager"); 129 130 static uma_zone_t vnode_pbuf_zone; 131 132 static void 133 vnode_pager_init(void *dummy) 134 { 135 136 #ifdef __LP64__ 137 nvnpbufs = nswbuf * 2; 138 #else 139 nvnpbufs = nswbuf / 2; 140 #endif 141 TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs); 142 vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs); 143 } 144 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL); 145 146 /* Create the VM system backing object for this vnode */ 147 int 148 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 149 { 150 vm_object_t object; 151 vm_ooffset_t size = isize; 152 struct vattr va; 153 bool last; 154 155 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 156 return (0); 157 158 object = vp->v_object; 159 if (object != NULL) 160 return (0); 161 162 if (size == 0) { 163 if (vn_isdisk(vp, NULL)) { 164 size = IDX_TO_OFF(INT_MAX); 165 } else { 166 if (VOP_GETATTR(vp, &va, td->td_ucred)) 167 return (0); 168 size = va.va_size; 169 } 170 } 171 172 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); 173 /* 174 * Dereference the reference we just created. This assumes 175 * that the object is associated with the vp. We still have 176 * to serialize with vnode_pager_dealloc() for the last 177 * potential reference. 178 */ 179 VM_OBJECT_RLOCK(object); 180 last = refcount_release(&object->ref_count); 181 VM_OBJECT_RUNLOCK(object); 182 if (last) 183 vrele(vp); 184 185 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 186 187 return (0); 188 } 189 190 void 191 vnode_destroy_vobject(struct vnode *vp) 192 { 193 struct vm_object *obj; 194 195 obj = vp->v_object; 196 if (obj == NULL || obj->handle != vp) 197 return; 198 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 199 VM_OBJECT_WLOCK(obj); 200 MPASS(obj->type == OBJT_VNODE); 201 umtx_shm_object_terminated(obj); 202 if (obj->ref_count == 0) { 203 KASSERT((obj->flags & OBJ_DEAD) == 0, 204 ("vnode_destroy_vobject: Terminating dead object")); 205 vm_object_set_flag(obj, OBJ_DEAD); 206 207 /* 208 * Clean pages and flush buffers. 209 */ 210 vm_object_page_clean(obj, 0, 0, OBJPC_SYNC); 211 VM_OBJECT_WUNLOCK(obj); 212 213 vinvalbuf(vp, V_SAVE, 0, 0); 214 215 BO_LOCK(&vp->v_bufobj); 216 vp->v_bufobj.bo_flag |= BO_DEAD; 217 BO_UNLOCK(&vp->v_bufobj); 218 219 VM_OBJECT_WLOCK(obj); 220 vm_object_terminate(obj); 221 } else { 222 /* 223 * Woe to the process that tries to page now :-). 224 */ 225 vm_pager_deallocate(obj); 226 VM_OBJECT_WUNLOCK(obj); 227 } 228 KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object)); 229 } 230 231 232 /* 233 * Allocate (or lookup) pager for a vnode. 234 * Handle is a vnode pointer. 235 */ 236 vm_object_t 237 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 238 vm_ooffset_t offset, struct ucred *cred) 239 { 240 vm_object_t object; 241 struct vnode *vp; 242 243 /* 244 * Pageout to vnode, no can do yet. 245 */ 246 if (handle == NULL) 247 return (NULL); 248 249 vp = (struct vnode *)handle; 250 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 251 VNPASS(vp->v_usecount > 0, vp); 252 retry: 253 object = vp->v_object; 254 255 if (object == NULL) { 256 /* 257 * Add an object of the appropriate size 258 */ 259 object = vm_object_allocate(OBJT_VNODE, 260 OFF_TO_IDX(round_page(size))); 261 262 object->un_pager.vnp.vnp_size = size; 263 object->un_pager.vnp.writemappings = 0; 264 object->domain.dr_policy = vnode_domainset; 265 object->handle = handle; 266 if ((vp->v_vflag & VV_VMSIZEVNLOCK) != 0) { 267 VM_OBJECT_WLOCK(object); 268 vm_object_set_flag(object, OBJ_SIZEVNLOCK); 269 VM_OBJECT_WUNLOCK(object); 270 } 271 VI_LOCK(vp); 272 if (vp->v_object != NULL) { 273 /* 274 * Object has been created while we were allocating. 275 */ 276 VI_UNLOCK(vp); 277 VM_OBJECT_WLOCK(object); 278 KASSERT(object->ref_count == 1, 279 ("leaked ref %p %d", object, object->ref_count)); 280 object->type = OBJT_DEAD; 281 refcount_init(&object->ref_count, 0); 282 VM_OBJECT_WUNLOCK(object); 283 vm_object_destroy(object); 284 goto retry; 285 } 286 vp->v_object = object; 287 VI_UNLOCK(vp); 288 vrefact(vp); 289 } else { 290 vm_object_reference(object); 291 #if VM_NRESERVLEVEL > 0 292 if ((object->flags & OBJ_COLORED) == 0) { 293 VM_OBJECT_WLOCK(object); 294 vm_object_color(object, 0); 295 VM_OBJECT_WUNLOCK(object); 296 } 297 #endif 298 } 299 return (object); 300 } 301 302 /* 303 * The object must be locked. 304 */ 305 static void 306 vnode_pager_dealloc(vm_object_t object) 307 { 308 struct vnode *vp; 309 int refs; 310 311 vp = object->handle; 312 if (vp == NULL) 313 panic("vnode_pager_dealloc: pager already dealloced"); 314 315 VM_OBJECT_ASSERT_WLOCKED(object); 316 vm_object_pip_wait(object, "vnpdea"); 317 refs = object->ref_count; 318 319 object->handle = NULL; 320 object->type = OBJT_DEAD; 321 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 322 if (object->un_pager.vnp.writemappings > 0) { 323 object->un_pager.vnp.writemappings = 0; 324 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 325 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 326 __func__, vp, vp->v_writecount); 327 } 328 vp->v_object = NULL; 329 VI_LOCK(vp); 330 331 /* 332 * vm_map_entry_set_vnode_text() cannot reach this vnode by 333 * following object->handle. Clear all text references now. 334 * This also clears the transient references from 335 * kern_execve(), which is fine because dead_vnodeops uses nop 336 * for VOP_UNSET_TEXT(). 337 */ 338 if (vp->v_writecount < 0) 339 vp->v_writecount = 0; 340 VI_UNLOCK(vp); 341 VM_OBJECT_WUNLOCK(object); 342 if (refs > 0) 343 vunref(vp); 344 VM_OBJECT_WLOCK(object); 345 } 346 347 static boolean_t 348 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 349 int *after) 350 { 351 struct vnode *vp = object->handle; 352 daddr_t bn; 353 uintptr_t lockstate; 354 int err; 355 daddr_t reqblock; 356 int poff; 357 int bsize; 358 int pagesperblock, blocksperpage; 359 360 VM_OBJECT_ASSERT_LOCKED(object); 361 /* 362 * If no vp or vp is doomed or marked transparent to VM, we do not 363 * have the page. 364 */ 365 if (vp == NULL || VN_IS_DOOMED(vp)) 366 return FALSE; 367 /* 368 * If the offset is beyond end of file we do 369 * not have the page. 370 */ 371 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 372 return FALSE; 373 374 bsize = vp->v_mount->mnt_stat.f_iosize; 375 pagesperblock = bsize / PAGE_SIZE; 376 blocksperpage = 0; 377 if (pagesperblock > 0) { 378 reqblock = pindex / pagesperblock; 379 } else { 380 blocksperpage = (PAGE_SIZE / bsize); 381 reqblock = pindex * blocksperpage; 382 } 383 lockstate = VM_OBJECT_DROP(object); 384 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 385 VM_OBJECT_PICKUP(object, lockstate); 386 if (err) 387 return TRUE; 388 if (bn == -1) 389 return FALSE; 390 if (pagesperblock > 0) { 391 poff = pindex - (reqblock * pagesperblock); 392 if (before) { 393 *before *= pagesperblock; 394 *before += poff; 395 } 396 if (after) { 397 /* 398 * The BMAP vop can report a partial block in the 399 * 'after', but must not report blocks after EOF. 400 * Assert the latter, and truncate 'after' in case 401 * of the former. 402 */ 403 KASSERT((reqblock + *after) * pagesperblock < 404 roundup2(object->size, pagesperblock), 405 ("%s: reqblock %jd after %d size %ju", __func__, 406 (intmax_t )reqblock, *after, 407 (uintmax_t )object->size)); 408 *after *= pagesperblock; 409 *after += pagesperblock - (poff + 1); 410 if (pindex + *after >= object->size) 411 *after = object->size - 1 - pindex; 412 } 413 } else { 414 if (before) { 415 *before /= blocksperpage; 416 } 417 418 if (after) { 419 *after /= blocksperpage; 420 } 421 } 422 return TRUE; 423 } 424 425 /* 426 * Lets the VM system know about a change in size for a file. 427 * We adjust our own internal size and flush any cached pages in 428 * the associated object that are affected by the size change. 429 * 430 * Note: this routine may be invoked as a result of a pager put 431 * operation (possibly at object termination time), so we must be careful. 432 */ 433 void 434 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize) 435 { 436 vm_object_t object; 437 vm_page_t m; 438 vm_pindex_t nobjsize; 439 440 if ((object = vp->v_object) == NULL) 441 return; 442 #ifdef DEBUG_VFS_LOCKS 443 { 444 struct mount *mp; 445 446 mp = vp->v_mount; 447 if (mp != NULL && (mp->mnt_kern_flag & MNTK_VMSETSIZE_BUG) == 0) 448 assert_vop_elocked(vp, 449 "vnode_pager_setsize and not locked vnode"); 450 } 451 #endif 452 VM_OBJECT_WLOCK(object); 453 if (object->type == OBJT_DEAD) { 454 VM_OBJECT_WUNLOCK(object); 455 return; 456 } 457 KASSERT(object->type == OBJT_VNODE, 458 ("not vnode-backed object %p", object)); 459 if (nsize == object->un_pager.vnp.vnp_size) { 460 /* 461 * Hasn't changed size 462 */ 463 VM_OBJECT_WUNLOCK(object); 464 return; 465 } 466 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 467 if (nsize < object->un_pager.vnp.vnp_size) { 468 /* 469 * File has shrunk. Toss any cached pages beyond the new EOF. 470 */ 471 if (nobjsize < object->size) 472 vm_object_page_remove(object, nobjsize, object->size, 473 0); 474 /* 475 * this gets rid of garbage at the end of a page that is now 476 * only partially backed by the vnode. 477 * 478 * XXX for some reason (I don't know yet), if we take a 479 * completely invalid page and mark it partially valid 480 * it can screw up NFS reads, so we don't allow the case. 481 */ 482 if (!(nsize & PAGE_MASK)) 483 goto out; 484 m = vm_page_grab(object, OFF_TO_IDX(nsize), VM_ALLOC_NOCREAT); 485 if (m == NULL) 486 goto out; 487 if (!vm_page_none_valid(m)) { 488 int base = (int)nsize & PAGE_MASK; 489 int size = PAGE_SIZE - base; 490 491 /* 492 * Clear out partial-page garbage in case 493 * the page has been mapped. 494 */ 495 pmap_zero_page_area(m, base, size); 496 497 /* 498 * Update the valid bits to reflect the blocks that 499 * have been zeroed. Some of these valid bits may 500 * have already been set. 501 */ 502 vm_page_set_valid_range(m, base, size); 503 504 /* 505 * Round "base" to the next block boundary so that the 506 * dirty bit for a partially zeroed block is not 507 * cleared. 508 */ 509 base = roundup2(base, DEV_BSIZE); 510 511 /* 512 * Clear out partial-page dirty bits. 513 * 514 * note that we do not clear out the valid 515 * bits. This would prevent bogus_page 516 * replacement from working properly. 517 */ 518 vm_page_clear_dirty(m, base, PAGE_SIZE - base); 519 } 520 vm_page_xunbusy(m); 521 } 522 out: 523 object->un_pager.vnp.vnp_size = nsize; 524 object->size = nobjsize; 525 VM_OBJECT_WUNLOCK(object); 526 } 527 528 /* 529 * calculate the linear (byte) disk address of specified virtual 530 * file address 531 */ 532 static int 533 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 534 int *run) 535 { 536 int bsize; 537 int err; 538 daddr_t vblock; 539 daddr_t voffset; 540 541 if (address < 0) 542 return -1; 543 544 if (VN_IS_DOOMED(vp)) 545 return -1; 546 547 bsize = vp->v_mount->mnt_stat.f_iosize; 548 vblock = address / bsize; 549 voffset = address % bsize; 550 551 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 552 if (err == 0) { 553 if (*rtaddress != -1) 554 *rtaddress += voffset / DEV_BSIZE; 555 if (run) { 556 *run += 1; 557 *run *= bsize / PAGE_SIZE; 558 *run -= voffset / PAGE_SIZE; 559 } 560 } 561 562 return (err); 563 } 564 565 /* 566 * small block filesystem vnode pager input 567 */ 568 static int 569 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m) 570 { 571 struct vnode *vp; 572 struct bufobj *bo; 573 struct buf *bp; 574 struct sf_buf *sf; 575 daddr_t fileaddr; 576 vm_offset_t bsize; 577 vm_page_bits_t bits; 578 int error, i; 579 580 error = 0; 581 vp = object->handle; 582 if (VN_IS_DOOMED(vp)) 583 return VM_PAGER_BAD; 584 585 bsize = vp->v_mount->mnt_stat.f_iosize; 586 587 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 588 589 sf = sf_buf_alloc(m, 0); 590 591 for (i = 0; i < PAGE_SIZE / bsize; i++) { 592 vm_ooffset_t address; 593 594 bits = vm_page_bits(i * bsize, bsize); 595 if (m->valid & bits) 596 continue; 597 598 address = IDX_TO_OFF(m->pindex) + i * bsize; 599 if (address >= object->un_pager.vnp.vnp_size) { 600 fileaddr = -1; 601 } else { 602 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 603 if (error) 604 break; 605 } 606 if (fileaddr != -1) { 607 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 608 609 /* build a minimal buffer header */ 610 bp->b_iocmd = BIO_READ; 611 bp->b_iodone = bdone; 612 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 613 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 614 bp->b_rcred = crhold(curthread->td_ucred); 615 bp->b_wcred = crhold(curthread->td_ucred); 616 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 617 bp->b_blkno = fileaddr; 618 pbgetbo(bo, bp); 619 bp->b_vp = vp; 620 bp->b_bcount = bsize; 621 bp->b_bufsize = bsize; 622 bp->b_runningbufspace = bp->b_bufsize; 623 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 624 625 /* do the input */ 626 bp->b_iooffset = dbtob(bp->b_blkno); 627 bstrategy(bp); 628 629 bwait(bp, PVM, "vnsrd"); 630 631 if ((bp->b_ioflags & BIO_ERROR) != 0) { 632 KASSERT(bp->b_error != 0, 633 ("%s: buf error but b_error == 0\n", __func__)); 634 error = bp->b_error; 635 } 636 637 /* 638 * free the buffer header back to the swap buffer pool 639 */ 640 bp->b_vp = NULL; 641 pbrelbo(bp); 642 uma_zfree(vnode_pbuf_zone, bp); 643 if (error) 644 break; 645 } else 646 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 647 KASSERT((m->dirty & bits) == 0, 648 ("vnode_pager_input_smlfs: page %p is dirty", m)); 649 vm_page_bits_set(m, &m->valid, bits); 650 } 651 sf_buf_free(sf); 652 if (error) { 653 return VM_PAGER_ERROR; 654 } 655 return VM_PAGER_OK; 656 } 657 658 /* 659 * old style vnode pager input routine 660 */ 661 static int 662 vnode_pager_input_old(vm_object_t object, vm_page_t m) 663 { 664 struct uio auio; 665 struct iovec aiov; 666 int error; 667 int size; 668 struct sf_buf *sf; 669 struct vnode *vp; 670 671 VM_OBJECT_ASSERT_WLOCKED(object); 672 error = 0; 673 674 /* 675 * Return failure if beyond current EOF 676 */ 677 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 678 return VM_PAGER_BAD; 679 } else { 680 size = PAGE_SIZE; 681 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 682 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 683 vp = object->handle; 684 VM_OBJECT_WUNLOCK(object); 685 686 /* 687 * Allocate a kernel virtual address and initialize so that 688 * we can use VOP_READ/WRITE routines. 689 */ 690 sf = sf_buf_alloc(m, 0); 691 692 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 693 aiov.iov_len = size; 694 auio.uio_iov = &aiov; 695 auio.uio_iovcnt = 1; 696 auio.uio_offset = IDX_TO_OFF(m->pindex); 697 auio.uio_segflg = UIO_SYSSPACE; 698 auio.uio_rw = UIO_READ; 699 auio.uio_resid = size; 700 auio.uio_td = curthread; 701 702 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 703 if (!error) { 704 int count = size - auio.uio_resid; 705 706 if (count == 0) 707 error = EINVAL; 708 else if (count != PAGE_SIZE) 709 bzero((caddr_t)sf_buf_kva(sf) + count, 710 PAGE_SIZE - count); 711 } 712 sf_buf_free(sf); 713 714 VM_OBJECT_WLOCK(object); 715 } 716 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 717 if (!error) 718 vm_page_valid(m); 719 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 720 } 721 722 /* 723 * generic vnode pager input routine 724 */ 725 726 /* 727 * Local media VFS's that do not implement their own VOP_GETPAGES 728 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 729 * to implement the previous behaviour. 730 * 731 * All other FS's should use the bypass to get to the local media 732 * backing vp's VOP_GETPAGES. 733 */ 734 static int 735 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 736 int *rahead) 737 { 738 struct vnode *vp; 739 int rtval; 740 741 /* Handle is stable with paging in progress. */ 742 vp = object->handle; 743 rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead); 744 KASSERT(rtval != EOPNOTSUPP, 745 ("vnode_pager: FS getpages not implemented\n")); 746 return rtval; 747 } 748 749 static int 750 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 751 int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg) 752 { 753 struct vnode *vp; 754 int rtval; 755 756 vp = object->handle; 757 rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg); 758 KASSERT(rtval != EOPNOTSUPP, 759 ("vnode_pager: FS getpages_async not implemented\n")); 760 return (rtval); 761 } 762 763 /* 764 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for 765 * local filesystems, where partially valid pages can only occur at 766 * the end of file. 767 */ 768 int 769 vnode_pager_local_getpages(struct vop_getpages_args *ap) 770 { 771 772 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 773 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 774 } 775 776 int 777 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap) 778 { 779 int error; 780 781 error = vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 782 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); 783 if (error != 0 && ap->a_iodone != NULL) 784 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); 785 return (error); 786 } 787 788 /* 789 * This is now called from local media FS's to operate against their 790 * own vnodes if they fail to implement VOP_GETPAGES. 791 */ 792 int 793 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count, 794 int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg) 795 { 796 vm_object_t object; 797 struct bufobj *bo; 798 struct buf *bp; 799 off_t foff; 800 #ifdef INVARIANTS 801 off_t blkno0; 802 #endif 803 int bsize, pagesperblock; 804 int error, before, after, rbehind, rahead, poff, i; 805 int bytecount, secmask; 806 807 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 808 ("%s does not support devices", __func__)); 809 810 if (VN_IS_DOOMED(vp)) 811 return (VM_PAGER_BAD); 812 813 object = vp->v_object; 814 foff = IDX_TO_OFF(m[0]->pindex); 815 bsize = vp->v_mount->mnt_stat.f_iosize; 816 pagesperblock = bsize / PAGE_SIZE; 817 818 KASSERT(foff < object->un_pager.vnp.vnp_size, 819 ("%s: page %p offset beyond vp %p size", __func__, m[0], vp)); 820 KASSERT(count <= nitems(bp->b_pages), 821 ("%s: requested %d pages", __func__, count)); 822 823 /* 824 * The last page has valid blocks. Invalid part can only 825 * exist at the end of file, and the page is made fully valid 826 * by zeroing in vm_pager_get_pages(). 827 */ 828 if (!vm_page_none_valid(m[count - 1]) && --count == 0) { 829 if (iodone != NULL) 830 iodone(arg, m, 1, 0); 831 return (VM_PAGER_OK); 832 } 833 834 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 835 836 /* 837 * Get the underlying device blocks for the file with VOP_BMAP(). 838 * If the file system doesn't support VOP_BMAP, use old way of 839 * getting pages via VOP_READ. 840 */ 841 error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before); 842 if (error == EOPNOTSUPP) { 843 uma_zfree(vnode_pbuf_zone, bp); 844 VM_OBJECT_WLOCK(object); 845 for (i = 0; i < count; i++) { 846 VM_CNT_INC(v_vnodein); 847 VM_CNT_INC(v_vnodepgsin); 848 error = vnode_pager_input_old(object, m[i]); 849 if (error) 850 break; 851 } 852 VM_OBJECT_WUNLOCK(object); 853 return (error); 854 } else if (error != 0) { 855 uma_zfree(vnode_pbuf_zone, bp); 856 return (VM_PAGER_ERROR); 857 } 858 859 /* 860 * If the file system supports BMAP, but blocksize is smaller 861 * than a page size, then use special small filesystem code. 862 */ 863 if (pagesperblock == 0) { 864 uma_zfree(vnode_pbuf_zone, bp); 865 for (i = 0; i < count; i++) { 866 VM_CNT_INC(v_vnodein); 867 VM_CNT_INC(v_vnodepgsin); 868 error = vnode_pager_input_smlfs(object, m[i]); 869 if (error) 870 break; 871 } 872 return (error); 873 } 874 875 /* 876 * A sparse file can be encountered only for a single page request, 877 * which may not be preceded by call to vm_pager_haspage(). 878 */ 879 if (bp->b_blkno == -1) { 880 KASSERT(count == 1, 881 ("%s: array[%d] request to a sparse file %p", __func__, 882 count, vp)); 883 uma_zfree(vnode_pbuf_zone, bp); 884 pmap_zero_page(m[0]); 885 KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty", 886 __func__, m[0])); 887 vm_page_valid(m[0]); 888 return (VM_PAGER_OK); 889 } 890 891 #ifdef INVARIANTS 892 blkno0 = bp->b_blkno; 893 #endif 894 bp->b_blkno += (foff % bsize) / DEV_BSIZE; 895 896 /* Recalculate blocks available after/before to pages. */ 897 poff = (foff % bsize) / PAGE_SIZE; 898 before *= pagesperblock; 899 before += poff; 900 after *= pagesperblock; 901 after += pagesperblock - (poff + 1); 902 if (m[0]->pindex + after >= object->size) 903 after = object->size - 1 - m[0]->pindex; 904 KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d", 905 __func__, count, after + 1)); 906 after -= count - 1; 907 908 /* Trim requested rbehind/rahead to possible values. */ 909 rbehind = a_rbehind ? *a_rbehind : 0; 910 rahead = a_rahead ? *a_rahead : 0; 911 rbehind = min(rbehind, before); 912 rbehind = min(rbehind, m[0]->pindex); 913 rahead = min(rahead, after); 914 rahead = min(rahead, object->size - m[count - 1]->pindex); 915 /* 916 * Check that total amount of pages fit into buf. Trim rbehind and 917 * rahead evenly if not. 918 */ 919 if (rbehind + rahead + count > nitems(bp->b_pages)) { 920 int trim, sum; 921 922 trim = rbehind + rahead + count - nitems(bp->b_pages) + 1; 923 sum = rbehind + rahead; 924 if (rbehind == before) { 925 /* Roundup rbehind trim to block size. */ 926 rbehind -= roundup(trim * rbehind / sum, pagesperblock); 927 if (rbehind < 0) 928 rbehind = 0; 929 } else 930 rbehind -= trim * rbehind / sum; 931 rahead -= trim * rahead / sum; 932 } 933 KASSERT(rbehind + rahead + count <= nitems(bp->b_pages), 934 ("%s: behind %d ahead %d count %d", __func__, 935 rbehind, rahead, count)); 936 937 /* 938 * Fill in the bp->b_pages[] array with requested and optional 939 * read behind or read ahead pages. Read behind pages are looked 940 * up in a backward direction, down to a first cached page. Same 941 * for read ahead pages, but there is no need to shift the array 942 * in case of encountering a cached page. 943 */ 944 i = bp->b_npages = 0; 945 if (rbehind) { 946 vm_pindex_t startpindex, tpindex; 947 vm_page_t p; 948 949 VM_OBJECT_WLOCK(object); 950 startpindex = m[0]->pindex - rbehind; 951 if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL && 952 p->pindex >= startpindex) 953 startpindex = p->pindex + 1; 954 955 /* tpindex is unsigned; beware of numeric underflow. */ 956 for (tpindex = m[0]->pindex - 1; 957 tpindex >= startpindex && tpindex < m[0]->pindex; 958 tpindex--, i++) { 959 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 960 if (p == NULL) { 961 /* Shift the array. */ 962 for (int j = 0; j < i; j++) 963 bp->b_pages[j] = bp->b_pages[j + 964 tpindex + 1 - startpindex]; 965 break; 966 } 967 bp->b_pages[tpindex - startpindex] = p; 968 } 969 970 bp->b_pgbefore = i; 971 bp->b_npages += i; 972 bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE; 973 } else 974 bp->b_pgbefore = 0; 975 976 /* Requested pages. */ 977 for (int j = 0; j < count; j++, i++) 978 bp->b_pages[i] = m[j]; 979 bp->b_npages += count; 980 981 if (rahead) { 982 vm_pindex_t endpindex, tpindex; 983 vm_page_t p; 984 985 if (!VM_OBJECT_WOWNED(object)) 986 VM_OBJECT_WLOCK(object); 987 endpindex = m[count - 1]->pindex + rahead + 1; 988 if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL && 989 p->pindex < endpindex) 990 endpindex = p->pindex; 991 if (endpindex > object->size) 992 endpindex = object->size; 993 994 for (tpindex = m[count - 1]->pindex + 1; 995 tpindex < endpindex; i++, tpindex++) { 996 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 997 if (p == NULL) 998 break; 999 bp->b_pages[i] = p; 1000 } 1001 1002 bp->b_pgafter = i - bp->b_npages; 1003 bp->b_npages = i; 1004 } else 1005 bp->b_pgafter = 0; 1006 1007 if (VM_OBJECT_WOWNED(object)) 1008 VM_OBJECT_WUNLOCK(object); 1009 1010 /* Report back actual behind/ahead read. */ 1011 if (a_rbehind) 1012 *a_rbehind = bp->b_pgbefore; 1013 if (a_rahead) 1014 *a_rahead = bp->b_pgafter; 1015 1016 #ifdef INVARIANTS 1017 KASSERT(bp->b_npages <= nitems(bp->b_pages), 1018 ("%s: buf %p overflowed", __func__, bp)); 1019 for (int j = 1, prev = 0; j < bp->b_npages; j++) { 1020 if (bp->b_pages[j] == bogus_page) 1021 continue; 1022 KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex == 1023 j - prev, ("%s: pages array not consecutive, bp %p", 1024 __func__, bp)); 1025 prev = j; 1026 } 1027 #endif 1028 1029 /* 1030 * Recalculate first offset and bytecount with regards to read behind. 1031 * Truncate bytecount to vnode real size and round up physical size 1032 * for real devices. 1033 */ 1034 foff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1035 bytecount = bp->b_npages << PAGE_SHIFT; 1036 if ((foff + bytecount) > object->un_pager.vnp.vnp_size) 1037 bytecount = object->un_pager.vnp.vnp_size - foff; 1038 secmask = bo->bo_bsize - 1; 1039 KASSERT(secmask < PAGE_SIZE && secmask > 0, 1040 ("%s: sector size %d too large", __func__, secmask + 1)); 1041 bytecount = (bytecount + secmask) & ~secmask; 1042 1043 /* 1044 * And map the pages to be read into the kva, if the filesystem 1045 * requires mapped buffers. 1046 */ 1047 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && 1048 unmapped_buf_allowed) { 1049 bp->b_data = unmapped_buf; 1050 bp->b_offset = 0; 1051 } else { 1052 bp->b_data = bp->b_kvabase; 1053 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 1054 } 1055 1056 /* Build a minimal buffer header. */ 1057 bp->b_iocmd = BIO_READ; 1058 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 1059 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 1060 bp->b_rcred = crhold(curthread->td_ucred); 1061 bp->b_wcred = crhold(curthread->td_ucred); 1062 pbgetbo(bo, bp); 1063 bp->b_vp = vp; 1064 bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount; 1065 bp->b_iooffset = dbtob(bp->b_blkno); 1066 KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) == 1067 (blkno0 - bp->b_blkno) * DEV_BSIZE + 1068 IDX_TO_OFF(m[0]->pindex) % bsize, 1069 ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju " 1070 "blkno0 %ju b_blkno %ju", bsize, 1071 (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex, 1072 (uintmax_t)blkno0, (uintmax_t)bp->b_blkno)); 1073 1074 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 1075 VM_CNT_INC(v_vnodein); 1076 VM_CNT_ADD(v_vnodepgsin, bp->b_npages); 1077 1078 if (iodone != NULL) { /* async */ 1079 bp->b_pgiodone = iodone; 1080 bp->b_caller1 = arg; 1081 bp->b_iodone = vnode_pager_generic_getpages_done_async; 1082 bp->b_flags |= B_ASYNC; 1083 BUF_KERNPROC(bp); 1084 bstrategy(bp); 1085 return (VM_PAGER_OK); 1086 } else { 1087 bp->b_iodone = bdone; 1088 bstrategy(bp); 1089 bwait(bp, PVM, "vnread"); 1090 error = vnode_pager_generic_getpages_done(bp); 1091 for (i = 0; i < bp->b_npages; i++) 1092 bp->b_pages[i] = NULL; 1093 bp->b_vp = NULL; 1094 pbrelbo(bp); 1095 uma_zfree(vnode_pbuf_zone, bp); 1096 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); 1097 } 1098 } 1099 1100 static void 1101 vnode_pager_generic_getpages_done_async(struct buf *bp) 1102 { 1103 int error; 1104 1105 error = vnode_pager_generic_getpages_done(bp); 1106 /* Run the iodone upon the requested range. */ 1107 bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore, 1108 bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error); 1109 for (int i = 0; i < bp->b_npages; i++) 1110 bp->b_pages[i] = NULL; 1111 bp->b_vp = NULL; 1112 pbrelbo(bp); 1113 uma_zfree(vnode_pbuf_zone, bp); 1114 } 1115 1116 static int 1117 vnode_pager_generic_getpages_done(struct buf *bp) 1118 { 1119 vm_object_t object; 1120 off_t tfoff, nextoff; 1121 int i, error; 1122 1123 KASSERT((bp->b_ioflags & BIO_ERROR) == 0 || bp->b_error != 0, 1124 ("%s: buf error but b_error == 0\n", __func__)); 1125 error = (bp->b_ioflags & BIO_ERROR) != 0 ? bp->b_error : 0; 1126 object = bp->b_vp->v_object; 1127 1128 if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) { 1129 if (!buf_mapped(bp)) { 1130 bp->b_data = bp->b_kvabase; 1131 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, 1132 bp->b_npages); 1133 } 1134 bzero(bp->b_data + bp->b_bcount, 1135 PAGE_SIZE * bp->b_npages - bp->b_bcount); 1136 } 1137 if (buf_mapped(bp)) { 1138 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1139 bp->b_data = unmapped_buf; 1140 } 1141 1142 /* 1143 * If the read failed, we must free any read ahead/behind pages here. 1144 * The requested pages are freed by the caller (for sync requests) 1145 * or by the bp->b_pgiodone callback (for async requests). 1146 */ 1147 if (error != 0) { 1148 VM_OBJECT_WLOCK(object); 1149 for (i = 0; i < bp->b_pgbefore; i++) 1150 vm_page_free_invalid(bp->b_pages[i]); 1151 for (i = bp->b_npages - bp->b_pgafter; i < bp->b_npages; i++) 1152 vm_page_free_invalid(bp->b_pages[i]); 1153 VM_OBJECT_WUNLOCK(object); 1154 return (error); 1155 } 1156 1157 /* Read lock to protect size. */ 1158 VM_OBJECT_RLOCK(object); 1159 for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1160 i < bp->b_npages; i++, tfoff = nextoff) { 1161 vm_page_t mt; 1162 1163 nextoff = tfoff + PAGE_SIZE; 1164 mt = bp->b_pages[i]; 1165 if (mt == bogus_page) 1166 continue; 1167 1168 if (nextoff <= object->un_pager.vnp.vnp_size) { 1169 /* 1170 * Read filled up entire page. 1171 */ 1172 vm_page_valid(mt); 1173 KASSERT(mt->dirty == 0, 1174 ("%s: page %p is dirty", __func__, mt)); 1175 KASSERT(!pmap_page_is_mapped(mt), 1176 ("%s: page %p is mapped", __func__, mt)); 1177 } else { 1178 /* 1179 * Read did not fill up entire page. 1180 * 1181 * Currently we do not set the entire page valid, 1182 * we just try to clear the piece that we couldn't 1183 * read. 1184 */ 1185 vm_page_set_valid_range(mt, 0, 1186 object->un_pager.vnp.vnp_size - tfoff); 1187 KASSERT((mt->dirty & vm_page_bits(0, 1188 object->un_pager.vnp.vnp_size - tfoff)) == 0, 1189 ("%s: page %p is dirty", __func__, mt)); 1190 } 1191 1192 if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter) 1193 vm_page_readahead_finish(mt); 1194 } 1195 VM_OBJECT_RUNLOCK(object); 1196 1197 return (error); 1198 } 1199 1200 /* 1201 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 1202 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 1203 * vnode_pager_generic_putpages() to implement the previous behaviour. 1204 * 1205 * All other FS's should use the bypass to get to the local media 1206 * backing vp's VOP_PUTPAGES. 1207 */ 1208 static void 1209 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1210 int flags, int *rtvals) 1211 { 1212 int rtval; 1213 struct vnode *vp; 1214 int bytes = count * PAGE_SIZE; 1215 1216 /* 1217 * Force synchronous operation if we are extremely low on memory 1218 * to prevent a low-memory deadlock. VOP operations often need to 1219 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1220 * operation ). The swapper handles the case by limiting the amount 1221 * of asynchronous I/O, but that sort of solution doesn't scale well 1222 * for the vnode pager without a lot of work. 1223 * 1224 * Also, the backing vnode's iodone routine may not wake the pageout 1225 * daemon up. This should be probably be addressed XXX. 1226 */ 1227 1228 if (vm_page_count_min()) 1229 flags |= VM_PAGER_PUT_SYNC; 1230 1231 /* 1232 * Call device-specific putpages function 1233 */ 1234 vp = object->handle; 1235 VM_OBJECT_WUNLOCK(object); 1236 rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals); 1237 KASSERT(rtval != EOPNOTSUPP, 1238 ("vnode_pager: stale FS putpages\n")); 1239 VM_OBJECT_WLOCK(object); 1240 } 1241 1242 static int 1243 vn_off2bidx(vm_ooffset_t offset) 1244 { 1245 1246 return ((offset & PAGE_MASK) / DEV_BSIZE); 1247 } 1248 1249 static bool 1250 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset) 1251 { 1252 1253 KASSERT(IDX_TO_OFF(m->pindex) <= offset && 1254 offset < IDX_TO_OFF(m->pindex + 1), 1255 ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex, 1256 (uintmax_t)offset)); 1257 return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0); 1258 } 1259 1260 /* 1261 * This is now called from local media FS's to operate against their 1262 * own vnodes if they fail to implement VOP_PUTPAGES. 1263 * 1264 * This is typically called indirectly via the pageout daemon and 1265 * clustering has already typically occurred, so in general we ask the 1266 * underlying filesystem to write the data out asynchronously rather 1267 * then delayed. 1268 */ 1269 int 1270 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, 1271 int flags, int *rtvals) 1272 { 1273 vm_object_t object; 1274 vm_page_t m; 1275 vm_ooffset_t maxblksz, next_offset, poffset, prev_offset; 1276 struct uio auio; 1277 struct iovec aiov; 1278 off_t prev_resid, wrsz; 1279 int count, error, i, maxsize, ncount, pgoff, ppscheck; 1280 bool in_hole; 1281 static struct timeval lastfail; 1282 static int curfail; 1283 1284 object = vp->v_object; 1285 count = bytecount / PAGE_SIZE; 1286 1287 for (i = 0; i < count; i++) 1288 rtvals[i] = VM_PAGER_ERROR; 1289 1290 if ((int64_t)ma[0]->pindex < 0) { 1291 printf("vnode_pager_generic_putpages: " 1292 "attempt to write meta-data 0x%jx(%lx)\n", 1293 (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty); 1294 rtvals[0] = VM_PAGER_BAD; 1295 return (VM_PAGER_BAD); 1296 } 1297 1298 maxsize = count * PAGE_SIZE; 1299 ncount = count; 1300 1301 poffset = IDX_TO_OFF(ma[0]->pindex); 1302 1303 /* 1304 * If the page-aligned write is larger then the actual file we 1305 * have to invalidate pages occurring beyond the file EOF. However, 1306 * there is an edge case where a file may not be page-aligned where 1307 * the last page is partially invalid. In this case the filesystem 1308 * may not properly clear the dirty bits for the entire page (which 1309 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1310 * With the page busied we are free to fix up the dirty bits here. 1311 * 1312 * We do not under any circumstances truncate the valid bits, as 1313 * this will screw up bogus page replacement. 1314 */ 1315 VM_OBJECT_RLOCK(object); 1316 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1317 if (object->un_pager.vnp.vnp_size > poffset) { 1318 maxsize = object->un_pager.vnp.vnp_size - poffset; 1319 ncount = btoc(maxsize); 1320 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1321 pgoff = roundup2(pgoff, DEV_BSIZE); 1322 1323 /* 1324 * If the page is busy and the following 1325 * conditions hold, then the page's dirty 1326 * field cannot be concurrently changed by a 1327 * pmap operation. 1328 */ 1329 m = ma[ncount - 1]; 1330 vm_page_assert_sbusied(m); 1331 KASSERT(!pmap_page_is_write_mapped(m), 1332 ("vnode_pager_generic_putpages: page %p is not read-only", m)); 1333 MPASS(m->dirty != 0); 1334 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 1335 pgoff); 1336 } 1337 } else { 1338 maxsize = 0; 1339 ncount = 0; 1340 } 1341 for (i = ncount; i < count; i++) 1342 rtvals[i] = VM_PAGER_BAD; 1343 } 1344 VM_OBJECT_RUNLOCK(object); 1345 1346 auio.uio_iov = &aiov; 1347 auio.uio_segflg = UIO_NOCOPY; 1348 auio.uio_rw = UIO_WRITE; 1349 auio.uio_td = NULL; 1350 maxblksz = roundup2(poffset + maxsize, DEV_BSIZE); 1351 1352 for (prev_offset = poffset; prev_offset < maxblksz;) { 1353 /* Skip clean blocks. */ 1354 for (in_hole = true; in_hole && prev_offset < maxblksz;) { 1355 m = ma[OFF_TO_IDX(prev_offset - poffset)]; 1356 for (i = vn_off2bidx(prev_offset); 1357 i < sizeof(vm_page_bits_t) * NBBY && 1358 prev_offset < maxblksz; i++) { 1359 if (vn_dirty_blk(m, prev_offset)) { 1360 in_hole = false; 1361 break; 1362 } 1363 prev_offset += DEV_BSIZE; 1364 } 1365 } 1366 if (in_hole) 1367 goto write_done; 1368 1369 /* Find longest run of dirty blocks. */ 1370 for (next_offset = prev_offset; next_offset < maxblksz;) { 1371 m = ma[OFF_TO_IDX(next_offset - poffset)]; 1372 for (i = vn_off2bidx(next_offset); 1373 i < sizeof(vm_page_bits_t) * NBBY && 1374 next_offset < maxblksz; i++) { 1375 if (!vn_dirty_blk(m, next_offset)) 1376 goto start_write; 1377 next_offset += DEV_BSIZE; 1378 } 1379 } 1380 start_write: 1381 if (next_offset > poffset + maxsize) 1382 next_offset = poffset + maxsize; 1383 1384 /* 1385 * Getting here requires finding a dirty block in the 1386 * 'skip clean blocks' loop. 1387 */ 1388 MPASS(prev_offset < next_offset); 1389 1390 aiov.iov_base = NULL; 1391 auio.uio_iovcnt = 1; 1392 auio.uio_offset = prev_offset; 1393 prev_resid = auio.uio_resid = aiov.iov_len = next_offset - 1394 prev_offset; 1395 error = VOP_WRITE(vp, &auio, 1396 vnode_pager_putpages_ioflags(flags), curthread->td_ucred); 1397 1398 wrsz = prev_resid - auio.uio_resid; 1399 if (wrsz == 0) { 1400 if (ppsratecheck(&lastfail, &curfail, 1) != 0) { 1401 vn_printf(vp, "vnode_pager_putpages: " 1402 "zero-length write at %ju resid %zd\n", 1403 auio.uio_offset, auio.uio_resid); 1404 } 1405 break; 1406 } 1407 1408 /* Adjust the starting offset for next iteration. */ 1409 prev_offset += wrsz; 1410 MPASS(auio.uio_offset == prev_offset); 1411 1412 ppscheck = 0; 1413 if (error != 0 && (ppscheck = ppsratecheck(&lastfail, 1414 &curfail, 1)) != 0) 1415 vn_printf(vp, "vnode_pager_putpages: I/O error %d\n", 1416 error); 1417 if (auio.uio_resid != 0 && (ppscheck != 0 || 1418 ppsratecheck(&lastfail, &curfail, 1) != 0)) 1419 vn_printf(vp, "vnode_pager_putpages: residual I/O %zd " 1420 "at %ju\n", auio.uio_resid, 1421 (uintmax_t)ma[0]->pindex); 1422 if (error != 0 || auio.uio_resid != 0) 1423 break; 1424 } 1425 write_done: 1426 /* Mark completely processed pages. */ 1427 for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++) 1428 rtvals[i] = VM_PAGER_OK; 1429 /* Mark partial EOF page. */ 1430 if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0) 1431 rtvals[i++] = VM_PAGER_OK; 1432 /* Unwritten pages in range, free bonus if the page is clean. */ 1433 for (; i < ncount; i++) 1434 rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR; 1435 VM_CNT_ADD(v_vnodepgsout, i); 1436 VM_CNT_INC(v_vnodeout); 1437 return (rtvals[0]); 1438 } 1439 1440 int 1441 vnode_pager_putpages_ioflags(int pager_flags) 1442 { 1443 int ioflags; 1444 1445 /* 1446 * Pageouts are already clustered, use IO_ASYNC to force a 1447 * bawrite() rather then a bdwrite() to prevent paging I/O 1448 * from saturating the buffer cache. Dummy-up the sequential 1449 * heuristic to cause large ranges to cluster. If neither 1450 * IO_SYNC or IO_ASYNC is set, the system decides how to 1451 * cluster. 1452 */ 1453 ioflags = IO_VMIO; 1454 if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0) 1455 ioflags |= IO_SYNC; 1456 else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0) 1457 ioflags |= IO_ASYNC; 1458 ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0; 1459 ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0; 1460 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1461 return (ioflags); 1462 } 1463 1464 /* 1465 * vnode_pager_undirty_pages(). 1466 * 1467 * A helper to mark pages as clean after pageout that was possibly 1468 * done with a short write. The lpos argument specifies the page run 1469 * length in bytes, and the written argument specifies how many bytes 1470 * were actually written. eof is the offset past the last valid byte 1471 * in the vnode using the absolute file position of the first byte in 1472 * the run as the base from which it is computed. 1473 */ 1474 void 1475 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof, 1476 int lpos) 1477 { 1478 vm_object_t obj; 1479 int i, pos, pos_devb; 1480 1481 if (written == 0 && eof >= lpos) 1482 return; 1483 obj = ma[0]->object; 1484 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { 1485 if (pos < trunc_page(written)) { 1486 rtvals[i] = VM_PAGER_OK; 1487 vm_page_undirty(ma[i]); 1488 } else { 1489 /* Partially written page. */ 1490 rtvals[i] = VM_PAGER_AGAIN; 1491 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); 1492 } 1493 } 1494 if (eof >= lpos) /* avoid truncation */ 1495 return; 1496 for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) { 1497 if (pos != trunc_page(pos)) { 1498 /* 1499 * The page contains the last valid byte in 1500 * the vnode, mark the rest of the page as 1501 * clean, potentially making the whole page 1502 * clean. 1503 */ 1504 pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE); 1505 vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE - 1506 pos_devb); 1507 1508 /* 1509 * If the page was cleaned, report the pageout 1510 * on it as successful. msync() no longer 1511 * needs to write out the page, endlessly 1512 * creating write requests and dirty buffers. 1513 */ 1514 if (ma[i]->dirty == 0) 1515 rtvals[i] = VM_PAGER_OK; 1516 1517 pos = round_page(pos); 1518 } else { 1519 /* vm_pageout_flush() clears dirty */ 1520 rtvals[i] = VM_PAGER_BAD; 1521 pos += PAGE_SIZE; 1522 } 1523 } 1524 } 1525 1526 static void 1527 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, 1528 vm_offset_t end) 1529 { 1530 struct vnode *vp; 1531 vm_ooffset_t old_wm; 1532 1533 VM_OBJECT_WLOCK(object); 1534 if (object->type != OBJT_VNODE) { 1535 VM_OBJECT_WUNLOCK(object); 1536 return; 1537 } 1538 old_wm = object->un_pager.vnp.writemappings; 1539 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; 1540 vp = object->handle; 1541 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { 1542 ASSERT_VOP_LOCKED(vp, "v_writecount inc"); 1543 VOP_ADD_WRITECOUNT_CHECKED(vp, 1); 1544 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 1545 __func__, vp, vp->v_writecount); 1546 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { 1547 ASSERT_VOP_LOCKED(vp, "v_writecount dec"); 1548 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 1549 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 1550 __func__, vp, vp->v_writecount); 1551 } 1552 VM_OBJECT_WUNLOCK(object); 1553 } 1554 1555 static void 1556 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, 1557 vm_offset_t end) 1558 { 1559 struct vnode *vp; 1560 struct mount *mp; 1561 vm_offset_t inc; 1562 1563 VM_OBJECT_WLOCK(object); 1564 1565 /* 1566 * First, recheck the object type to account for the race when 1567 * the vnode is reclaimed. 1568 */ 1569 if (object->type != OBJT_VNODE) { 1570 VM_OBJECT_WUNLOCK(object); 1571 return; 1572 } 1573 1574 /* 1575 * Optimize for the case when writemappings is not going to 1576 * zero. 1577 */ 1578 inc = end - start; 1579 if (object->un_pager.vnp.writemappings != inc) { 1580 object->un_pager.vnp.writemappings -= inc; 1581 VM_OBJECT_WUNLOCK(object); 1582 return; 1583 } 1584 1585 vp = object->handle; 1586 vhold(vp); 1587 VM_OBJECT_WUNLOCK(object); 1588 mp = NULL; 1589 vn_start_write(vp, &mp, V_WAIT); 1590 vn_lock(vp, LK_SHARED | LK_RETRY); 1591 1592 /* 1593 * Decrement the object's writemappings, by swapping the start 1594 * and end arguments for vnode_pager_update_writecount(). If 1595 * there was not a race with vnode reclaimation, then the 1596 * vnode's v_writecount is decremented. 1597 */ 1598 vnode_pager_update_writecount(object, end, start); 1599 VOP_UNLOCK(vp); 1600 vdrop(vp); 1601 if (mp != NULL) 1602 vn_finished_write(mp); 1603 } 1604