xref: /freebsd/sys/vm/vnode_pager.c (revision a10cee30c94cf5944826d2a495e9cdf339dfbcc8)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/limits.h>
65 #include <sys/conf.h>
66 #include <sys/sf_buf.h>
67 
68 #include <machine/atomic.h>
69 
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vm_map.h>
76 #include <vm/vnode_pager.h>
77 #include <vm/vm_extern.h>
78 
79 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
80     daddr_t *rtaddress, int *run);
81 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
82 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
83 static void vnode_pager_dealloc(vm_object_t);
84 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
85 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
86 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
87 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
88     vm_ooffset_t, struct ucred *cred);
89 
90 struct pagerops vnodepagerops = {
91 	.pgo_alloc =	vnode_pager_alloc,
92 	.pgo_dealloc =	vnode_pager_dealloc,
93 	.pgo_getpages =	vnode_pager_getpages,
94 	.pgo_putpages =	vnode_pager_putpages,
95 	.pgo_haspage =	vnode_pager_haspage,
96 };
97 
98 int vnode_pbuf_freecnt;
99 
100 /* Create the VM system backing object for this vnode */
101 int
102 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
103 {
104 	vm_object_t object;
105 	vm_ooffset_t size = isize;
106 	struct vattr va;
107 
108 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
109 		return (0);
110 
111 	while ((object = vp->v_object) != NULL) {
112 		VM_OBJECT_LOCK(object);
113 		if (!(object->flags & OBJ_DEAD)) {
114 			VM_OBJECT_UNLOCK(object);
115 			return (0);
116 		}
117 		VOP_UNLOCK(vp, 0);
118 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
119 		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0);
120 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
121 	}
122 
123 	if (size == 0) {
124 		if (vn_isdisk(vp, NULL)) {
125 			size = IDX_TO_OFF(INT_MAX);
126 		} else {
127 			if (VOP_GETATTR(vp, &va, td->td_ucred))
128 				return (0);
129 			size = va.va_size;
130 		}
131 	}
132 
133 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
134 	/*
135 	 * Dereference the reference we just created.  This assumes
136 	 * that the object is associated with the vp.
137 	 */
138 	VM_OBJECT_LOCK(object);
139 	object->ref_count--;
140 	VM_OBJECT_UNLOCK(object);
141 	vrele(vp);
142 
143 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
144 
145 	return (0);
146 }
147 
148 void
149 vnode_destroy_vobject(struct vnode *vp)
150 {
151 	struct vm_object *obj;
152 
153 	obj = vp->v_object;
154 	if (obj == NULL)
155 		return;
156 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
157 	VM_OBJECT_LOCK(obj);
158 	if (obj->ref_count == 0) {
159 		/*
160 		 * vclean() may be called twice. The first time
161 		 * removes the primary reference to the object,
162 		 * the second time goes one further and is a
163 		 * special-case to terminate the object.
164 		 *
165 		 * don't double-terminate the object
166 		 */
167 		if ((obj->flags & OBJ_DEAD) == 0)
168 			vm_object_terminate(obj);
169 		else
170 			VM_OBJECT_UNLOCK(obj);
171 	} else {
172 		/*
173 		 * Woe to the process that tries to page now :-).
174 		 */
175 		vm_pager_deallocate(obj);
176 		VM_OBJECT_UNLOCK(obj);
177 	}
178 	vp->v_object = NULL;
179 }
180 
181 
182 /*
183  * Allocate (or lookup) pager for a vnode.
184  * Handle is a vnode pointer.
185  *
186  * MPSAFE
187  */
188 vm_object_t
189 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
190     vm_ooffset_t offset, struct ucred *cred)
191 {
192 	vm_object_t object;
193 	struct vnode *vp;
194 
195 	/*
196 	 * Pageout to vnode, no can do yet.
197 	 */
198 	if (handle == NULL)
199 		return (NULL);
200 
201 	vp = (struct vnode *) handle;
202 
203 	/*
204 	 * If the object is being terminated, wait for it to
205 	 * go away.
206 	 */
207 retry:
208 	while ((object = vp->v_object) != NULL) {
209 		VM_OBJECT_LOCK(object);
210 		if ((object->flags & OBJ_DEAD) == 0)
211 			break;
212 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
213 		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
214 	}
215 
216 	if (vp->v_usecount == 0)
217 		panic("vnode_pager_alloc: no vnode reference");
218 
219 	if (object == NULL) {
220 		/*
221 		 * Add an object of the appropriate size
222 		 */
223 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
224 
225 		object->un_pager.vnp.vnp_size = size;
226 		object->un_pager.vnp.writemappings = 0;
227 
228 		object->handle = handle;
229 		VI_LOCK(vp);
230 		if (vp->v_object != NULL) {
231 			/*
232 			 * Object has been created while we were sleeping
233 			 */
234 			VI_UNLOCK(vp);
235 			vm_object_destroy(object);
236 			goto retry;
237 		}
238 		vp->v_object = object;
239 		VI_UNLOCK(vp);
240 	} else {
241 		object->ref_count++;
242 		VM_OBJECT_UNLOCK(object);
243 	}
244 	vref(vp);
245 	return (object);
246 }
247 
248 /*
249  *	The object must be locked.
250  */
251 static void
252 vnode_pager_dealloc(object)
253 	vm_object_t object;
254 {
255 	struct vnode *vp;
256 	int refs;
257 
258 	vp = object->handle;
259 	if (vp == NULL)
260 		panic("vnode_pager_dealloc: pager already dealloced");
261 
262 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
263 	vm_object_pip_wait(object, "vnpdea");
264 	refs = object->ref_count;
265 
266 	object->handle = NULL;
267 	object->type = OBJT_DEAD;
268 	if (object->flags & OBJ_DISCONNECTWNT) {
269 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
270 		wakeup(object);
271 	}
272 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
273 	if (object->un_pager.vnp.writemappings > 0) {
274 		object->un_pager.vnp.writemappings = 0;
275 		vp->v_writecount--;
276 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
277 		    __func__, vp, vp->v_writecount);
278 	}
279 	vp->v_object = NULL;
280 	VOP_UNSET_TEXT(vp);
281 	VM_OBJECT_UNLOCK(object);
282 	while (refs-- > 0)
283 		vunref(vp);
284 	VM_OBJECT_LOCK(object);
285 }
286 
287 static boolean_t
288 vnode_pager_haspage(object, pindex, before, after)
289 	vm_object_t object;
290 	vm_pindex_t pindex;
291 	int *before;
292 	int *after;
293 {
294 	struct vnode *vp = object->handle;
295 	daddr_t bn;
296 	int err;
297 	daddr_t reqblock;
298 	int poff;
299 	int bsize;
300 	int pagesperblock, blocksperpage;
301 	int vfslocked;
302 
303 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304 	/*
305 	 * If no vp or vp is doomed or marked transparent to VM, we do not
306 	 * have the page.
307 	 */
308 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
309 		return FALSE;
310 	/*
311 	 * If the offset is beyond end of file we do
312 	 * not have the page.
313 	 */
314 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
315 		return FALSE;
316 
317 	bsize = vp->v_mount->mnt_stat.f_iosize;
318 	pagesperblock = bsize / PAGE_SIZE;
319 	blocksperpage = 0;
320 	if (pagesperblock > 0) {
321 		reqblock = pindex / pagesperblock;
322 	} else {
323 		blocksperpage = (PAGE_SIZE / bsize);
324 		reqblock = pindex * blocksperpage;
325 	}
326 	VM_OBJECT_UNLOCK(object);
327 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
328 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
329 	VFS_UNLOCK_GIANT(vfslocked);
330 	VM_OBJECT_LOCK(object);
331 	if (err)
332 		return TRUE;
333 	if (bn == -1)
334 		return FALSE;
335 	if (pagesperblock > 0) {
336 		poff = pindex - (reqblock * pagesperblock);
337 		if (before) {
338 			*before *= pagesperblock;
339 			*before += poff;
340 		}
341 		if (after) {
342 			int numafter;
343 			*after *= pagesperblock;
344 			numafter = pagesperblock - (poff + 1);
345 			if (IDX_TO_OFF(pindex + numafter) >
346 			    object->un_pager.vnp.vnp_size) {
347 				numafter =
348 		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
349 				    pindex;
350 			}
351 			*after += numafter;
352 		}
353 	} else {
354 		if (before) {
355 			*before /= blocksperpage;
356 		}
357 
358 		if (after) {
359 			*after /= blocksperpage;
360 		}
361 	}
362 	return TRUE;
363 }
364 
365 /*
366  * Lets the VM system know about a change in size for a file.
367  * We adjust our own internal size and flush any cached pages in
368  * the associated object that are affected by the size change.
369  *
370  * Note: this routine may be invoked as a result of a pager put
371  * operation (possibly at object termination time), so we must be careful.
372  */
373 void
374 vnode_pager_setsize(vp, nsize)
375 	struct vnode *vp;
376 	vm_ooffset_t nsize;
377 {
378 	vm_object_t object;
379 	vm_page_t m;
380 	vm_pindex_t nobjsize;
381 
382 	if ((object = vp->v_object) == NULL)
383 		return;
384 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
385 	VM_OBJECT_LOCK(object);
386 	if (nsize == object->un_pager.vnp.vnp_size) {
387 		/*
388 		 * Hasn't changed size
389 		 */
390 		VM_OBJECT_UNLOCK(object);
391 		return;
392 	}
393 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
394 	if (nsize < object->un_pager.vnp.vnp_size) {
395 		/*
396 		 * File has shrunk. Toss any cached pages beyond the new EOF.
397 		 */
398 		if (nobjsize < object->size)
399 			vm_object_page_remove(object, nobjsize, object->size,
400 			    0);
401 		/*
402 		 * this gets rid of garbage at the end of a page that is now
403 		 * only partially backed by the vnode.
404 		 *
405 		 * XXX for some reason (I don't know yet), if we take a
406 		 * completely invalid page and mark it partially valid
407 		 * it can screw up NFS reads, so we don't allow the case.
408 		 */
409 		if ((nsize & PAGE_MASK) &&
410 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
411 		    m->valid != 0) {
412 			int base = (int)nsize & PAGE_MASK;
413 			int size = PAGE_SIZE - base;
414 
415 			/*
416 			 * Clear out partial-page garbage in case
417 			 * the page has been mapped.
418 			 */
419 			pmap_zero_page_area(m, base, size);
420 
421 			/*
422 			 * Update the valid bits to reflect the blocks that
423 			 * have been zeroed.  Some of these valid bits may
424 			 * have already been set.
425 			 */
426 			vm_page_set_valid_range(m, base, size);
427 
428 			/*
429 			 * Round "base" to the next block boundary so that the
430 			 * dirty bit for a partially zeroed block is not
431 			 * cleared.
432 			 */
433 			base = roundup2(base, DEV_BSIZE);
434 
435 			/*
436 			 * Clear out partial-page dirty bits.
437 			 *
438 			 * note that we do not clear out the valid
439 			 * bits.  This would prevent bogus_page
440 			 * replacement from working properly.
441 			 */
442 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
443 		} else if ((nsize & PAGE_MASK) &&
444 		    vm_page_is_cached(object, OFF_TO_IDX(nsize))) {
445 			vm_page_cache_free(object, OFF_TO_IDX(nsize),
446 			    nobjsize);
447 		}
448 	}
449 	object->un_pager.vnp.vnp_size = nsize;
450 	object->size = nobjsize;
451 	VM_OBJECT_UNLOCK(object);
452 }
453 
454 /*
455  * calculate the linear (byte) disk address of specified virtual
456  * file address
457  */
458 static int
459 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
460     int *run)
461 {
462 	int bsize;
463 	int err;
464 	daddr_t vblock;
465 	daddr_t voffset;
466 
467 	if (address < 0)
468 		return -1;
469 
470 	if (vp->v_iflag & VI_DOOMED)
471 		return -1;
472 
473 	bsize = vp->v_mount->mnt_stat.f_iosize;
474 	vblock = address / bsize;
475 	voffset = address % bsize;
476 
477 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
478 	if (err == 0) {
479 		if (*rtaddress != -1)
480 			*rtaddress += voffset / DEV_BSIZE;
481 		if (run) {
482 			*run += 1;
483 			*run *= bsize/PAGE_SIZE;
484 			*run -= voffset/PAGE_SIZE;
485 		}
486 	}
487 
488 	return (err);
489 }
490 
491 /*
492  * small block filesystem vnode pager input
493  */
494 static int
495 vnode_pager_input_smlfs(object, m)
496 	vm_object_t object;
497 	vm_page_t m;
498 {
499 	struct vnode *vp;
500 	struct bufobj *bo;
501 	struct buf *bp;
502 	struct sf_buf *sf;
503 	daddr_t fileaddr;
504 	vm_offset_t bsize;
505 	vm_page_bits_t bits;
506 	int error, i;
507 
508 	error = 0;
509 	vp = object->handle;
510 	if (vp->v_iflag & VI_DOOMED)
511 		return VM_PAGER_BAD;
512 
513 	bsize = vp->v_mount->mnt_stat.f_iosize;
514 
515 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
516 
517 	sf = sf_buf_alloc(m, 0);
518 
519 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
520 		vm_ooffset_t address;
521 
522 		bits = vm_page_bits(i * bsize, bsize);
523 		if (m->valid & bits)
524 			continue;
525 
526 		address = IDX_TO_OFF(m->pindex) + i * bsize;
527 		if (address >= object->un_pager.vnp.vnp_size) {
528 			fileaddr = -1;
529 		} else {
530 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
531 			if (error)
532 				break;
533 		}
534 		if (fileaddr != -1) {
535 			bp = getpbuf(&vnode_pbuf_freecnt);
536 
537 			/* build a minimal buffer header */
538 			bp->b_iocmd = BIO_READ;
539 			bp->b_iodone = bdone;
540 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
541 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
542 			bp->b_rcred = crhold(curthread->td_ucred);
543 			bp->b_wcred = crhold(curthread->td_ucred);
544 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
545 			bp->b_blkno = fileaddr;
546 			pbgetbo(bo, bp);
547 			bp->b_vp = vp;
548 			bp->b_bcount = bsize;
549 			bp->b_bufsize = bsize;
550 			bp->b_runningbufspace = bp->b_bufsize;
551 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
552 
553 			/* do the input */
554 			bp->b_iooffset = dbtob(bp->b_blkno);
555 			bstrategy(bp);
556 
557 			bwait(bp, PVM, "vnsrd");
558 
559 			if ((bp->b_ioflags & BIO_ERROR) != 0)
560 				error = EIO;
561 
562 			/*
563 			 * free the buffer header back to the swap buffer pool
564 			 */
565 			bp->b_vp = NULL;
566 			pbrelbo(bp);
567 			relpbuf(bp, &vnode_pbuf_freecnt);
568 			if (error)
569 				break;
570 		} else
571 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
572 		KASSERT((m->dirty & bits) == 0,
573 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
574 		VM_OBJECT_LOCK(object);
575 		m->valid |= bits;
576 		VM_OBJECT_UNLOCK(object);
577 	}
578 	sf_buf_free(sf);
579 	if (error) {
580 		return VM_PAGER_ERROR;
581 	}
582 	return VM_PAGER_OK;
583 }
584 
585 /*
586  * old style vnode pager input routine
587  */
588 static int
589 vnode_pager_input_old(object, m)
590 	vm_object_t object;
591 	vm_page_t m;
592 {
593 	struct uio auio;
594 	struct iovec aiov;
595 	int error;
596 	int size;
597 	struct sf_buf *sf;
598 	struct vnode *vp;
599 
600 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
601 	error = 0;
602 
603 	/*
604 	 * Return failure if beyond current EOF
605 	 */
606 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
607 		return VM_PAGER_BAD;
608 	} else {
609 		size = PAGE_SIZE;
610 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
611 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
612 		vp = object->handle;
613 		VM_OBJECT_UNLOCK(object);
614 
615 		/*
616 		 * Allocate a kernel virtual address and initialize so that
617 		 * we can use VOP_READ/WRITE routines.
618 		 */
619 		sf = sf_buf_alloc(m, 0);
620 
621 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
622 		aiov.iov_len = size;
623 		auio.uio_iov = &aiov;
624 		auio.uio_iovcnt = 1;
625 		auio.uio_offset = IDX_TO_OFF(m->pindex);
626 		auio.uio_segflg = UIO_SYSSPACE;
627 		auio.uio_rw = UIO_READ;
628 		auio.uio_resid = size;
629 		auio.uio_td = curthread;
630 
631 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
632 		if (!error) {
633 			int count = size - auio.uio_resid;
634 
635 			if (count == 0)
636 				error = EINVAL;
637 			else if (count != PAGE_SIZE)
638 				bzero((caddr_t)sf_buf_kva(sf) + count,
639 				    PAGE_SIZE - count);
640 		}
641 		sf_buf_free(sf);
642 
643 		VM_OBJECT_LOCK(object);
644 	}
645 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
646 	if (!error)
647 		m->valid = VM_PAGE_BITS_ALL;
648 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
649 }
650 
651 /*
652  * generic vnode pager input routine
653  */
654 
655 /*
656  * Local media VFS's that do not implement their own VOP_GETPAGES
657  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
658  * to implement the previous behaviour.
659  *
660  * All other FS's should use the bypass to get to the local media
661  * backing vp's VOP_GETPAGES.
662  */
663 static int
664 vnode_pager_getpages(object, m, count, reqpage)
665 	vm_object_t object;
666 	vm_page_t *m;
667 	int count;
668 	int reqpage;
669 {
670 	int rtval;
671 	struct vnode *vp;
672 	int bytes = count * PAGE_SIZE;
673 	int vfslocked;
674 
675 	vp = object->handle;
676 	VM_OBJECT_UNLOCK(object);
677 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
678 	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
679 	KASSERT(rtval != EOPNOTSUPP,
680 	    ("vnode_pager: FS getpages not implemented\n"));
681 	VFS_UNLOCK_GIANT(vfslocked);
682 	VM_OBJECT_LOCK(object);
683 	return rtval;
684 }
685 
686 /*
687  * This is now called from local media FS's to operate against their
688  * own vnodes if they fail to implement VOP_GETPAGES.
689  */
690 int
691 vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
692 	struct vnode *vp;
693 	vm_page_t *m;
694 	int bytecount;
695 	int reqpage;
696 {
697 	vm_object_t object;
698 	vm_offset_t kva;
699 	off_t foff, tfoff, nextoff;
700 	int i, j, size, bsize, first;
701 	daddr_t firstaddr, reqblock;
702 	struct bufobj *bo;
703 	int runpg;
704 	int runend;
705 	struct buf *bp;
706 	int count;
707 	int error;
708 
709 	object = vp->v_object;
710 	count = bytecount / PAGE_SIZE;
711 
712 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
713 	    ("vnode_pager_generic_getpages does not support devices"));
714 	if (vp->v_iflag & VI_DOOMED)
715 		return VM_PAGER_BAD;
716 
717 	bsize = vp->v_mount->mnt_stat.f_iosize;
718 
719 	/* get the UNDERLYING device for the file with VOP_BMAP() */
720 
721 	/*
722 	 * originally, we did not check for an error return value -- assuming
723 	 * an fs always has a bmap entry point -- that assumption is wrong!!!
724 	 */
725 	foff = IDX_TO_OFF(m[reqpage]->pindex);
726 
727 	/*
728 	 * if we can't bmap, use old VOP code
729 	 */
730 	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
731 	if (error == EOPNOTSUPP) {
732 		VM_OBJECT_LOCK(object);
733 
734 		for (i = 0; i < count; i++)
735 			if (i != reqpage) {
736 				vm_page_lock(m[i]);
737 				vm_page_free(m[i]);
738 				vm_page_unlock(m[i]);
739 			}
740 		PCPU_INC(cnt.v_vnodein);
741 		PCPU_INC(cnt.v_vnodepgsin);
742 		error = vnode_pager_input_old(object, m[reqpage]);
743 		VM_OBJECT_UNLOCK(object);
744 		return (error);
745 	} else if (error != 0) {
746 		VM_OBJECT_LOCK(object);
747 		for (i = 0; i < count; i++)
748 			if (i != reqpage) {
749 				vm_page_lock(m[i]);
750 				vm_page_free(m[i]);
751 				vm_page_unlock(m[i]);
752 			}
753 		VM_OBJECT_UNLOCK(object);
754 		return (VM_PAGER_ERROR);
755 
756 		/*
757 		 * if the blocksize is smaller than a page size, then use
758 		 * special small filesystem code.  NFS sometimes has a small
759 		 * blocksize, but it can handle large reads itself.
760 		 */
761 	} else if ((PAGE_SIZE / bsize) > 1 &&
762 	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
763 		VM_OBJECT_LOCK(object);
764 		for (i = 0; i < count; i++)
765 			if (i != reqpage) {
766 				vm_page_lock(m[i]);
767 				vm_page_free(m[i]);
768 				vm_page_unlock(m[i]);
769 			}
770 		VM_OBJECT_UNLOCK(object);
771 		PCPU_INC(cnt.v_vnodein);
772 		PCPU_INC(cnt.v_vnodepgsin);
773 		return vnode_pager_input_smlfs(object, m[reqpage]);
774 	}
775 
776 	/*
777 	 * If we have a completely valid page available to us, we can
778 	 * clean up and return.  Otherwise we have to re-read the
779 	 * media.
780 	 */
781 	VM_OBJECT_LOCK(object);
782 	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
783 		for (i = 0; i < count; i++)
784 			if (i != reqpage) {
785 				vm_page_lock(m[i]);
786 				vm_page_free(m[i]);
787 				vm_page_unlock(m[i]);
788 			}
789 		VM_OBJECT_UNLOCK(object);
790 		return VM_PAGER_OK;
791 	} else if (reqblock == -1) {
792 		pmap_zero_page(m[reqpage]);
793 		KASSERT(m[reqpage]->dirty == 0,
794 		    ("vnode_pager_generic_getpages: page %p is dirty", m));
795 		m[reqpage]->valid = VM_PAGE_BITS_ALL;
796 		for (i = 0; i < count; i++)
797 			if (i != reqpage) {
798 				vm_page_lock(m[i]);
799 				vm_page_free(m[i]);
800 				vm_page_unlock(m[i]);
801 			}
802 		VM_OBJECT_UNLOCK(object);
803 		return (VM_PAGER_OK);
804 	}
805 	m[reqpage]->valid = 0;
806 	VM_OBJECT_UNLOCK(object);
807 
808 	/*
809 	 * here on direct device I/O
810 	 */
811 	firstaddr = -1;
812 
813 	/*
814 	 * calculate the run that includes the required page
815 	 */
816 	for (first = 0, i = 0; i < count; i = runend) {
817 		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
818 		    &runpg) != 0) {
819 			VM_OBJECT_LOCK(object);
820 			for (; i < count; i++)
821 				if (i != reqpage) {
822 					vm_page_lock(m[i]);
823 					vm_page_free(m[i]);
824 					vm_page_unlock(m[i]);
825 				}
826 			VM_OBJECT_UNLOCK(object);
827 			return (VM_PAGER_ERROR);
828 		}
829 		if (firstaddr == -1) {
830 			VM_OBJECT_LOCK(object);
831 			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
832 				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
833 				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
834 				    (uintmax_t)foff,
835 				    (uintmax_t)
836 				    (object->un_pager.vnp.vnp_size >> 32),
837 				    (uintmax_t)object->un_pager.vnp.vnp_size);
838 			}
839 			vm_page_lock(m[i]);
840 			vm_page_free(m[i]);
841 			vm_page_unlock(m[i]);
842 			VM_OBJECT_UNLOCK(object);
843 			runend = i + 1;
844 			first = runend;
845 			continue;
846 		}
847 		runend = i + runpg;
848 		if (runend <= reqpage) {
849 			VM_OBJECT_LOCK(object);
850 			for (j = i; j < runend; j++) {
851 				vm_page_lock(m[j]);
852 				vm_page_free(m[j]);
853 				vm_page_unlock(m[j]);
854 			}
855 			VM_OBJECT_UNLOCK(object);
856 		} else {
857 			if (runpg < (count - first)) {
858 				VM_OBJECT_LOCK(object);
859 				for (i = first + runpg; i < count; i++) {
860 					vm_page_lock(m[i]);
861 					vm_page_free(m[i]);
862 					vm_page_unlock(m[i]);
863 				}
864 				VM_OBJECT_UNLOCK(object);
865 				count = first + runpg;
866 			}
867 			break;
868 		}
869 		first = runend;
870 	}
871 
872 	/*
873 	 * the first and last page have been calculated now, move input pages
874 	 * to be zero based...
875 	 */
876 	if (first != 0) {
877 		m += first;
878 		count -= first;
879 		reqpage -= first;
880 	}
881 
882 	/*
883 	 * calculate the file virtual address for the transfer
884 	 */
885 	foff = IDX_TO_OFF(m[0]->pindex);
886 
887 	/*
888 	 * calculate the size of the transfer
889 	 */
890 	size = count * PAGE_SIZE;
891 	KASSERT(count > 0, ("zero count"));
892 	if ((foff + size) > object->un_pager.vnp.vnp_size)
893 		size = object->un_pager.vnp.vnp_size - foff;
894 	KASSERT(size > 0, ("zero size"));
895 
896 	/*
897 	 * round up physical size for real devices.
898 	 */
899 	if (1) {
900 		int secmask = bo->bo_bsize - 1;
901 		KASSERT(secmask < PAGE_SIZE && secmask > 0,
902 		    ("vnode_pager_generic_getpages: sector size %d too large",
903 		    secmask + 1));
904 		size = (size + secmask) & ~secmask;
905 	}
906 
907 	bp = getpbuf(&vnode_pbuf_freecnt);
908 	kva = (vm_offset_t) bp->b_data;
909 
910 	/*
911 	 * and map the pages to be read into the kva
912 	 */
913 	pmap_qenter(kva, m, count);
914 
915 	/* build a minimal buffer header */
916 	bp->b_iocmd = BIO_READ;
917 	bp->b_iodone = bdone;
918 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
919 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
920 	bp->b_rcred = crhold(curthread->td_ucred);
921 	bp->b_wcred = crhold(curthread->td_ucred);
922 	bp->b_blkno = firstaddr;
923 	pbgetbo(bo, bp);
924 	bp->b_vp = vp;
925 	bp->b_bcount = size;
926 	bp->b_bufsize = size;
927 	bp->b_runningbufspace = bp->b_bufsize;
928 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
929 
930 	PCPU_INC(cnt.v_vnodein);
931 	PCPU_ADD(cnt.v_vnodepgsin, count);
932 
933 	/* do the input */
934 	bp->b_iooffset = dbtob(bp->b_blkno);
935 	bstrategy(bp);
936 
937 	bwait(bp, PVM, "vnread");
938 
939 	if ((bp->b_ioflags & BIO_ERROR) != 0)
940 		error = EIO;
941 
942 	if (!error) {
943 		if (size != count * PAGE_SIZE)
944 			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
945 	}
946 	pmap_qremove(kva, count);
947 
948 	/*
949 	 * free the buffer header back to the swap buffer pool
950 	 */
951 	bp->b_vp = NULL;
952 	pbrelbo(bp);
953 	relpbuf(bp, &vnode_pbuf_freecnt);
954 
955 	VM_OBJECT_LOCK(object);
956 	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
957 		vm_page_t mt;
958 
959 		nextoff = tfoff + PAGE_SIZE;
960 		mt = m[i];
961 
962 		if (nextoff <= object->un_pager.vnp.vnp_size) {
963 			/*
964 			 * Read filled up entire page.
965 			 */
966 			mt->valid = VM_PAGE_BITS_ALL;
967 			KASSERT(mt->dirty == 0,
968 			    ("vnode_pager_generic_getpages: page %p is dirty",
969 			    mt));
970 			KASSERT(!pmap_page_is_mapped(mt),
971 			    ("vnode_pager_generic_getpages: page %p is mapped",
972 			    mt));
973 		} else {
974 			/*
975 			 * Read did not fill up entire page.
976 			 *
977 			 * Currently we do not set the entire page valid,
978 			 * we just try to clear the piece that we couldn't
979 			 * read.
980 			 */
981 			vm_page_set_valid_range(mt, 0,
982 			    object->un_pager.vnp.vnp_size - tfoff);
983 			KASSERT((mt->dirty & vm_page_bits(0,
984 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
985 			    ("vnode_pager_generic_getpages: page %p is dirty",
986 			    mt));
987 		}
988 
989 		if (i != reqpage)
990 			vm_page_readahead_finish(mt);
991 	}
992 	VM_OBJECT_UNLOCK(object);
993 	if (error) {
994 		printf("vnode_pager_getpages: I/O read error\n");
995 	}
996 	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
997 }
998 
999 /*
1000  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1001  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1002  * vnode_pager_generic_putpages() to implement the previous behaviour.
1003  *
1004  * All other FS's should use the bypass to get to the local media
1005  * backing vp's VOP_PUTPAGES.
1006  */
1007 static void
1008 vnode_pager_putpages(object, m, count, sync, rtvals)
1009 	vm_object_t object;
1010 	vm_page_t *m;
1011 	int count;
1012 	boolean_t sync;
1013 	int *rtvals;
1014 {
1015 	int rtval;
1016 	struct vnode *vp;
1017 	int bytes = count * PAGE_SIZE;
1018 
1019 	/*
1020 	 * Force synchronous operation if we are extremely low on memory
1021 	 * to prevent a low-memory deadlock.  VOP operations often need to
1022 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1023 	 * operation ).  The swapper handles the case by limiting the amount
1024 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1025 	 * for the vnode pager without a lot of work.
1026 	 *
1027 	 * Also, the backing vnode's iodone routine may not wake the pageout
1028 	 * daemon up.  This should be probably be addressed XXX.
1029 	 */
1030 
1031 	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
1032 		sync |= OBJPC_SYNC;
1033 
1034 	/*
1035 	 * Call device-specific putpages function
1036 	 */
1037 	vp = object->handle;
1038 	VM_OBJECT_UNLOCK(object);
1039 	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1040 	KASSERT(rtval != EOPNOTSUPP,
1041 	    ("vnode_pager: stale FS putpages\n"));
1042 	VM_OBJECT_LOCK(object);
1043 }
1044 
1045 
1046 /*
1047  * This is now called from local media FS's to operate against their
1048  * own vnodes if they fail to implement VOP_PUTPAGES.
1049  *
1050  * This is typically called indirectly via the pageout daemon and
1051  * clustering has already typically occured, so in general we ask the
1052  * underlying filesystem to write the data out asynchronously rather
1053  * then delayed.
1054  */
1055 int
1056 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1057     int flags, int *rtvals)
1058 {
1059 	int i;
1060 	vm_object_t object;
1061 	vm_page_t m;
1062 	int count;
1063 
1064 	int maxsize, ncount;
1065 	vm_ooffset_t poffset;
1066 	struct uio auio;
1067 	struct iovec aiov;
1068 	int error;
1069 	int ioflags;
1070 	int ppscheck = 0;
1071 	static struct timeval lastfail;
1072 	static int curfail;
1073 
1074 	object = vp->v_object;
1075 	count = bytecount / PAGE_SIZE;
1076 
1077 	for (i = 0; i < count; i++)
1078 		rtvals[i] = VM_PAGER_ERROR;
1079 
1080 	if ((int64_t)ma[0]->pindex < 0) {
1081 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1082 		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1083 		rtvals[0] = VM_PAGER_BAD;
1084 		return VM_PAGER_BAD;
1085 	}
1086 
1087 	maxsize = count * PAGE_SIZE;
1088 	ncount = count;
1089 
1090 	poffset = IDX_TO_OFF(ma[0]->pindex);
1091 
1092 	/*
1093 	 * If the page-aligned write is larger then the actual file we
1094 	 * have to invalidate pages occuring beyond the file EOF.  However,
1095 	 * there is an edge case where a file may not be page-aligned where
1096 	 * the last page is partially invalid.  In this case the filesystem
1097 	 * may not properly clear the dirty bits for the entire page (which
1098 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1099 	 * With the page locked we are free to fix-up the dirty bits here.
1100 	 *
1101 	 * We do not under any circumstances truncate the valid bits, as
1102 	 * this will screw up bogus page replacement.
1103 	 */
1104 	VM_OBJECT_LOCK(object);
1105 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1106 		if (object->un_pager.vnp.vnp_size > poffset) {
1107 			int pgoff;
1108 
1109 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1110 			ncount = btoc(maxsize);
1111 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1112 				/*
1113 				 * If the object is locked and the following
1114 				 * conditions hold, then the page's dirty
1115 				 * field cannot be concurrently changed by a
1116 				 * pmap operation.
1117 				 */
1118 				m = ma[ncount - 1];
1119 				KASSERT(m->busy > 0,
1120 		("vnode_pager_generic_putpages: page %p is not busy", m));
1121 				KASSERT(!pmap_page_is_write_mapped(m),
1122 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1123 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1124 				    pgoff);
1125 			}
1126 		} else {
1127 			maxsize = 0;
1128 			ncount = 0;
1129 		}
1130 		if (ncount < count) {
1131 			for (i = ncount; i < count; i++) {
1132 				rtvals[i] = VM_PAGER_BAD;
1133 			}
1134 		}
1135 	}
1136 	VM_OBJECT_UNLOCK(object);
1137 
1138 	/*
1139 	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1140 	 * rather then a bdwrite() to prevent paging I/O from saturating
1141 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1142 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1143 	 * the system decides how to cluster.
1144 	 */
1145 	ioflags = IO_VMIO;
1146 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1147 		ioflags |= IO_SYNC;
1148 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1149 		ioflags |= IO_ASYNC;
1150 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1151 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1152 
1153 	aiov.iov_base = (caddr_t) 0;
1154 	aiov.iov_len = maxsize;
1155 	auio.uio_iov = &aiov;
1156 	auio.uio_iovcnt = 1;
1157 	auio.uio_offset = poffset;
1158 	auio.uio_segflg = UIO_NOCOPY;
1159 	auio.uio_rw = UIO_WRITE;
1160 	auio.uio_resid = maxsize;
1161 	auio.uio_td = (struct thread *) 0;
1162 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1163 	PCPU_INC(cnt.v_vnodeout);
1164 	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1165 
1166 	if (error) {
1167 		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1168 			printf("vnode_pager_putpages: I/O error %d\n", error);
1169 	}
1170 	if (auio.uio_resid) {
1171 		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1172 			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1173 			    auio.uio_resid, (u_long)ma[0]->pindex);
1174 	}
1175 	for (i = 0; i < ncount; i++) {
1176 		rtvals[i] = VM_PAGER_OK;
1177 	}
1178 	return rtvals[0];
1179 }
1180 
1181 void
1182 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1183 {
1184 	vm_object_t obj;
1185 	int i, pos;
1186 
1187 	if (written == 0)
1188 		return;
1189 	obj = ma[0]->object;
1190 	VM_OBJECT_LOCK(obj);
1191 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1192 		if (pos < trunc_page(written)) {
1193 			rtvals[i] = VM_PAGER_OK;
1194 			vm_page_undirty(ma[i]);
1195 		} else {
1196 			/* Partially written page. */
1197 			rtvals[i] = VM_PAGER_AGAIN;
1198 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1199 		}
1200 	}
1201 	VM_OBJECT_UNLOCK(obj);
1202 }
1203 
1204 void
1205 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1206     vm_offset_t end)
1207 {
1208 	struct vnode *vp;
1209 	vm_ooffset_t old_wm;
1210 
1211 	VM_OBJECT_LOCK(object);
1212 	if (object->type != OBJT_VNODE) {
1213 		VM_OBJECT_UNLOCK(object);
1214 		return;
1215 	}
1216 	old_wm = object->un_pager.vnp.writemappings;
1217 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1218 	vp = object->handle;
1219 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1220 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1221 		vp->v_writecount++;
1222 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1223 		    __func__, vp, vp->v_writecount);
1224 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1225 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1226 		vp->v_writecount--;
1227 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1228 		    __func__, vp, vp->v_writecount);
1229 	}
1230 	VM_OBJECT_UNLOCK(object);
1231 }
1232 
1233 void
1234 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1235     vm_offset_t end)
1236 {
1237 	struct vnode *vp;
1238 	struct mount *mp;
1239 	vm_offset_t inc;
1240 	int vfslocked;
1241 
1242 	VM_OBJECT_LOCK(object);
1243 
1244 	/*
1245 	 * First, recheck the object type to account for the race when
1246 	 * the vnode is reclaimed.
1247 	 */
1248 	if (object->type != OBJT_VNODE) {
1249 		VM_OBJECT_UNLOCK(object);
1250 		return;
1251 	}
1252 
1253 	/*
1254 	 * Optimize for the case when writemappings is not going to
1255 	 * zero.
1256 	 */
1257 	inc = end - start;
1258 	if (object->un_pager.vnp.writemappings != inc) {
1259 		object->un_pager.vnp.writemappings -= inc;
1260 		VM_OBJECT_UNLOCK(object);
1261 		return;
1262 	}
1263 
1264 	vp = object->handle;
1265 	vhold(vp);
1266 	VM_OBJECT_UNLOCK(object);
1267 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1268 	mp = NULL;
1269 	vn_start_write(vp, &mp, V_WAIT);
1270 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1271 
1272 	/*
1273 	 * Decrement the object's writemappings, by swapping the start
1274 	 * and end arguments for vnode_pager_update_writecount().  If
1275 	 * there was not a race with vnode reclaimation, then the
1276 	 * vnode's v_writecount is decremented.
1277 	 */
1278 	vnode_pager_update_writecount(object, end, start);
1279 	VOP_UNLOCK(vp, 0);
1280 	vdrop(vp);
1281 	if (mp != NULL)
1282 		vn_finished_write(mp);
1283 	VFS_UNLOCK_GIANT(vfslocked);
1284 }
1285