1 /*- 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/limits.h> 65 #include <sys/conf.h> 66 #include <sys/sf_buf.h> 67 68 #include <machine/atomic.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_param.h> 72 #include <vm/vm_object.h> 73 #include <vm/vm_page.h> 74 #include <vm/vm_pager.h> 75 #include <vm/vm_map.h> 76 #include <vm/vnode_pager.h> 77 #include <vm/vm_extern.h> 78 79 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 80 daddr_t *rtaddress, int *run); 81 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 82 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 83 static void vnode_pager_dealloc(vm_object_t); 84 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 85 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 86 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 87 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, 88 vm_ooffset_t, struct ucred *cred); 89 90 struct pagerops vnodepagerops = { 91 .pgo_alloc = vnode_pager_alloc, 92 .pgo_dealloc = vnode_pager_dealloc, 93 .pgo_getpages = vnode_pager_getpages, 94 .pgo_putpages = vnode_pager_putpages, 95 .pgo_haspage = vnode_pager_haspage, 96 }; 97 98 int vnode_pbuf_freecnt; 99 100 /* Create the VM system backing object for this vnode */ 101 int 102 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 103 { 104 vm_object_t object; 105 vm_ooffset_t size = isize; 106 struct vattr va; 107 108 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 109 return (0); 110 111 while ((object = vp->v_object) != NULL) { 112 VM_OBJECT_LOCK(object); 113 if (!(object->flags & OBJ_DEAD)) { 114 VM_OBJECT_UNLOCK(object); 115 return (0); 116 } 117 VOP_UNLOCK(vp, 0); 118 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 119 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0); 120 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 121 } 122 123 if (size == 0) { 124 if (vn_isdisk(vp, NULL)) { 125 size = IDX_TO_OFF(INT_MAX); 126 } else { 127 if (VOP_GETATTR(vp, &va, td->td_ucred)) 128 return (0); 129 size = va.va_size; 130 } 131 } 132 133 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); 134 /* 135 * Dereference the reference we just created. This assumes 136 * that the object is associated with the vp. 137 */ 138 VM_OBJECT_LOCK(object); 139 object->ref_count--; 140 VM_OBJECT_UNLOCK(object); 141 vrele(vp); 142 143 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 144 145 return (0); 146 } 147 148 void 149 vnode_destroy_vobject(struct vnode *vp) 150 { 151 struct vm_object *obj; 152 153 obj = vp->v_object; 154 if (obj == NULL) 155 return; 156 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 157 VM_OBJECT_LOCK(obj); 158 if (obj->ref_count == 0) { 159 /* 160 * vclean() may be called twice. The first time 161 * removes the primary reference to the object, 162 * the second time goes one further and is a 163 * special-case to terminate the object. 164 * 165 * don't double-terminate the object 166 */ 167 if ((obj->flags & OBJ_DEAD) == 0) 168 vm_object_terminate(obj); 169 else 170 VM_OBJECT_UNLOCK(obj); 171 } else { 172 /* 173 * Woe to the process that tries to page now :-). 174 */ 175 vm_pager_deallocate(obj); 176 VM_OBJECT_UNLOCK(obj); 177 } 178 vp->v_object = NULL; 179 } 180 181 182 /* 183 * Allocate (or lookup) pager for a vnode. 184 * Handle is a vnode pointer. 185 * 186 * MPSAFE 187 */ 188 vm_object_t 189 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 190 vm_ooffset_t offset, struct ucred *cred) 191 { 192 vm_object_t object; 193 struct vnode *vp; 194 195 /* 196 * Pageout to vnode, no can do yet. 197 */ 198 if (handle == NULL) 199 return (NULL); 200 201 vp = (struct vnode *) handle; 202 203 /* 204 * If the object is being terminated, wait for it to 205 * go away. 206 */ 207 retry: 208 while ((object = vp->v_object) != NULL) { 209 VM_OBJECT_LOCK(object); 210 if ((object->flags & OBJ_DEAD) == 0) 211 break; 212 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 213 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 214 } 215 216 if (vp->v_usecount == 0) 217 panic("vnode_pager_alloc: no vnode reference"); 218 219 if (object == NULL) { 220 /* 221 * Add an object of the appropriate size 222 */ 223 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 224 225 object->un_pager.vnp.vnp_size = size; 226 object->un_pager.vnp.writemappings = 0; 227 228 object->handle = handle; 229 VI_LOCK(vp); 230 if (vp->v_object != NULL) { 231 /* 232 * Object has been created while we were sleeping 233 */ 234 VI_UNLOCK(vp); 235 vm_object_destroy(object); 236 goto retry; 237 } 238 vp->v_object = object; 239 VI_UNLOCK(vp); 240 } else { 241 object->ref_count++; 242 VM_OBJECT_UNLOCK(object); 243 } 244 vref(vp); 245 return (object); 246 } 247 248 /* 249 * The object must be locked. 250 */ 251 static void 252 vnode_pager_dealloc(object) 253 vm_object_t object; 254 { 255 struct vnode *vp; 256 int refs; 257 258 vp = object->handle; 259 if (vp == NULL) 260 panic("vnode_pager_dealloc: pager already dealloced"); 261 262 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 263 vm_object_pip_wait(object, "vnpdea"); 264 refs = object->ref_count; 265 266 object->handle = NULL; 267 object->type = OBJT_DEAD; 268 if (object->flags & OBJ_DISCONNECTWNT) { 269 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 270 wakeup(object); 271 } 272 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 273 if (object->un_pager.vnp.writemappings > 0) { 274 object->un_pager.vnp.writemappings = 0; 275 vp->v_writecount--; 276 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 277 __func__, vp, vp->v_writecount); 278 } 279 vp->v_object = NULL; 280 VOP_UNSET_TEXT(vp); 281 VM_OBJECT_UNLOCK(object); 282 while (refs-- > 0) 283 vunref(vp); 284 VM_OBJECT_LOCK(object); 285 } 286 287 static boolean_t 288 vnode_pager_haspage(object, pindex, before, after) 289 vm_object_t object; 290 vm_pindex_t pindex; 291 int *before; 292 int *after; 293 { 294 struct vnode *vp = object->handle; 295 daddr_t bn; 296 int err; 297 daddr_t reqblock; 298 int poff; 299 int bsize; 300 int pagesperblock, blocksperpage; 301 int vfslocked; 302 303 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 304 /* 305 * If no vp or vp is doomed or marked transparent to VM, we do not 306 * have the page. 307 */ 308 if (vp == NULL || vp->v_iflag & VI_DOOMED) 309 return FALSE; 310 /* 311 * If the offset is beyond end of file we do 312 * not have the page. 313 */ 314 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 315 return FALSE; 316 317 bsize = vp->v_mount->mnt_stat.f_iosize; 318 pagesperblock = bsize / PAGE_SIZE; 319 blocksperpage = 0; 320 if (pagesperblock > 0) { 321 reqblock = pindex / pagesperblock; 322 } else { 323 blocksperpage = (PAGE_SIZE / bsize); 324 reqblock = pindex * blocksperpage; 325 } 326 VM_OBJECT_UNLOCK(object); 327 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 328 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 329 VFS_UNLOCK_GIANT(vfslocked); 330 VM_OBJECT_LOCK(object); 331 if (err) 332 return TRUE; 333 if (bn == -1) 334 return FALSE; 335 if (pagesperblock > 0) { 336 poff = pindex - (reqblock * pagesperblock); 337 if (before) { 338 *before *= pagesperblock; 339 *before += poff; 340 } 341 if (after) { 342 int numafter; 343 *after *= pagesperblock; 344 numafter = pagesperblock - (poff + 1); 345 if (IDX_TO_OFF(pindex + numafter) > 346 object->un_pager.vnp.vnp_size) { 347 numafter = 348 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 349 pindex; 350 } 351 *after += numafter; 352 } 353 } else { 354 if (before) { 355 *before /= blocksperpage; 356 } 357 358 if (after) { 359 *after /= blocksperpage; 360 } 361 } 362 return TRUE; 363 } 364 365 /* 366 * Lets the VM system know about a change in size for a file. 367 * We adjust our own internal size and flush any cached pages in 368 * the associated object that are affected by the size change. 369 * 370 * Note: this routine may be invoked as a result of a pager put 371 * operation (possibly at object termination time), so we must be careful. 372 */ 373 void 374 vnode_pager_setsize(vp, nsize) 375 struct vnode *vp; 376 vm_ooffset_t nsize; 377 { 378 vm_object_t object; 379 vm_page_t m; 380 vm_pindex_t nobjsize; 381 382 if ((object = vp->v_object) == NULL) 383 return; 384 /* ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */ 385 VM_OBJECT_LOCK(object); 386 if (nsize == object->un_pager.vnp.vnp_size) { 387 /* 388 * Hasn't changed size 389 */ 390 VM_OBJECT_UNLOCK(object); 391 return; 392 } 393 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 394 if (nsize < object->un_pager.vnp.vnp_size) { 395 /* 396 * File has shrunk. Toss any cached pages beyond the new EOF. 397 */ 398 if (nobjsize < object->size) 399 vm_object_page_remove(object, nobjsize, object->size, 400 0); 401 /* 402 * this gets rid of garbage at the end of a page that is now 403 * only partially backed by the vnode. 404 * 405 * XXX for some reason (I don't know yet), if we take a 406 * completely invalid page and mark it partially valid 407 * it can screw up NFS reads, so we don't allow the case. 408 */ 409 if ((nsize & PAGE_MASK) && 410 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 411 m->valid != 0) { 412 int base = (int)nsize & PAGE_MASK; 413 int size = PAGE_SIZE - base; 414 415 /* 416 * Clear out partial-page garbage in case 417 * the page has been mapped. 418 */ 419 pmap_zero_page_area(m, base, size); 420 421 /* 422 * Update the valid bits to reflect the blocks that 423 * have been zeroed. Some of these valid bits may 424 * have already been set. 425 */ 426 vm_page_set_valid_range(m, base, size); 427 428 /* 429 * Round "base" to the next block boundary so that the 430 * dirty bit for a partially zeroed block is not 431 * cleared. 432 */ 433 base = roundup2(base, DEV_BSIZE); 434 435 /* 436 * Clear out partial-page dirty bits. 437 * 438 * note that we do not clear out the valid 439 * bits. This would prevent bogus_page 440 * replacement from working properly. 441 */ 442 vm_page_clear_dirty(m, base, PAGE_SIZE - base); 443 } else if ((nsize & PAGE_MASK) && 444 vm_page_is_cached(object, OFF_TO_IDX(nsize))) { 445 vm_page_cache_free(object, OFF_TO_IDX(nsize), 446 nobjsize); 447 } 448 } 449 object->un_pager.vnp.vnp_size = nsize; 450 object->size = nobjsize; 451 VM_OBJECT_UNLOCK(object); 452 } 453 454 /* 455 * calculate the linear (byte) disk address of specified virtual 456 * file address 457 */ 458 static int 459 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 460 int *run) 461 { 462 int bsize; 463 int err; 464 daddr_t vblock; 465 daddr_t voffset; 466 467 if (address < 0) 468 return -1; 469 470 if (vp->v_iflag & VI_DOOMED) 471 return -1; 472 473 bsize = vp->v_mount->mnt_stat.f_iosize; 474 vblock = address / bsize; 475 voffset = address % bsize; 476 477 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 478 if (err == 0) { 479 if (*rtaddress != -1) 480 *rtaddress += voffset / DEV_BSIZE; 481 if (run) { 482 *run += 1; 483 *run *= bsize/PAGE_SIZE; 484 *run -= voffset/PAGE_SIZE; 485 } 486 } 487 488 return (err); 489 } 490 491 /* 492 * small block filesystem vnode pager input 493 */ 494 static int 495 vnode_pager_input_smlfs(object, m) 496 vm_object_t object; 497 vm_page_t m; 498 { 499 struct vnode *vp; 500 struct bufobj *bo; 501 struct buf *bp; 502 struct sf_buf *sf; 503 daddr_t fileaddr; 504 vm_offset_t bsize; 505 vm_page_bits_t bits; 506 int error, i; 507 508 error = 0; 509 vp = object->handle; 510 if (vp->v_iflag & VI_DOOMED) 511 return VM_PAGER_BAD; 512 513 bsize = vp->v_mount->mnt_stat.f_iosize; 514 515 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 516 517 sf = sf_buf_alloc(m, 0); 518 519 for (i = 0; i < PAGE_SIZE / bsize; i++) { 520 vm_ooffset_t address; 521 522 bits = vm_page_bits(i * bsize, bsize); 523 if (m->valid & bits) 524 continue; 525 526 address = IDX_TO_OFF(m->pindex) + i * bsize; 527 if (address >= object->un_pager.vnp.vnp_size) { 528 fileaddr = -1; 529 } else { 530 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 531 if (error) 532 break; 533 } 534 if (fileaddr != -1) { 535 bp = getpbuf(&vnode_pbuf_freecnt); 536 537 /* build a minimal buffer header */ 538 bp->b_iocmd = BIO_READ; 539 bp->b_iodone = bdone; 540 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 541 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 542 bp->b_rcred = crhold(curthread->td_ucred); 543 bp->b_wcred = crhold(curthread->td_ucred); 544 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 545 bp->b_blkno = fileaddr; 546 pbgetbo(bo, bp); 547 bp->b_vp = vp; 548 bp->b_bcount = bsize; 549 bp->b_bufsize = bsize; 550 bp->b_runningbufspace = bp->b_bufsize; 551 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 552 553 /* do the input */ 554 bp->b_iooffset = dbtob(bp->b_blkno); 555 bstrategy(bp); 556 557 bwait(bp, PVM, "vnsrd"); 558 559 if ((bp->b_ioflags & BIO_ERROR) != 0) 560 error = EIO; 561 562 /* 563 * free the buffer header back to the swap buffer pool 564 */ 565 bp->b_vp = NULL; 566 pbrelbo(bp); 567 relpbuf(bp, &vnode_pbuf_freecnt); 568 if (error) 569 break; 570 } else 571 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 572 KASSERT((m->dirty & bits) == 0, 573 ("vnode_pager_input_smlfs: page %p is dirty", m)); 574 VM_OBJECT_LOCK(object); 575 m->valid |= bits; 576 VM_OBJECT_UNLOCK(object); 577 } 578 sf_buf_free(sf); 579 if (error) { 580 return VM_PAGER_ERROR; 581 } 582 return VM_PAGER_OK; 583 } 584 585 /* 586 * old style vnode pager input routine 587 */ 588 static int 589 vnode_pager_input_old(object, m) 590 vm_object_t object; 591 vm_page_t m; 592 { 593 struct uio auio; 594 struct iovec aiov; 595 int error; 596 int size; 597 struct sf_buf *sf; 598 struct vnode *vp; 599 600 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 601 error = 0; 602 603 /* 604 * Return failure if beyond current EOF 605 */ 606 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 607 return VM_PAGER_BAD; 608 } else { 609 size = PAGE_SIZE; 610 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 611 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 612 vp = object->handle; 613 VM_OBJECT_UNLOCK(object); 614 615 /* 616 * Allocate a kernel virtual address and initialize so that 617 * we can use VOP_READ/WRITE routines. 618 */ 619 sf = sf_buf_alloc(m, 0); 620 621 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 622 aiov.iov_len = size; 623 auio.uio_iov = &aiov; 624 auio.uio_iovcnt = 1; 625 auio.uio_offset = IDX_TO_OFF(m->pindex); 626 auio.uio_segflg = UIO_SYSSPACE; 627 auio.uio_rw = UIO_READ; 628 auio.uio_resid = size; 629 auio.uio_td = curthread; 630 631 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 632 if (!error) { 633 int count = size - auio.uio_resid; 634 635 if (count == 0) 636 error = EINVAL; 637 else if (count != PAGE_SIZE) 638 bzero((caddr_t)sf_buf_kva(sf) + count, 639 PAGE_SIZE - count); 640 } 641 sf_buf_free(sf); 642 643 VM_OBJECT_LOCK(object); 644 } 645 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 646 if (!error) 647 m->valid = VM_PAGE_BITS_ALL; 648 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 649 } 650 651 /* 652 * generic vnode pager input routine 653 */ 654 655 /* 656 * Local media VFS's that do not implement their own VOP_GETPAGES 657 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 658 * to implement the previous behaviour. 659 * 660 * All other FS's should use the bypass to get to the local media 661 * backing vp's VOP_GETPAGES. 662 */ 663 static int 664 vnode_pager_getpages(object, m, count, reqpage) 665 vm_object_t object; 666 vm_page_t *m; 667 int count; 668 int reqpage; 669 { 670 int rtval; 671 struct vnode *vp; 672 int bytes = count * PAGE_SIZE; 673 int vfslocked; 674 675 vp = object->handle; 676 VM_OBJECT_UNLOCK(object); 677 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 678 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 679 KASSERT(rtval != EOPNOTSUPP, 680 ("vnode_pager: FS getpages not implemented\n")); 681 VFS_UNLOCK_GIANT(vfslocked); 682 VM_OBJECT_LOCK(object); 683 return rtval; 684 } 685 686 /* 687 * This is now called from local media FS's to operate against their 688 * own vnodes if they fail to implement VOP_GETPAGES. 689 */ 690 int 691 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 692 struct vnode *vp; 693 vm_page_t *m; 694 int bytecount; 695 int reqpage; 696 { 697 vm_object_t object; 698 vm_offset_t kva; 699 off_t foff, tfoff, nextoff; 700 int i, j, size, bsize, first; 701 daddr_t firstaddr, reqblock; 702 struct bufobj *bo; 703 int runpg; 704 int runend; 705 struct buf *bp; 706 int count; 707 int error; 708 709 object = vp->v_object; 710 count = bytecount / PAGE_SIZE; 711 712 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 713 ("vnode_pager_generic_getpages does not support devices")); 714 if (vp->v_iflag & VI_DOOMED) 715 return VM_PAGER_BAD; 716 717 bsize = vp->v_mount->mnt_stat.f_iosize; 718 719 /* get the UNDERLYING device for the file with VOP_BMAP() */ 720 721 /* 722 * originally, we did not check for an error return value -- assuming 723 * an fs always has a bmap entry point -- that assumption is wrong!!! 724 */ 725 foff = IDX_TO_OFF(m[reqpage]->pindex); 726 727 /* 728 * if we can't bmap, use old VOP code 729 */ 730 error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL); 731 if (error == EOPNOTSUPP) { 732 VM_OBJECT_LOCK(object); 733 734 for (i = 0; i < count; i++) 735 if (i != reqpage) { 736 vm_page_lock(m[i]); 737 vm_page_free(m[i]); 738 vm_page_unlock(m[i]); 739 } 740 PCPU_INC(cnt.v_vnodein); 741 PCPU_INC(cnt.v_vnodepgsin); 742 error = vnode_pager_input_old(object, m[reqpage]); 743 VM_OBJECT_UNLOCK(object); 744 return (error); 745 } else if (error != 0) { 746 VM_OBJECT_LOCK(object); 747 for (i = 0; i < count; i++) 748 if (i != reqpage) { 749 vm_page_lock(m[i]); 750 vm_page_free(m[i]); 751 vm_page_unlock(m[i]); 752 } 753 VM_OBJECT_UNLOCK(object); 754 return (VM_PAGER_ERROR); 755 756 /* 757 * if the blocksize is smaller than a page size, then use 758 * special small filesystem code. NFS sometimes has a small 759 * blocksize, but it can handle large reads itself. 760 */ 761 } else if ((PAGE_SIZE / bsize) > 1 && 762 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 763 VM_OBJECT_LOCK(object); 764 for (i = 0; i < count; i++) 765 if (i != reqpage) { 766 vm_page_lock(m[i]); 767 vm_page_free(m[i]); 768 vm_page_unlock(m[i]); 769 } 770 VM_OBJECT_UNLOCK(object); 771 PCPU_INC(cnt.v_vnodein); 772 PCPU_INC(cnt.v_vnodepgsin); 773 return vnode_pager_input_smlfs(object, m[reqpage]); 774 } 775 776 /* 777 * If we have a completely valid page available to us, we can 778 * clean up and return. Otherwise we have to re-read the 779 * media. 780 */ 781 VM_OBJECT_LOCK(object); 782 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 783 for (i = 0; i < count; i++) 784 if (i != reqpage) { 785 vm_page_lock(m[i]); 786 vm_page_free(m[i]); 787 vm_page_unlock(m[i]); 788 } 789 VM_OBJECT_UNLOCK(object); 790 return VM_PAGER_OK; 791 } else if (reqblock == -1) { 792 pmap_zero_page(m[reqpage]); 793 KASSERT(m[reqpage]->dirty == 0, 794 ("vnode_pager_generic_getpages: page %p is dirty", m)); 795 m[reqpage]->valid = VM_PAGE_BITS_ALL; 796 for (i = 0; i < count; i++) 797 if (i != reqpage) { 798 vm_page_lock(m[i]); 799 vm_page_free(m[i]); 800 vm_page_unlock(m[i]); 801 } 802 VM_OBJECT_UNLOCK(object); 803 return (VM_PAGER_OK); 804 } 805 m[reqpage]->valid = 0; 806 VM_OBJECT_UNLOCK(object); 807 808 /* 809 * here on direct device I/O 810 */ 811 firstaddr = -1; 812 813 /* 814 * calculate the run that includes the required page 815 */ 816 for (first = 0, i = 0; i < count; i = runend) { 817 if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr, 818 &runpg) != 0) { 819 VM_OBJECT_LOCK(object); 820 for (; i < count; i++) 821 if (i != reqpage) { 822 vm_page_lock(m[i]); 823 vm_page_free(m[i]); 824 vm_page_unlock(m[i]); 825 } 826 VM_OBJECT_UNLOCK(object); 827 return (VM_PAGER_ERROR); 828 } 829 if (firstaddr == -1) { 830 VM_OBJECT_LOCK(object); 831 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 832 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 833 (intmax_t)firstaddr, (uintmax_t)(foff >> 32), 834 (uintmax_t)foff, 835 (uintmax_t) 836 (object->un_pager.vnp.vnp_size >> 32), 837 (uintmax_t)object->un_pager.vnp.vnp_size); 838 } 839 vm_page_lock(m[i]); 840 vm_page_free(m[i]); 841 vm_page_unlock(m[i]); 842 VM_OBJECT_UNLOCK(object); 843 runend = i + 1; 844 first = runend; 845 continue; 846 } 847 runend = i + runpg; 848 if (runend <= reqpage) { 849 VM_OBJECT_LOCK(object); 850 for (j = i; j < runend; j++) { 851 vm_page_lock(m[j]); 852 vm_page_free(m[j]); 853 vm_page_unlock(m[j]); 854 } 855 VM_OBJECT_UNLOCK(object); 856 } else { 857 if (runpg < (count - first)) { 858 VM_OBJECT_LOCK(object); 859 for (i = first + runpg; i < count; i++) { 860 vm_page_lock(m[i]); 861 vm_page_free(m[i]); 862 vm_page_unlock(m[i]); 863 } 864 VM_OBJECT_UNLOCK(object); 865 count = first + runpg; 866 } 867 break; 868 } 869 first = runend; 870 } 871 872 /* 873 * the first and last page have been calculated now, move input pages 874 * to be zero based... 875 */ 876 if (first != 0) { 877 m += first; 878 count -= first; 879 reqpage -= first; 880 } 881 882 /* 883 * calculate the file virtual address for the transfer 884 */ 885 foff = IDX_TO_OFF(m[0]->pindex); 886 887 /* 888 * calculate the size of the transfer 889 */ 890 size = count * PAGE_SIZE; 891 KASSERT(count > 0, ("zero count")); 892 if ((foff + size) > object->un_pager.vnp.vnp_size) 893 size = object->un_pager.vnp.vnp_size - foff; 894 KASSERT(size > 0, ("zero size")); 895 896 /* 897 * round up physical size for real devices. 898 */ 899 if (1) { 900 int secmask = bo->bo_bsize - 1; 901 KASSERT(secmask < PAGE_SIZE && secmask > 0, 902 ("vnode_pager_generic_getpages: sector size %d too large", 903 secmask + 1)); 904 size = (size + secmask) & ~secmask; 905 } 906 907 bp = getpbuf(&vnode_pbuf_freecnt); 908 kva = (vm_offset_t) bp->b_data; 909 910 /* 911 * and map the pages to be read into the kva 912 */ 913 pmap_qenter(kva, m, count); 914 915 /* build a minimal buffer header */ 916 bp->b_iocmd = BIO_READ; 917 bp->b_iodone = bdone; 918 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 919 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 920 bp->b_rcred = crhold(curthread->td_ucred); 921 bp->b_wcred = crhold(curthread->td_ucred); 922 bp->b_blkno = firstaddr; 923 pbgetbo(bo, bp); 924 bp->b_vp = vp; 925 bp->b_bcount = size; 926 bp->b_bufsize = size; 927 bp->b_runningbufspace = bp->b_bufsize; 928 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 929 930 PCPU_INC(cnt.v_vnodein); 931 PCPU_ADD(cnt.v_vnodepgsin, count); 932 933 /* do the input */ 934 bp->b_iooffset = dbtob(bp->b_blkno); 935 bstrategy(bp); 936 937 bwait(bp, PVM, "vnread"); 938 939 if ((bp->b_ioflags & BIO_ERROR) != 0) 940 error = EIO; 941 942 if (!error) { 943 if (size != count * PAGE_SIZE) 944 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 945 } 946 pmap_qremove(kva, count); 947 948 /* 949 * free the buffer header back to the swap buffer pool 950 */ 951 bp->b_vp = NULL; 952 pbrelbo(bp); 953 relpbuf(bp, &vnode_pbuf_freecnt); 954 955 VM_OBJECT_LOCK(object); 956 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 957 vm_page_t mt; 958 959 nextoff = tfoff + PAGE_SIZE; 960 mt = m[i]; 961 962 if (nextoff <= object->un_pager.vnp.vnp_size) { 963 /* 964 * Read filled up entire page. 965 */ 966 mt->valid = VM_PAGE_BITS_ALL; 967 KASSERT(mt->dirty == 0, 968 ("vnode_pager_generic_getpages: page %p is dirty", 969 mt)); 970 KASSERT(!pmap_page_is_mapped(mt), 971 ("vnode_pager_generic_getpages: page %p is mapped", 972 mt)); 973 } else { 974 /* 975 * Read did not fill up entire page. 976 * 977 * Currently we do not set the entire page valid, 978 * we just try to clear the piece that we couldn't 979 * read. 980 */ 981 vm_page_set_valid_range(mt, 0, 982 object->un_pager.vnp.vnp_size - tfoff); 983 KASSERT((mt->dirty & vm_page_bits(0, 984 object->un_pager.vnp.vnp_size - tfoff)) == 0, 985 ("vnode_pager_generic_getpages: page %p is dirty", 986 mt)); 987 } 988 989 if (i != reqpage) 990 vm_page_readahead_finish(mt); 991 } 992 VM_OBJECT_UNLOCK(object); 993 if (error) { 994 printf("vnode_pager_getpages: I/O read error\n"); 995 } 996 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 997 } 998 999 /* 1000 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 1001 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 1002 * vnode_pager_generic_putpages() to implement the previous behaviour. 1003 * 1004 * All other FS's should use the bypass to get to the local media 1005 * backing vp's VOP_PUTPAGES. 1006 */ 1007 static void 1008 vnode_pager_putpages(object, m, count, sync, rtvals) 1009 vm_object_t object; 1010 vm_page_t *m; 1011 int count; 1012 boolean_t sync; 1013 int *rtvals; 1014 { 1015 int rtval; 1016 struct vnode *vp; 1017 int bytes = count * PAGE_SIZE; 1018 1019 /* 1020 * Force synchronous operation if we are extremely low on memory 1021 * to prevent a low-memory deadlock. VOP operations often need to 1022 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1023 * operation ). The swapper handles the case by limiting the amount 1024 * of asynchronous I/O, but that sort of solution doesn't scale well 1025 * for the vnode pager without a lot of work. 1026 * 1027 * Also, the backing vnode's iodone routine may not wake the pageout 1028 * daemon up. This should be probably be addressed XXX. 1029 */ 1030 1031 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 1032 sync |= OBJPC_SYNC; 1033 1034 /* 1035 * Call device-specific putpages function 1036 */ 1037 vp = object->handle; 1038 VM_OBJECT_UNLOCK(object); 1039 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 1040 KASSERT(rtval != EOPNOTSUPP, 1041 ("vnode_pager: stale FS putpages\n")); 1042 VM_OBJECT_LOCK(object); 1043 } 1044 1045 1046 /* 1047 * This is now called from local media FS's to operate against their 1048 * own vnodes if they fail to implement VOP_PUTPAGES. 1049 * 1050 * This is typically called indirectly via the pageout daemon and 1051 * clustering has already typically occured, so in general we ask the 1052 * underlying filesystem to write the data out asynchronously rather 1053 * then delayed. 1054 */ 1055 int 1056 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, 1057 int flags, int *rtvals) 1058 { 1059 int i; 1060 vm_object_t object; 1061 vm_page_t m; 1062 int count; 1063 1064 int maxsize, ncount; 1065 vm_ooffset_t poffset; 1066 struct uio auio; 1067 struct iovec aiov; 1068 int error; 1069 int ioflags; 1070 int ppscheck = 0; 1071 static struct timeval lastfail; 1072 static int curfail; 1073 1074 object = vp->v_object; 1075 count = bytecount / PAGE_SIZE; 1076 1077 for (i = 0; i < count; i++) 1078 rtvals[i] = VM_PAGER_ERROR; 1079 1080 if ((int64_t)ma[0]->pindex < 0) { 1081 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1082 (long)ma[0]->pindex, (u_long)ma[0]->dirty); 1083 rtvals[0] = VM_PAGER_BAD; 1084 return VM_PAGER_BAD; 1085 } 1086 1087 maxsize = count * PAGE_SIZE; 1088 ncount = count; 1089 1090 poffset = IDX_TO_OFF(ma[0]->pindex); 1091 1092 /* 1093 * If the page-aligned write is larger then the actual file we 1094 * have to invalidate pages occuring beyond the file EOF. However, 1095 * there is an edge case where a file may not be page-aligned where 1096 * the last page is partially invalid. In this case the filesystem 1097 * may not properly clear the dirty bits for the entire page (which 1098 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1099 * With the page locked we are free to fix-up the dirty bits here. 1100 * 1101 * We do not under any circumstances truncate the valid bits, as 1102 * this will screw up bogus page replacement. 1103 */ 1104 VM_OBJECT_LOCK(object); 1105 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1106 if (object->un_pager.vnp.vnp_size > poffset) { 1107 int pgoff; 1108 1109 maxsize = object->un_pager.vnp.vnp_size - poffset; 1110 ncount = btoc(maxsize); 1111 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1112 /* 1113 * If the object is locked and the following 1114 * conditions hold, then the page's dirty 1115 * field cannot be concurrently changed by a 1116 * pmap operation. 1117 */ 1118 m = ma[ncount - 1]; 1119 KASSERT(m->busy > 0, 1120 ("vnode_pager_generic_putpages: page %p is not busy", m)); 1121 KASSERT(!pmap_page_is_write_mapped(m), 1122 ("vnode_pager_generic_putpages: page %p is not read-only", m)); 1123 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 1124 pgoff); 1125 } 1126 } else { 1127 maxsize = 0; 1128 ncount = 0; 1129 } 1130 if (ncount < count) { 1131 for (i = ncount; i < count; i++) { 1132 rtvals[i] = VM_PAGER_BAD; 1133 } 1134 } 1135 } 1136 VM_OBJECT_UNLOCK(object); 1137 1138 /* 1139 * pageouts are already clustered, use IO_ASYNC to force a bawrite() 1140 * rather then a bdwrite() to prevent paging I/O from saturating 1141 * the buffer cache. Dummy-up the sequential heuristic to cause 1142 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1143 * the system decides how to cluster. 1144 */ 1145 ioflags = IO_VMIO; 1146 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1147 ioflags |= IO_SYNC; 1148 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1149 ioflags |= IO_ASYNC; 1150 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1151 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1152 1153 aiov.iov_base = (caddr_t) 0; 1154 aiov.iov_len = maxsize; 1155 auio.uio_iov = &aiov; 1156 auio.uio_iovcnt = 1; 1157 auio.uio_offset = poffset; 1158 auio.uio_segflg = UIO_NOCOPY; 1159 auio.uio_rw = UIO_WRITE; 1160 auio.uio_resid = maxsize; 1161 auio.uio_td = (struct thread *) 0; 1162 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1163 PCPU_INC(cnt.v_vnodeout); 1164 PCPU_ADD(cnt.v_vnodepgsout, ncount); 1165 1166 if (error) { 1167 if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1))) 1168 printf("vnode_pager_putpages: I/O error %d\n", error); 1169 } 1170 if (auio.uio_resid) { 1171 if (ppscheck || ppsratecheck(&lastfail, &curfail, 1)) 1172 printf("vnode_pager_putpages: residual I/O %zd at %lu\n", 1173 auio.uio_resid, (u_long)ma[0]->pindex); 1174 } 1175 for (i = 0; i < ncount; i++) { 1176 rtvals[i] = VM_PAGER_OK; 1177 } 1178 return rtvals[0]; 1179 } 1180 1181 void 1182 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written) 1183 { 1184 vm_object_t obj; 1185 int i, pos; 1186 1187 if (written == 0) 1188 return; 1189 obj = ma[0]->object; 1190 VM_OBJECT_LOCK(obj); 1191 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { 1192 if (pos < trunc_page(written)) { 1193 rtvals[i] = VM_PAGER_OK; 1194 vm_page_undirty(ma[i]); 1195 } else { 1196 /* Partially written page. */ 1197 rtvals[i] = VM_PAGER_AGAIN; 1198 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); 1199 } 1200 } 1201 VM_OBJECT_UNLOCK(obj); 1202 } 1203 1204 void 1205 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, 1206 vm_offset_t end) 1207 { 1208 struct vnode *vp; 1209 vm_ooffset_t old_wm; 1210 1211 VM_OBJECT_LOCK(object); 1212 if (object->type != OBJT_VNODE) { 1213 VM_OBJECT_UNLOCK(object); 1214 return; 1215 } 1216 old_wm = object->un_pager.vnp.writemappings; 1217 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; 1218 vp = object->handle; 1219 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { 1220 ASSERT_VOP_ELOCKED(vp, "v_writecount inc"); 1221 vp->v_writecount++; 1222 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 1223 __func__, vp, vp->v_writecount); 1224 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { 1225 ASSERT_VOP_ELOCKED(vp, "v_writecount dec"); 1226 vp->v_writecount--; 1227 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 1228 __func__, vp, vp->v_writecount); 1229 } 1230 VM_OBJECT_UNLOCK(object); 1231 } 1232 1233 void 1234 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, 1235 vm_offset_t end) 1236 { 1237 struct vnode *vp; 1238 struct mount *mp; 1239 vm_offset_t inc; 1240 int vfslocked; 1241 1242 VM_OBJECT_LOCK(object); 1243 1244 /* 1245 * First, recheck the object type to account for the race when 1246 * the vnode is reclaimed. 1247 */ 1248 if (object->type != OBJT_VNODE) { 1249 VM_OBJECT_UNLOCK(object); 1250 return; 1251 } 1252 1253 /* 1254 * Optimize for the case when writemappings is not going to 1255 * zero. 1256 */ 1257 inc = end - start; 1258 if (object->un_pager.vnp.writemappings != inc) { 1259 object->un_pager.vnp.writemappings -= inc; 1260 VM_OBJECT_UNLOCK(object); 1261 return; 1262 } 1263 1264 vp = object->handle; 1265 vhold(vp); 1266 VM_OBJECT_UNLOCK(object); 1267 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1268 mp = NULL; 1269 vn_start_write(vp, &mp, V_WAIT); 1270 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1271 1272 /* 1273 * Decrement the object's writemappings, by swapping the start 1274 * and end arguments for vnode_pager_update_writecount(). If 1275 * there was not a race with vnode reclaimation, then the 1276 * vnode's v_writecount is decremented. 1277 */ 1278 vnode_pager_update_writecount(object, end, start); 1279 VOP_UNLOCK(vp, 0); 1280 vdrop(vp); 1281 if (mp != NULL) 1282 vn_finished_write(mp); 1283 VFS_UNLOCK_GIANT(vfslocked); 1284 } 1285