xref: /freebsd/sys/vm/vnode_pager.c (revision 9af6c78cd43b18e169f10802142c61638bd62bed)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
43  */
44 
45 /*
46  * Page to/from files (vnodes).
47  */
48 
49 /*
50  * TODO:
51  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52  *	greatly re-simplify the vnode_pager.
53  */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include "opt_vm.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/systm.h>
63 #include <sys/sysctl.h>
64 #include <sys/proc.h>
65 #include <sys/vnode.h>
66 #include <sys/mount.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/vmmeter.h>
70 #include <sys/ktr.h>
71 #include <sys/limits.h>
72 #include <sys/conf.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sf_buf.h>
76 #include <sys/domainset.h>
77 
78 #include <machine/atomic.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_map.h>
86 #include <vm/vnode_pager.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89 
90 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
91     daddr_t *rtaddress, int *run);
92 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
93 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
94 static void vnode_pager_dealloc(vm_object_t);
95 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
96 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
97     int *, vop_getpages_iodone_t, void *);
98 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
99 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
100 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
101     vm_ooffset_t, struct ucred *cred);
102 static int vnode_pager_generic_getpages_done(struct buf *);
103 static void vnode_pager_generic_getpages_done_async(struct buf *);
104 static void vnode_pager_update_writecount(vm_object_t, vm_offset_t,
105     vm_offset_t);
106 static void vnode_pager_release_writecount(vm_object_t, vm_offset_t,
107     vm_offset_t);
108 
109 struct pagerops vnodepagerops = {
110 	.pgo_alloc =	vnode_pager_alloc,
111 	.pgo_dealloc =	vnode_pager_dealloc,
112 	.pgo_getpages =	vnode_pager_getpages,
113 	.pgo_getpages_async = vnode_pager_getpages_async,
114 	.pgo_putpages =	vnode_pager_putpages,
115 	.pgo_haspage =	vnode_pager_haspage,
116 	.pgo_update_writecount = vnode_pager_update_writecount,
117 	.pgo_release_writecount = vnode_pager_release_writecount,
118 };
119 
120 static struct domainset *vnode_domainset = NULL;
121 
122 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW,
123     &vnode_domainset, 0, sysctl_handle_domainset, "A",
124     "Default vnode NUMA policy");
125 
126 static int nvnpbufs;
127 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
128     &nvnpbufs, 0, "number of physical buffers allocated for vnode pager");
129 
130 static uma_zone_t vnode_pbuf_zone;
131 
132 static void
133 vnode_pager_init(void *dummy)
134 {
135 
136 #ifdef __LP64__
137 	nvnpbufs = nswbuf * 2;
138 #else
139 	nvnpbufs = nswbuf / 2;
140 #endif
141 	TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs);
142 	vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs);
143 }
144 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL);
145 
146 /* Create the VM system backing object for this vnode */
147 int
148 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
149 {
150 	vm_object_t object;
151 	vm_ooffset_t size = isize;
152 	struct vattr va;
153 
154 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
155 		return (0);
156 
157 	object = vp->v_object;
158 	if (object != NULL)
159 		return (0);
160 
161 	if (size == 0) {
162 		if (vn_isdisk(vp, NULL)) {
163 			size = IDX_TO_OFF(INT_MAX);
164 		} else {
165 			if (VOP_GETATTR(vp, &va, td->td_ucred))
166 				return (0);
167 			size = va.va_size;
168 		}
169 	}
170 
171 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
172 	/*
173 	 * Dereference the reference we just created.  This assumes
174 	 * that the object is associated with the vp.
175 	 */
176 	VM_OBJECT_RLOCK(object);
177 	refcount_release(&object->ref_count);
178 	VM_OBJECT_RUNLOCK(object);
179 	vrele(vp);
180 
181 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
182 
183 	return (0);
184 }
185 
186 void
187 vnode_destroy_vobject(struct vnode *vp)
188 {
189 	struct vm_object *obj;
190 
191 	obj = vp->v_object;
192 	if (obj == NULL || obj->handle != vp)
193 		return;
194 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
195 	VM_OBJECT_WLOCK(obj);
196 	MPASS(obj->type == OBJT_VNODE);
197 	umtx_shm_object_terminated(obj);
198 	if (obj->ref_count == 0) {
199 		/*
200 		 * don't double-terminate the object
201 		 */
202 		if ((obj->flags & OBJ_DEAD) == 0) {
203 			vm_object_set_flag(obj, OBJ_DEAD);
204 
205 			/*
206 			 * Clean pages and flush buffers.
207 			 */
208 			vm_object_page_clean(obj, 0, 0, OBJPC_SYNC);
209 			VM_OBJECT_WUNLOCK(obj);
210 
211 			vinvalbuf(vp, V_SAVE, 0, 0);
212 
213 			BO_LOCK(&vp->v_bufobj);
214 			vp->v_bufobj.bo_flag |= BO_DEAD;
215 			BO_UNLOCK(&vp->v_bufobj);
216 
217 			VM_OBJECT_WLOCK(obj);
218 			vm_object_terminate(obj);
219 		} else {
220 			/*
221 			 * Waiters were already handled during object
222 			 * termination.  The exclusive vnode lock hopefully
223 			 * prevented new waiters from referencing the dying
224 			 * object.
225 			 */
226 			vp->v_object = NULL;
227 			VM_OBJECT_WUNLOCK(obj);
228 		}
229 	} else {
230 		/*
231 		 * Woe to the process that tries to page now :-).
232 		 */
233 		vm_pager_deallocate(obj);
234 		VM_OBJECT_WUNLOCK(obj);
235 	}
236 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
237 }
238 
239 
240 /*
241  * Allocate (or lookup) pager for a vnode.
242  * Handle is a vnode pointer.
243  */
244 vm_object_t
245 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
246     vm_ooffset_t offset, struct ucred *cred)
247 {
248 	vm_object_t object;
249 	struct vnode *vp;
250 
251 	/*
252 	 * Pageout to vnode, no can do yet.
253 	 */
254 	if (handle == NULL)
255 		return (NULL);
256 
257 	vp = (struct vnode *)handle;
258 	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
259 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
260 retry:
261 	object = vp->v_object;
262 
263 	if (object == NULL) {
264 		/*
265 		 * Add an object of the appropriate size
266 		 */
267 		object = vm_object_allocate(OBJT_VNODE,
268 		    OFF_TO_IDX(round_page(size)));
269 
270 		object->un_pager.vnp.vnp_size = size;
271 		object->un_pager.vnp.writemappings = 0;
272 		object->domain.dr_policy = vnode_domainset;
273 		object->handle = handle;
274 		if ((vp->v_vflag & VV_VMSIZEVNLOCK) != 0) {
275 			VM_OBJECT_WLOCK(object);
276 			vm_object_set_flag(object, OBJ_SIZEVNLOCK);
277 			VM_OBJECT_WUNLOCK(object);
278 		}
279 		VI_LOCK(vp);
280 		if (vp->v_object != NULL) {
281 			/*
282 			 * Object has been created while we were allocating.
283 			 */
284 			VI_UNLOCK(vp);
285 			VM_OBJECT_WLOCK(object);
286 			KASSERT(object->ref_count == 1,
287 			    ("leaked ref %p %d", object, object->ref_count));
288 			object->type = OBJT_DEAD;
289 			refcount_init(&object->ref_count, 0);
290 			VM_OBJECT_WUNLOCK(object);
291 			vm_object_destroy(object);
292 			goto retry;
293 		}
294 		vp->v_object = object;
295 		VI_UNLOCK(vp);
296 	} else {
297 		VM_OBJECT_WLOCK(object);
298 		refcount_acquire(&object->ref_count);
299 #if VM_NRESERVLEVEL > 0
300 		vm_object_color(object, 0);
301 #endif
302 		VM_OBJECT_WUNLOCK(object);
303 	}
304 	vrefact(vp);
305 	return (object);
306 }
307 
308 /*
309  *	The object must be locked.
310  */
311 static void
312 vnode_pager_dealloc(vm_object_t object)
313 {
314 	struct vnode *vp;
315 	int refs;
316 
317 	vp = object->handle;
318 	if (vp == NULL)
319 		panic("vnode_pager_dealloc: pager already dealloced");
320 
321 	VM_OBJECT_ASSERT_WLOCKED(object);
322 	vm_object_pip_wait(object, "vnpdea");
323 	refs = object->ref_count;
324 
325 	object->handle = NULL;
326 	object->type = OBJT_DEAD;
327 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
328 	if (object->un_pager.vnp.writemappings > 0) {
329 		object->un_pager.vnp.writemappings = 0;
330 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
331 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
332 		    __func__, vp, vp->v_writecount);
333 	}
334 	vp->v_object = NULL;
335 	VI_LOCK(vp);
336 
337 	/*
338 	 * vm_map_entry_set_vnode_text() cannot reach this vnode by
339 	 * following object->handle.  Clear all text references now.
340 	 * This also clears the transient references from
341 	 * kern_execve(), which is fine because dead_vnodeops uses nop
342 	 * for VOP_UNSET_TEXT().
343 	 */
344 	if (vp->v_writecount < 0)
345 		vp->v_writecount = 0;
346 	VI_UNLOCK(vp);
347 	VM_OBJECT_WUNLOCK(object);
348 	while (refs-- > 0)
349 		vunref(vp);
350 	VM_OBJECT_WLOCK(object);
351 }
352 
353 static boolean_t
354 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
355     int *after)
356 {
357 	struct vnode *vp = object->handle;
358 	daddr_t bn;
359 	uintptr_t lockstate;
360 	int err;
361 	daddr_t reqblock;
362 	int poff;
363 	int bsize;
364 	int pagesperblock, blocksperpage;
365 
366 	VM_OBJECT_ASSERT_LOCKED(object);
367 	/*
368 	 * If no vp or vp is doomed or marked transparent to VM, we do not
369 	 * have the page.
370 	 */
371 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
372 		return FALSE;
373 	/*
374 	 * If the offset is beyond end of file we do
375 	 * not have the page.
376 	 */
377 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
378 		return FALSE;
379 
380 	bsize = vp->v_mount->mnt_stat.f_iosize;
381 	pagesperblock = bsize / PAGE_SIZE;
382 	blocksperpage = 0;
383 	if (pagesperblock > 0) {
384 		reqblock = pindex / pagesperblock;
385 	} else {
386 		blocksperpage = (PAGE_SIZE / bsize);
387 		reqblock = pindex * blocksperpage;
388 	}
389 	lockstate = VM_OBJECT_DROP(object);
390 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
391 	VM_OBJECT_PICKUP(object, lockstate);
392 	if (err)
393 		return TRUE;
394 	if (bn == -1)
395 		return FALSE;
396 	if (pagesperblock > 0) {
397 		poff = pindex - (reqblock * pagesperblock);
398 		if (before) {
399 			*before *= pagesperblock;
400 			*before += poff;
401 		}
402 		if (after) {
403 			/*
404 			 * The BMAP vop can report a partial block in the
405 			 * 'after', but must not report blocks after EOF.
406 			 * Assert the latter, and truncate 'after' in case
407 			 * of the former.
408 			 */
409 			KASSERT((reqblock + *after) * pagesperblock <
410 			    roundup2(object->size, pagesperblock),
411 			    ("%s: reqblock %jd after %d size %ju", __func__,
412 			    (intmax_t )reqblock, *after,
413 			    (uintmax_t )object->size));
414 			*after *= pagesperblock;
415 			*after += pagesperblock - (poff + 1);
416 			if (pindex + *after >= object->size)
417 				*after = object->size - 1 - pindex;
418 		}
419 	} else {
420 		if (before) {
421 			*before /= blocksperpage;
422 		}
423 
424 		if (after) {
425 			*after /= blocksperpage;
426 		}
427 	}
428 	return TRUE;
429 }
430 
431 /*
432  * Lets the VM system know about a change in size for a file.
433  * We adjust our own internal size and flush any cached pages in
434  * the associated object that are affected by the size change.
435  *
436  * Note: this routine may be invoked as a result of a pager put
437  * operation (possibly at object termination time), so we must be careful.
438  */
439 void
440 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
441 {
442 	vm_object_t object;
443 	vm_page_t m;
444 	vm_pindex_t nobjsize;
445 
446 	if ((object = vp->v_object) == NULL)
447 		return;
448 #ifdef DEBUG_VFS_LOCKS
449 	{
450 		struct mount *mp;
451 
452 		mp = vp->v_mount;
453 		if (mp != NULL && (mp->mnt_kern_flag & MNTK_VMSETSIZE_BUG) == 0)
454 			assert_vop_elocked(vp,
455 			    "vnode_pager_setsize and not locked vnode");
456 	}
457 #endif
458 	VM_OBJECT_WLOCK(object);
459 	if (object->type == OBJT_DEAD) {
460 		VM_OBJECT_WUNLOCK(object);
461 		return;
462 	}
463 	KASSERT(object->type == OBJT_VNODE,
464 	    ("not vnode-backed object %p", object));
465 	if (nsize == object->un_pager.vnp.vnp_size) {
466 		/*
467 		 * Hasn't changed size
468 		 */
469 		VM_OBJECT_WUNLOCK(object);
470 		return;
471 	}
472 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
473 	if (nsize < object->un_pager.vnp.vnp_size) {
474 		/*
475 		 * File has shrunk. Toss any cached pages beyond the new EOF.
476 		 */
477 		if (nobjsize < object->size)
478 			vm_object_page_remove(object, nobjsize, object->size,
479 			    0);
480 		/*
481 		 * this gets rid of garbage at the end of a page that is now
482 		 * only partially backed by the vnode.
483 		 *
484 		 * XXX for some reason (I don't know yet), if we take a
485 		 * completely invalid page and mark it partially valid
486 		 * it can screw up NFS reads, so we don't allow the case.
487 		 */
488 		if (!(nsize & PAGE_MASK))
489 			goto out;
490 		m = vm_page_grab(object, OFF_TO_IDX(nsize), VM_ALLOC_NOCREAT);
491 		if (m == NULL)
492 			goto out;
493 		if (!vm_page_none_valid(m)) {
494 			int base = (int)nsize & PAGE_MASK;
495 			int size = PAGE_SIZE - base;
496 
497 			/*
498 			 * Clear out partial-page garbage in case
499 			 * the page has been mapped.
500 			 */
501 			pmap_zero_page_area(m, base, size);
502 
503 			/*
504 			 * Update the valid bits to reflect the blocks that
505 			 * have been zeroed.  Some of these valid bits may
506 			 * have already been set.
507 			 */
508 			vm_page_set_valid_range(m, base, size);
509 
510 			/*
511 			 * Round "base" to the next block boundary so that the
512 			 * dirty bit for a partially zeroed block is not
513 			 * cleared.
514 			 */
515 			base = roundup2(base, DEV_BSIZE);
516 
517 			/*
518 			 * Clear out partial-page dirty bits.
519 			 *
520 			 * note that we do not clear out the valid
521 			 * bits.  This would prevent bogus_page
522 			 * replacement from working properly.
523 			 */
524 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
525 		}
526 		vm_page_xunbusy(m);
527 	}
528 out:
529 	object->un_pager.vnp.vnp_size = nsize;
530 	object->size = nobjsize;
531 	VM_OBJECT_WUNLOCK(object);
532 }
533 
534 /*
535  * calculate the linear (byte) disk address of specified virtual
536  * file address
537  */
538 static int
539 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
540     int *run)
541 {
542 	int bsize;
543 	int err;
544 	daddr_t vblock;
545 	daddr_t voffset;
546 
547 	if (address < 0)
548 		return -1;
549 
550 	if (vp->v_iflag & VI_DOOMED)
551 		return -1;
552 
553 	bsize = vp->v_mount->mnt_stat.f_iosize;
554 	vblock = address / bsize;
555 	voffset = address % bsize;
556 
557 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
558 	if (err == 0) {
559 		if (*rtaddress != -1)
560 			*rtaddress += voffset / DEV_BSIZE;
561 		if (run) {
562 			*run += 1;
563 			*run *= bsize / PAGE_SIZE;
564 			*run -= voffset / PAGE_SIZE;
565 		}
566 	}
567 
568 	return (err);
569 }
570 
571 /*
572  * small block filesystem vnode pager input
573  */
574 static int
575 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
576 {
577 	struct vnode *vp;
578 	struct bufobj *bo;
579 	struct buf *bp;
580 	struct sf_buf *sf;
581 	daddr_t fileaddr;
582 	vm_offset_t bsize;
583 	vm_page_bits_t bits;
584 	int error, i;
585 
586 	error = 0;
587 	vp = object->handle;
588 	if (vp->v_iflag & VI_DOOMED)
589 		return VM_PAGER_BAD;
590 
591 	bsize = vp->v_mount->mnt_stat.f_iosize;
592 
593 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
594 
595 	sf = sf_buf_alloc(m, 0);
596 
597 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
598 		vm_ooffset_t address;
599 
600 		bits = vm_page_bits(i * bsize, bsize);
601 		if (m->valid & bits)
602 			continue;
603 
604 		address = IDX_TO_OFF(m->pindex) + i * bsize;
605 		if (address >= object->un_pager.vnp.vnp_size) {
606 			fileaddr = -1;
607 		} else {
608 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
609 			if (error)
610 				break;
611 		}
612 		if (fileaddr != -1) {
613 			bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
614 
615 			/* build a minimal buffer header */
616 			bp->b_iocmd = BIO_READ;
617 			bp->b_iodone = bdone;
618 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
619 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
620 			bp->b_rcred = crhold(curthread->td_ucred);
621 			bp->b_wcred = crhold(curthread->td_ucred);
622 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
623 			bp->b_blkno = fileaddr;
624 			pbgetbo(bo, bp);
625 			bp->b_vp = vp;
626 			bp->b_bcount = bsize;
627 			bp->b_bufsize = bsize;
628 			bp->b_runningbufspace = bp->b_bufsize;
629 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
630 
631 			/* do the input */
632 			bp->b_iooffset = dbtob(bp->b_blkno);
633 			bstrategy(bp);
634 
635 			bwait(bp, PVM, "vnsrd");
636 
637 			if ((bp->b_ioflags & BIO_ERROR) != 0)
638 				error = EIO;
639 
640 			/*
641 			 * free the buffer header back to the swap buffer pool
642 			 */
643 			bp->b_vp = NULL;
644 			pbrelbo(bp);
645 			uma_zfree(vnode_pbuf_zone, bp);
646 			if (error)
647 				break;
648 		} else
649 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
650 		KASSERT((m->dirty & bits) == 0,
651 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
652 		vm_page_bits_set(m, &m->valid, bits);
653 	}
654 	sf_buf_free(sf);
655 	if (error) {
656 		return VM_PAGER_ERROR;
657 	}
658 	return VM_PAGER_OK;
659 }
660 
661 /*
662  * old style vnode pager input routine
663  */
664 static int
665 vnode_pager_input_old(vm_object_t object, vm_page_t m)
666 {
667 	struct uio auio;
668 	struct iovec aiov;
669 	int error;
670 	int size;
671 	struct sf_buf *sf;
672 	struct vnode *vp;
673 
674 	VM_OBJECT_ASSERT_WLOCKED(object);
675 	error = 0;
676 
677 	/*
678 	 * Return failure if beyond current EOF
679 	 */
680 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
681 		return VM_PAGER_BAD;
682 	} else {
683 		size = PAGE_SIZE;
684 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
685 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
686 		vp = object->handle;
687 		VM_OBJECT_WUNLOCK(object);
688 
689 		/*
690 		 * Allocate a kernel virtual address and initialize so that
691 		 * we can use VOP_READ/WRITE routines.
692 		 */
693 		sf = sf_buf_alloc(m, 0);
694 
695 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
696 		aiov.iov_len = size;
697 		auio.uio_iov = &aiov;
698 		auio.uio_iovcnt = 1;
699 		auio.uio_offset = IDX_TO_OFF(m->pindex);
700 		auio.uio_segflg = UIO_SYSSPACE;
701 		auio.uio_rw = UIO_READ;
702 		auio.uio_resid = size;
703 		auio.uio_td = curthread;
704 
705 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
706 		if (!error) {
707 			int count = size - auio.uio_resid;
708 
709 			if (count == 0)
710 				error = EINVAL;
711 			else if (count != PAGE_SIZE)
712 				bzero((caddr_t)sf_buf_kva(sf) + count,
713 				    PAGE_SIZE - count);
714 		}
715 		sf_buf_free(sf);
716 
717 		VM_OBJECT_WLOCK(object);
718 	}
719 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
720 	if (!error)
721 		vm_page_valid(m);
722 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
723 }
724 
725 /*
726  * generic vnode pager input routine
727  */
728 
729 /*
730  * Local media VFS's that do not implement their own VOP_GETPAGES
731  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
732  * to implement the previous behaviour.
733  *
734  * All other FS's should use the bypass to get to the local media
735  * backing vp's VOP_GETPAGES.
736  */
737 static int
738 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
739     int *rahead)
740 {
741 	struct vnode *vp;
742 	int rtval;
743 
744 	vp = object->handle;
745 	VM_OBJECT_WUNLOCK(object);
746 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
747 	KASSERT(rtval != EOPNOTSUPP,
748 	    ("vnode_pager: FS getpages not implemented\n"));
749 	VM_OBJECT_WLOCK(object);
750 	return rtval;
751 }
752 
753 static int
754 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
755     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
756 {
757 	struct vnode *vp;
758 	int rtval;
759 
760 	vp = object->handle;
761 	VM_OBJECT_WUNLOCK(object);
762 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
763 	KASSERT(rtval != EOPNOTSUPP,
764 	    ("vnode_pager: FS getpages_async not implemented\n"));
765 	VM_OBJECT_WLOCK(object);
766 	return (rtval);
767 }
768 
769 /*
770  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
771  * local filesystems, where partially valid pages can only occur at
772  * the end of file.
773  */
774 int
775 vnode_pager_local_getpages(struct vop_getpages_args *ap)
776 {
777 
778 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
779 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
780 }
781 
782 int
783 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
784 {
785 
786 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
787 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
788 }
789 
790 /*
791  * This is now called from local media FS's to operate against their
792  * own vnodes if they fail to implement VOP_GETPAGES.
793  */
794 int
795 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
796     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
797 {
798 	vm_object_t object;
799 	struct bufobj *bo;
800 	struct buf *bp;
801 	off_t foff;
802 #ifdef INVARIANTS
803 	off_t blkno0;
804 #endif
805 	int bsize, pagesperblock;
806 	int error, before, after, rbehind, rahead, poff, i;
807 	int bytecount, secmask;
808 
809 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
810 	    ("%s does not support devices", __func__));
811 
812 	if (vp->v_iflag & VI_DOOMED)
813 		return (VM_PAGER_BAD);
814 
815 	object = vp->v_object;
816 	foff = IDX_TO_OFF(m[0]->pindex);
817 	bsize = vp->v_mount->mnt_stat.f_iosize;
818 	pagesperblock = bsize / PAGE_SIZE;
819 
820 	KASSERT(foff < object->un_pager.vnp.vnp_size,
821 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
822 	KASSERT(count <= nitems(bp->b_pages),
823 	    ("%s: requested %d pages", __func__, count));
824 
825 	/*
826 	 * The last page has valid blocks.  Invalid part can only
827 	 * exist at the end of file, and the page is made fully valid
828 	 * by zeroing in vm_pager_get_pages().
829 	 */
830 	if (!vm_page_none_valid(m[count - 1]) && --count == 0) {
831 		if (iodone != NULL)
832 			iodone(arg, m, 1, 0);
833 		return (VM_PAGER_OK);
834 	}
835 
836 	bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
837 
838 	/*
839 	 * Get the underlying device blocks for the file with VOP_BMAP().
840 	 * If the file system doesn't support VOP_BMAP, use old way of
841 	 * getting pages via VOP_READ.
842 	 */
843 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
844 	if (error == EOPNOTSUPP) {
845 		uma_zfree(vnode_pbuf_zone, bp);
846 		VM_OBJECT_WLOCK(object);
847 		for (i = 0; i < count; i++) {
848 			VM_CNT_INC(v_vnodein);
849 			VM_CNT_INC(v_vnodepgsin);
850 			error = vnode_pager_input_old(object, m[i]);
851 			if (error)
852 				break;
853 		}
854 		VM_OBJECT_WUNLOCK(object);
855 		return (error);
856 	} else if (error != 0) {
857 		uma_zfree(vnode_pbuf_zone, bp);
858 		return (VM_PAGER_ERROR);
859 	}
860 
861 	/*
862 	 * If the file system supports BMAP, but blocksize is smaller
863 	 * than a page size, then use special small filesystem code.
864 	 */
865 	if (pagesperblock == 0) {
866 		uma_zfree(vnode_pbuf_zone, bp);
867 		for (i = 0; i < count; i++) {
868 			VM_CNT_INC(v_vnodein);
869 			VM_CNT_INC(v_vnodepgsin);
870 			error = vnode_pager_input_smlfs(object, m[i]);
871 			if (error)
872 				break;
873 		}
874 		return (error);
875 	}
876 
877 	/*
878 	 * A sparse file can be encountered only for a single page request,
879 	 * which may not be preceded by call to vm_pager_haspage().
880 	 */
881 	if (bp->b_blkno == -1) {
882 		KASSERT(count == 1,
883 		    ("%s: array[%d] request to a sparse file %p", __func__,
884 		    count, vp));
885 		uma_zfree(vnode_pbuf_zone, bp);
886 		pmap_zero_page(m[0]);
887 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
888 		    __func__, m[0]));
889 		vm_page_valid(m[0]);
890 		return (VM_PAGER_OK);
891 	}
892 
893 #ifdef INVARIANTS
894 	blkno0 = bp->b_blkno;
895 #endif
896 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
897 
898 	/* Recalculate blocks available after/before to pages. */
899 	poff = (foff % bsize) / PAGE_SIZE;
900 	before *= pagesperblock;
901 	before += poff;
902 	after *= pagesperblock;
903 	after += pagesperblock - (poff + 1);
904 	if (m[0]->pindex + after >= object->size)
905 		after = object->size - 1 - m[0]->pindex;
906 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
907 	    __func__, count, after + 1));
908 	after -= count - 1;
909 
910 	/* Trim requested rbehind/rahead to possible values. */
911 	rbehind = a_rbehind ? *a_rbehind : 0;
912 	rahead = a_rahead ? *a_rahead : 0;
913 	rbehind = min(rbehind, before);
914 	rbehind = min(rbehind, m[0]->pindex);
915 	rahead = min(rahead, after);
916 	rahead = min(rahead, object->size - m[count - 1]->pindex);
917 	/*
918 	 * Check that total amount of pages fit into buf.  Trim rbehind and
919 	 * rahead evenly if not.
920 	 */
921 	if (rbehind + rahead + count > nitems(bp->b_pages)) {
922 		int trim, sum;
923 
924 		trim = rbehind + rahead + count - nitems(bp->b_pages) + 1;
925 		sum = rbehind + rahead;
926 		if (rbehind == before) {
927 			/* Roundup rbehind trim to block size. */
928 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
929 			if (rbehind < 0)
930 				rbehind = 0;
931 		} else
932 			rbehind -= trim * rbehind / sum;
933 		rahead -= trim * rahead / sum;
934 	}
935 	KASSERT(rbehind + rahead + count <= nitems(bp->b_pages),
936 	    ("%s: behind %d ahead %d count %d", __func__,
937 	    rbehind, rahead, count));
938 
939 	/*
940 	 * Fill in the bp->b_pages[] array with requested and optional
941 	 * read behind or read ahead pages.  Read behind pages are looked
942 	 * up in a backward direction, down to a first cached page.  Same
943 	 * for read ahead pages, but there is no need to shift the array
944 	 * in case of encountering a cached page.
945 	 */
946 	i = bp->b_npages = 0;
947 	if (rbehind) {
948 		vm_pindex_t startpindex, tpindex;
949 		vm_page_t p;
950 
951 		VM_OBJECT_WLOCK(object);
952 		startpindex = m[0]->pindex - rbehind;
953 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
954 		    p->pindex >= startpindex)
955 			startpindex = p->pindex + 1;
956 
957 		/* tpindex is unsigned; beware of numeric underflow. */
958 		for (tpindex = m[0]->pindex - 1;
959 		    tpindex >= startpindex && tpindex < m[0]->pindex;
960 		    tpindex--, i++) {
961 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
962 			if (p == NULL) {
963 				/* Shift the array. */
964 				for (int j = 0; j < i; j++)
965 					bp->b_pages[j] = bp->b_pages[j +
966 					    tpindex + 1 - startpindex];
967 				break;
968 			}
969 			bp->b_pages[tpindex - startpindex] = p;
970 		}
971 
972 		bp->b_pgbefore = i;
973 		bp->b_npages += i;
974 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
975 	} else
976 		bp->b_pgbefore = 0;
977 
978 	/* Requested pages. */
979 	for (int j = 0; j < count; j++, i++)
980 		bp->b_pages[i] = m[j];
981 	bp->b_npages += count;
982 
983 	if (rahead) {
984 		vm_pindex_t endpindex, tpindex;
985 		vm_page_t p;
986 
987 		if (!VM_OBJECT_WOWNED(object))
988 			VM_OBJECT_WLOCK(object);
989 		endpindex = m[count - 1]->pindex + rahead + 1;
990 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
991 		    p->pindex < endpindex)
992 			endpindex = p->pindex;
993 		if (endpindex > object->size)
994 			endpindex = object->size;
995 
996 		for (tpindex = m[count - 1]->pindex + 1;
997 		    tpindex < endpindex; i++, tpindex++) {
998 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
999 			if (p == NULL)
1000 				break;
1001 			bp->b_pages[i] = p;
1002 		}
1003 
1004 		bp->b_pgafter = i - bp->b_npages;
1005 		bp->b_npages = i;
1006 	} else
1007 		bp->b_pgafter = 0;
1008 
1009 	if (VM_OBJECT_WOWNED(object))
1010 		VM_OBJECT_WUNLOCK(object);
1011 
1012 	/* Report back actual behind/ahead read. */
1013 	if (a_rbehind)
1014 		*a_rbehind = bp->b_pgbefore;
1015 	if (a_rahead)
1016 		*a_rahead = bp->b_pgafter;
1017 
1018 #ifdef INVARIANTS
1019 	KASSERT(bp->b_npages <= nitems(bp->b_pages),
1020 	    ("%s: buf %p overflowed", __func__, bp));
1021 	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
1022 		if (bp->b_pages[j] == bogus_page)
1023 			continue;
1024 		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1025 		    j - prev, ("%s: pages array not consecutive, bp %p",
1026 		     __func__, bp));
1027 		prev = j;
1028 	}
1029 #endif
1030 
1031 	/*
1032 	 * Recalculate first offset and bytecount with regards to read behind.
1033 	 * Truncate bytecount to vnode real size and round up physical size
1034 	 * for real devices.
1035 	 */
1036 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1037 	bytecount = bp->b_npages << PAGE_SHIFT;
1038 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1039 		bytecount = object->un_pager.vnp.vnp_size - foff;
1040 	secmask = bo->bo_bsize - 1;
1041 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1042 	    ("%s: sector size %d too large", __func__, secmask + 1));
1043 	bytecount = (bytecount + secmask) & ~secmask;
1044 
1045 	/*
1046 	 * And map the pages to be read into the kva, if the filesystem
1047 	 * requires mapped buffers.
1048 	 */
1049 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1050 	    unmapped_buf_allowed) {
1051 		bp->b_data = unmapped_buf;
1052 		bp->b_offset = 0;
1053 	} else {
1054 		bp->b_data = bp->b_kvabase;
1055 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1056 	}
1057 
1058 	/* Build a minimal buffer header. */
1059 	bp->b_iocmd = BIO_READ;
1060 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1061 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1062 	bp->b_rcred = crhold(curthread->td_ucred);
1063 	bp->b_wcred = crhold(curthread->td_ucred);
1064 	pbgetbo(bo, bp);
1065 	bp->b_vp = vp;
1066 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1067 	bp->b_iooffset = dbtob(bp->b_blkno);
1068 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1069 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1070 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1071 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1072 	    "blkno0 %ju b_blkno %ju", bsize,
1073 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1074 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1075 
1076 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1077 	VM_CNT_INC(v_vnodein);
1078 	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1079 
1080 	if (iodone != NULL) { /* async */
1081 		bp->b_pgiodone = iodone;
1082 		bp->b_caller1 = arg;
1083 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1084 		bp->b_flags |= B_ASYNC;
1085 		BUF_KERNPROC(bp);
1086 		bstrategy(bp);
1087 		return (VM_PAGER_OK);
1088 	} else {
1089 		bp->b_iodone = bdone;
1090 		bstrategy(bp);
1091 		bwait(bp, PVM, "vnread");
1092 		error = vnode_pager_generic_getpages_done(bp);
1093 		for (i = 0; i < bp->b_npages; i++)
1094 			bp->b_pages[i] = NULL;
1095 		bp->b_vp = NULL;
1096 		pbrelbo(bp);
1097 		uma_zfree(vnode_pbuf_zone, bp);
1098 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1099 	}
1100 }
1101 
1102 static void
1103 vnode_pager_generic_getpages_done_async(struct buf *bp)
1104 {
1105 	int error;
1106 
1107 	error = vnode_pager_generic_getpages_done(bp);
1108 	/* Run the iodone upon the requested range. */
1109 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1110 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1111 	for (int i = 0; i < bp->b_npages; i++)
1112 		bp->b_pages[i] = NULL;
1113 	bp->b_vp = NULL;
1114 	pbrelbo(bp);
1115 	uma_zfree(vnode_pbuf_zone, bp);
1116 }
1117 
1118 static int
1119 vnode_pager_generic_getpages_done(struct buf *bp)
1120 {
1121 	vm_object_t object;
1122 	off_t tfoff, nextoff;
1123 	int i, error;
1124 
1125 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1126 	object = bp->b_vp->v_object;
1127 
1128 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1129 		if (!buf_mapped(bp)) {
1130 			bp->b_data = bp->b_kvabase;
1131 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1132 			    bp->b_npages);
1133 		}
1134 		bzero(bp->b_data + bp->b_bcount,
1135 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1136 	}
1137 	if (buf_mapped(bp)) {
1138 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1139 		bp->b_data = unmapped_buf;
1140 	}
1141 
1142 	/* Read lock to protect size. */
1143 	VM_OBJECT_RLOCK(object);
1144 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1145 	    i < bp->b_npages; i++, tfoff = nextoff) {
1146 		vm_page_t mt;
1147 
1148 		nextoff = tfoff + PAGE_SIZE;
1149 		mt = bp->b_pages[i];
1150 		if (mt == bogus_page)
1151 			continue;
1152 
1153 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1154 			/*
1155 			 * Read filled up entire page.
1156 			 */
1157 			vm_page_valid(mt);
1158 			KASSERT(mt->dirty == 0,
1159 			    ("%s: page %p is dirty", __func__, mt));
1160 			KASSERT(!pmap_page_is_mapped(mt),
1161 			    ("%s: page %p is mapped", __func__, mt));
1162 		} else {
1163 			/*
1164 			 * Read did not fill up entire page.
1165 			 *
1166 			 * Currently we do not set the entire page valid,
1167 			 * we just try to clear the piece that we couldn't
1168 			 * read.
1169 			 */
1170 			vm_page_set_valid_range(mt, 0,
1171 			    object->un_pager.vnp.vnp_size - tfoff);
1172 			KASSERT((mt->dirty & vm_page_bits(0,
1173 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1174 			    ("%s: page %p is dirty", __func__, mt));
1175 		}
1176 
1177 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1178 			vm_page_readahead_finish(mt);
1179 	}
1180 	VM_OBJECT_RUNLOCK(object);
1181 	if (error != 0)
1182 		printf("%s: I/O read error %d\n", __func__, error);
1183 
1184 	return (error);
1185 }
1186 
1187 /*
1188  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1189  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1190  * vnode_pager_generic_putpages() to implement the previous behaviour.
1191  *
1192  * All other FS's should use the bypass to get to the local media
1193  * backing vp's VOP_PUTPAGES.
1194  */
1195 static void
1196 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1197     int flags, int *rtvals)
1198 {
1199 	int rtval;
1200 	struct vnode *vp;
1201 	int bytes = count * PAGE_SIZE;
1202 
1203 	/*
1204 	 * Force synchronous operation if we are extremely low on memory
1205 	 * to prevent a low-memory deadlock.  VOP operations often need to
1206 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1207 	 * operation ).  The swapper handles the case by limiting the amount
1208 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1209 	 * for the vnode pager without a lot of work.
1210 	 *
1211 	 * Also, the backing vnode's iodone routine may not wake the pageout
1212 	 * daemon up.  This should be probably be addressed XXX.
1213 	 */
1214 
1215 	if (vm_page_count_min())
1216 		flags |= VM_PAGER_PUT_SYNC;
1217 
1218 	/*
1219 	 * Call device-specific putpages function
1220 	 */
1221 	vp = object->handle;
1222 	VM_OBJECT_WUNLOCK(object);
1223 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1224 	KASSERT(rtval != EOPNOTSUPP,
1225 	    ("vnode_pager: stale FS putpages\n"));
1226 	VM_OBJECT_WLOCK(object);
1227 }
1228 
1229 static int
1230 vn_off2bidx(vm_ooffset_t offset)
1231 {
1232 
1233 	return ((offset & PAGE_MASK) / DEV_BSIZE);
1234 }
1235 
1236 static bool
1237 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1238 {
1239 
1240 	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1241 	    offset < IDX_TO_OFF(m->pindex + 1),
1242 	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1243 	    (uintmax_t)offset));
1244 	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1245 }
1246 
1247 /*
1248  * This is now called from local media FS's to operate against their
1249  * own vnodes if they fail to implement VOP_PUTPAGES.
1250  *
1251  * This is typically called indirectly via the pageout daemon and
1252  * clustering has already typically occurred, so in general we ask the
1253  * underlying filesystem to write the data out asynchronously rather
1254  * then delayed.
1255  */
1256 int
1257 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1258     int flags, int *rtvals)
1259 {
1260 	vm_object_t object;
1261 	vm_page_t m;
1262 	vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1263 	struct uio auio;
1264 	struct iovec aiov;
1265 	off_t prev_resid, wrsz;
1266 	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1267 	bool in_hole;
1268 	static struct timeval lastfail;
1269 	static int curfail;
1270 
1271 	object = vp->v_object;
1272 	count = bytecount / PAGE_SIZE;
1273 
1274 	for (i = 0; i < count; i++)
1275 		rtvals[i] = VM_PAGER_ERROR;
1276 
1277 	if ((int64_t)ma[0]->pindex < 0) {
1278 		printf("vnode_pager_generic_putpages: "
1279 		    "attempt to write meta-data 0x%jx(%lx)\n",
1280 		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1281 		rtvals[0] = VM_PAGER_BAD;
1282 		return (VM_PAGER_BAD);
1283 	}
1284 
1285 	maxsize = count * PAGE_SIZE;
1286 	ncount = count;
1287 
1288 	poffset = IDX_TO_OFF(ma[0]->pindex);
1289 
1290 	/*
1291 	 * If the page-aligned write is larger then the actual file we
1292 	 * have to invalidate pages occurring beyond the file EOF.  However,
1293 	 * there is an edge case where a file may not be page-aligned where
1294 	 * the last page is partially invalid.  In this case the filesystem
1295 	 * may not properly clear the dirty bits for the entire page (which
1296 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1297 	 * With the page locked we are free to fix-up the dirty bits here.
1298 	 *
1299 	 * We do not under any circumstances truncate the valid bits, as
1300 	 * this will screw up bogus page replacement.
1301 	 */
1302 	VM_OBJECT_RLOCK(object);
1303 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1304 		if (object->un_pager.vnp.vnp_size > poffset) {
1305 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1306 			ncount = btoc(maxsize);
1307 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1308 				pgoff = roundup2(pgoff, DEV_BSIZE);
1309 
1310 				/*
1311 				 * If the page is busy and the following
1312 				 * conditions hold, then the page's dirty
1313 				 * field cannot be concurrently changed by a
1314 				 * pmap operation.
1315 				 */
1316 				m = ma[ncount - 1];
1317 				vm_page_assert_sbusied(m);
1318 				KASSERT(!pmap_page_is_write_mapped(m),
1319 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1320 				MPASS(m->dirty != 0);
1321 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1322 				    pgoff);
1323 			}
1324 		} else {
1325 			maxsize = 0;
1326 			ncount = 0;
1327 		}
1328 		for (i = ncount; i < count; i++)
1329 			rtvals[i] = VM_PAGER_BAD;
1330 	}
1331 	VM_OBJECT_RUNLOCK(object);
1332 
1333 	auio.uio_iov = &aiov;
1334 	auio.uio_segflg = UIO_NOCOPY;
1335 	auio.uio_rw = UIO_WRITE;
1336 	auio.uio_td = NULL;
1337 	maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1338 
1339 	for (prev_offset = poffset; prev_offset < maxblksz;) {
1340 		/* Skip clean blocks. */
1341 		for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1342 			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1343 			for (i = vn_off2bidx(prev_offset);
1344 			    i < sizeof(vm_page_bits_t) * NBBY &&
1345 			    prev_offset < maxblksz; i++) {
1346 				if (vn_dirty_blk(m, prev_offset)) {
1347 					in_hole = false;
1348 					break;
1349 				}
1350 				prev_offset += DEV_BSIZE;
1351 			}
1352 		}
1353 		if (in_hole)
1354 			goto write_done;
1355 
1356 		/* Find longest run of dirty blocks. */
1357 		for (next_offset = prev_offset; next_offset < maxblksz;) {
1358 			m = ma[OFF_TO_IDX(next_offset - poffset)];
1359 			for (i = vn_off2bidx(next_offset);
1360 			    i < sizeof(vm_page_bits_t) * NBBY &&
1361 			    next_offset < maxblksz; i++) {
1362 				if (!vn_dirty_blk(m, next_offset))
1363 					goto start_write;
1364 				next_offset += DEV_BSIZE;
1365 			}
1366 		}
1367 start_write:
1368 		if (next_offset > poffset + maxsize)
1369 			next_offset = poffset + maxsize;
1370 
1371 		/*
1372 		 * Getting here requires finding a dirty block in the
1373 		 * 'skip clean blocks' loop.
1374 		 */
1375 		MPASS(prev_offset < next_offset);
1376 
1377 		aiov.iov_base = NULL;
1378 		auio.uio_iovcnt = 1;
1379 		auio.uio_offset = prev_offset;
1380 		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1381 		    prev_offset;
1382 		error = VOP_WRITE(vp, &auio,
1383 		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1384 
1385 		wrsz = prev_resid - auio.uio_resid;
1386 		if (wrsz == 0) {
1387 			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1388 				vn_printf(vp, "vnode_pager_putpages: "
1389 				    "zero-length write at %ju resid %zd\n",
1390 				    auio.uio_offset, auio.uio_resid);
1391 			}
1392 			break;
1393 		}
1394 
1395 		/* Adjust the starting offset for next iteration. */
1396 		prev_offset += wrsz;
1397 		MPASS(auio.uio_offset == prev_offset);
1398 
1399 		ppscheck = 0;
1400 		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1401 		    &curfail, 1)) != 0)
1402 			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1403 			    error);
1404 		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1405 		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1406 			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1407 			    "at %ju\n", auio.uio_resid,
1408 			    (uintmax_t)ma[0]->pindex);
1409 		if (error != 0 || auio.uio_resid != 0)
1410 			break;
1411 	}
1412 write_done:
1413 	/* Mark completely processed pages. */
1414 	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1415 		rtvals[i] = VM_PAGER_OK;
1416 	/* Mark partial EOF page. */
1417 	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1418 		rtvals[i++] = VM_PAGER_OK;
1419 	/* Unwritten pages in range, free bonus if the page is clean. */
1420 	for (; i < ncount; i++)
1421 		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1422 	VM_CNT_ADD(v_vnodepgsout, i);
1423 	VM_CNT_INC(v_vnodeout);
1424 	return (rtvals[0]);
1425 }
1426 
1427 int
1428 vnode_pager_putpages_ioflags(int pager_flags)
1429 {
1430 	int ioflags;
1431 
1432 	/*
1433 	 * Pageouts are already clustered, use IO_ASYNC to force a
1434 	 * bawrite() rather then a bdwrite() to prevent paging I/O
1435 	 * from saturating the buffer cache.  Dummy-up the sequential
1436 	 * heuristic to cause large ranges to cluster.  If neither
1437 	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1438 	 * cluster.
1439 	 */
1440 	ioflags = IO_VMIO;
1441 	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1442 		ioflags |= IO_SYNC;
1443 	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1444 		ioflags |= IO_ASYNC;
1445 	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1446 	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1447 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1448 	return (ioflags);
1449 }
1450 
1451 /*
1452  * vnode_pager_undirty_pages().
1453  *
1454  * A helper to mark pages as clean after pageout that was possibly
1455  * done with a short write.  The lpos argument specifies the page run
1456  * length in bytes, and the written argument specifies how many bytes
1457  * were actually written.  eof is the offset past the last valid byte
1458  * in the vnode using the absolute file position of the first byte in
1459  * the run as the base from which it is computed.
1460  */
1461 void
1462 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1463     int lpos)
1464 {
1465 	vm_object_t obj;
1466 	int i, pos, pos_devb;
1467 
1468 	if (written == 0 && eof >= lpos)
1469 		return;
1470 	obj = ma[0]->object;
1471 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1472 		if (pos < trunc_page(written)) {
1473 			rtvals[i] = VM_PAGER_OK;
1474 			vm_page_undirty(ma[i]);
1475 		} else {
1476 			/* Partially written page. */
1477 			rtvals[i] = VM_PAGER_AGAIN;
1478 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1479 		}
1480 	}
1481 	if (eof >= lpos) /* avoid truncation */
1482 		return;
1483 	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1484 		if (pos != trunc_page(pos)) {
1485 			/*
1486 			 * The page contains the last valid byte in
1487 			 * the vnode, mark the rest of the page as
1488 			 * clean, potentially making the whole page
1489 			 * clean.
1490 			 */
1491 			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1492 			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1493 			    pos_devb);
1494 
1495 			/*
1496 			 * If the page was cleaned, report the pageout
1497 			 * on it as successful.  msync() no longer
1498 			 * needs to write out the page, endlessly
1499 			 * creating write requests and dirty buffers.
1500 			 */
1501 			if (ma[i]->dirty == 0)
1502 				rtvals[i] = VM_PAGER_OK;
1503 
1504 			pos = round_page(pos);
1505 		} else {
1506 			/* vm_pageout_flush() clears dirty */
1507 			rtvals[i] = VM_PAGER_BAD;
1508 			pos += PAGE_SIZE;
1509 		}
1510 	}
1511 }
1512 
1513 static void
1514 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1515     vm_offset_t end)
1516 {
1517 	struct vnode *vp;
1518 	vm_ooffset_t old_wm;
1519 
1520 	VM_OBJECT_WLOCK(object);
1521 	if (object->type != OBJT_VNODE) {
1522 		VM_OBJECT_WUNLOCK(object);
1523 		return;
1524 	}
1525 	old_wm = object->un_pager.vnp.writemappings;
1526 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1527 	vp = object->handle;
1528 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1529 		ASSERT_VOP_LOCKED(vp, "v_writecount inc");
1530 		VOP_ADD_WRITECOUNT_CHECKED(vp, 1);
1531 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1532 		    __func__, vp, vp->v_writecount);
1533 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1534 		ASSERT_VOP_LOCKED(vp, "v_writecount dec");
1535 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1536 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1537 		    __func__, vp, vp->v_writecount);
1538 	}
1539 	VM_OBJECT_WUNLOCK(object);
1540 }
1541 
1542 static void
1543 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1544     vm_offset_t end)
1545 {
1546 	struct vnode *vp;
1547 	struct mount *mp;
1548 	vm_offset_t inc;
1549 
1550 	VM_OBJECT_WLOCK(object);
1551 
1552 	/*
1553 	 * First, recheck the object type to account for the race when
1554 	 * the vnode is reclaimed.
1555 	 */
1556 	if (object->type != OBJT_VNODE) {
1557 		VM_OBJECT_WUNLOCK(object);
1558 		return;
1559 	}
1560 
1561 	/*
1562 	 * Optimize for the case when writemappings is not going to
1563 	 * zero.
1564 	 */
1565 	inc = end - start;
1566 	if (object->un_pager.vnp.writemappings != inc) {
1567 		object->un_pager.vnp.writemappings -= inc;
1568 		VM_OBJECT_WUNLOCK(object);
1569 		return;
1570 	}
1571 
1572 	vp = object->handle;
1573 	vhold(vp);
1574 	VM_OBJECT_WUNLOCK(object);
1575 	mp = NULL;
1576 	vn_start_write(vp, &mp, V_WAIT);
1577 	vn_lock(vp, LK_SHARED | LK_RETRY);
1578 
1579 	/*
1580 	 * Decrement the object's writemappings, by swapping the start
1581 	 * and end arguments for vnode_pager_update_writecount().  If
1582 	 * there was not a race with vnode reclaimation, then the
1583 	 * vnode's v_writecount is decremented.
1584 	 */
1585 	vnode_pager_update_writecount(object, end, start);
1586 	VOP_UNLOCK(vp, 0);
1587 	vdrop(vp);
1588 	if (mp != NULL)
1589 		vn_finished_write(mp);
1590 }
1591